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Abstract. Let (M, f) be a discrete dynamical system induced by a self–map

f defined on a smooth compact connected n–dimensional manifold M. We

provide sufficient conditions in terms of the Lefschetz zeta function in order

that: (1) f has positive topological entropy when f is C∞, and (2) f has

infinitely many periodic points when f is C1 and f(M) ⊆ Int(M). Moreover,

for the particular manifolds Sn, Sn × Sm, CPn and HPn we improve the

previous sufficient conditions.

1. Introduction and statement of the main results

Along this work we study discrete dynamical systems (M, f) induced by a

continuous self–map f where M is a smooth compact connected n–dimensional

manifold possibly with boundary. Frequently algebraic information of a given

discrete dynamical system provides qualitative or quantitative results on their

orbits. Here we use algebraic properties of the Lefschetz zeta function Zf (f)

associated to f , which is of the form P (t)/Q(t) where P (t) and Q(t) are polyno-

mials, to provide information on the positivity of the topological entropy, and on

the infiniteness of the set of periodic points of the system.

Recall that a point x ∈ M is periodic of period n if fn(x) = x and fk(x) 6= x

for k = 1, . . . , n−1. On the other hand, roughly speaking, the topological entropy

of a system h(f) is a non–negative real number (possibly infinite) which measures

how much f mixes up the phase space M. When h(f) is positive the dynamics of

the system is said to be complex and the positivity of h(f) is used as a measure of
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