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ON THE PERIODS OF A
CONTINUOUS SELF–MAP ON A GRAPH

JUAN LUIS GARCÍA GUIRAO1 AND JAUME LLIBRE2

Abstract. Let G be a graph and f be a continuous self–map on G.
We present new and known results (from another point of view) on
the periods of the periodic orbits of f using mainly the action of f
on its homology, or the shape of the graph G.

1. Introduction and statement of the main results

A discrete dynamical system (G, f) is formed by a continuous map
f : G→ G where G is a topological space.

A point x ∈ G is periodic of period k if fk(x) = x and f i(x) 6= x if
0 < i < k. If k = 1, then x is called a fixed point. Per(f) denotes the set
of periods of all the periodic points of f .

The orbit of the point x ∈ G is the set {x, f(x), f 2(x), . . . , fn(x), . . .}
where by fn we denote the composition of f with itself n times. To
knowledge the behavior of all different kind of orbits of f is to study the
dynamics of the map f .

Many times the periodic points play an important role for understand-
ing the dynamics of a discrete dynamical system. One of the best known
results in this direction is the paper Period three implies chaos for con-
tinuous interval maps, see [8].

Here a graph G is a compact connected space containing a finite set V
such that G \ V has finitely many open connected components, each one
homeomorphic to the interval (0, 1), called edges of G, and the points of
V are called the vertexes of G. The edges are disjoint from the vertexes,
and the vertexes are at the boundary of the edges.

In this paper we shall work with a graph G. Our goal is to study the
periods of the periodic points of the continuous maps f : G→ G.
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The degree of a vertex V of a graph G is the number of edges having
V in its boundary, if an edge has both boundaries in V then we count
this edge twice. An endpoint of a graph G is a vertex of degree one. A
branching point of a graph G is a vertex of degree at least three.

The homological spaces of G with coefficients in Q are denoted by
Hk(G,Q). Since G is a graph k = 0, 1. A continuous map f : G → G
induces linear maps f∗k : Hk(G,Q) → Hk(G,Q). We only work with
graphs, so H0(G,Q) ≈ Q and f∗0 is the identity map. A subset of G
homeomorphic to a circle is a circuit. It is known that H1(G,Q) ≈ Qm

being m the number of the independent circuits of G in the sense of the
homology. Here f∗1 is a m×m matrix A with integer entries. For more
details on this homology see for instance [12].

If A be a m ×m matrix, then a submatrix lying in the same set of k
rows and columns is a k × k principal submatrix of A. The determinant
of a principal submatrix is a k × k principal minor. The sum of the

(
n
k

)
different k × k principal minors of A is denoted by Ek(A). Note that
Em(A) is the determinant of A and E1(A) is the trace of A. Of course
the characteristic polynomial of A is given by

(1) det(tI − A) = tm − E1(A)t
m−1 + E2(A)t

m−2 − . . .+ (−1)mEm(A).

The biggest modulus of the eigenvalues of the matrix A is called the
spectral radius of A and it is denoted by sp(A).

Our main results are the following ones.

Theorem 1. Let G be a graph, f : G→ G be a continuous map, and A
be the integral matrix of the endomorphism f∗1 : H1(G,Q) → H1(G,Q)
induced by f on the first homology group of G. The following statements
hold.

(a) If E1(A) 6= 1, then 1 ∈ Per(f).
(b) If E1(A) = 1 and E2(A) 6= 0, then Per(f) ∩ {1, 2} 6= ∅.
(c) If E1(A) = 1, E2(A) = ... = Ek−1(A) = 0 and Ek(A) 6= 0 for

k = 3, . . . ,m then Per(f) intersection the set of all the divisors
of k is not empty.

Theorem 1 is proved in section 2 using the Lefschetz fixed point theory.
The next result is an immediate consequence of Theorem 1.

Corollary 2. Under the assumptions of Theorem 1, if the character-
istic polynomial of the matrix A is different from 1 − t, then Per(f) ∩
{1, 2, . . . ,m} 6= ∅.
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Let k be a positive integer we denote by god(k) the greatest odd divisor
of k. Let S be a subset of positive integer, the pantheon of S is the set
{god(k) : k ∈ S}.
Theorem 3. Let G be a graph, f : G→ G be a continuous map, and A
be the integral matrix of the endomorphism f∗1 : H1(G,Q) → H1(G,Q)
induced by f on the first homology group of G. If sp(f∗1) > 1, then f
has infinitely many periods. More precisely, there is an n ∈ N such that
{kn : k ∈ N} ⊂ Per(f) and the pantheon of Per(f) is infinite.

Theorem 4. Let G be a graph with v vertexes, e endpoints, s edges
and at least one branching point. Let f : G → G be a continuous map
having all the branching point of G fixed. If for some period n of f ,
god(n) > e + 2s − 2v + 2 then f has infinitely many periods. More
precisely, there is an n ∈ N such that {kn : k ∈ N} ⊂ Per(f) and the
pantheon of Per(f) is infinite.

Figure 1. The glasses graph.

From Theorem 4 we can deduce many results similar to the one given
in the seminal paper Period three implies chaos for self–continuous maps
on the interval in the sense of having infinitely many periods.

Corollary 5. The following map f have infinitely many periods if:

(a) f is a continuous self-map on the graph having the shape of the
letter Y with the branching point fixed and having a period n such
that god(n) > 3;

(b) f is a continuous self-map on the graph having the shape of the
number 8 or on the graph having the shape of the letter θ with the
branching points fixed and having a period n such that god(n) > 4;

(c) f is a continuous self-map on the glasses graph having the shape
of the graph described in Figure 1 with the branching points fixed
and having a period n such that god(n) > 2.

Theorems 3, 4 and Corollary 5 are proved in section 3.

We note that this paper is a kind of survey with new results. That is,
Theorem 1 is completely new, but Theorems 3 and 4 essentially follow
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combining known results on the continuous self-maps on graphs as we
will see in their proofs.

2. Proof of Theorem 1

Let f : G → G be a continuous map on the graph G. The Lefschetz
number of f is defined by

L(f) = trace(f∗0)− trace(f∗1).

The Lefschetz Fixed Point Theorem states: If L(f) 6= 0 then f has a
fixed point (see for instance [5]).

In order to control the whole sequence of the Lefschetz numbers of the
iterates of f , i.e. {L(fn)}n≥1, we use the formal Lefschetz zeta function
of f defined by

(2) Zf (t) = exp

(
∞∑
n=1

L(fn)

n
tn

)
.

It is known that for a continuous self–map of a graph G the Lefschetz
zeta function is the rational function

(3) Zf (t) =
det(I − tf∗1)
det(I − tf∗0)

=
det(I − tA)

1− t
,

where A is the integer matrix defined by f∗1, for a proof see Franks [6].

Since det(I − tA) = tn det
(
1
t
I − A

)
, from (1) we get

det(I − tA) = 1− E1(A)t+ E2(A)t
2 − . . .+ (−1)mEm(A)t

m.

From (2) and (3) we obtain
(4)
∞∑
n=1

L(fn)

n
tn = log(Zf (t))

= log

(
det(I − tA)

1− t

)
= log

(
1− E1(A)t+ E2(A)t

2 − ...+ (−1)mEm(A)t
m

1− t

)
= (1− E1(A))t+

1

2

(
1− E1(A)

2 + 2E2(A)
)
t2

=
1

3

(
1− E1(A)

3 + 3E1(A)E2(A)− 3E3(A)
)
t3 +O(t4).
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So we have that

L(f) = 1− E1(A), and L(f 2) = 1− E1(A)
2 + 2E2(A).

Therefore if E1(A) 6= 1 than L(f) 6= 0 and by the Lefschetz Fixed Point
Theorem statement (a) is proved. If E1(A) = 1 and E2(A) 6= 0, then
L(f 2) = 2E2(A) 6= 0, again by the Lefschetz Fixed Point Theorem state-
ment (b) follows.

Working with the expression (4) when E1(A) = 1, E2(A) = ... =
Ek−1(A) = 0 and Ek(A) 6= 0 for k = 3, . . . ,m we obtain that L(fk) =
(−1)kkEk(A) 6= 0, hence by the Lefschetz Fixed Point Theorem state-
ment (c) is proved. This completes the proof of Theorem 1.

3. Proof of Theorems 3, 4 and Corollary 5

Let G be a graph, and let f : G→ G bea continuous map. One way of
measuring the complexity of the dynamics of the map f is through the
notion of topological entropy. Here we introduce the topological entropy
using the definition of Bowen [4].

Since a graph G is a subset of R3, we consider the distance between
two points of G as the distance of these two points in R3. Now, we define
the distance dn on G by

dn(x, y) = max
0≤i≤n

d(f i(x), f i(y)), ∀x, y ∈ G.

A finite set S is called (n, ε)–separated with respect to f if for different
points x, y ∈ S we have dn(x, y) > ε. We denote by Sn the maximal
cardinality of an (n, ε)–separated set. Define

h(f, ε) = lim sup
n→∞

1

n
logSn.

Then
h(f) = lim

ε→0
h(f, ε).

is the topological entropy of f .

We have given the definition of Bowen because probably is the shorter
one, the classical definition was due to Adler, Konheim and Mc Andrew
[1]. See for instance the book of Hasselblatt and Katok [7] and [2] for
other equivalent definitions and properties of the topological entropy.

The next result is due to Manning [11].

Theorem 6. Let f : G → G a continuous map on the graph G, then
logmax{1, sp(f∗,1)} ≤ h(f).
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There are two different proofs for the next result, see [9] and [3]:

Theorem 7. Let f : G → G a continuous map on the graph G. Then
the following statements are equivalent:

(a) There is an m ∈ N such that {mn : n ∈ N} ⊂ Per(f).
(b) h(f) > 0.
(c) The pantheon of Per(f) is infinite.

Proof of Theorem 3. Since sp(f∗,1) > 1 by Theorem 6 we have that h(f) >
0. Then by Theorem 7 Theorem 3 follows. �

The following result can be found in [10].

Theorem 8. Let f : G→ G a continuous map on the graph G having e
endpoints, s edges, v vertexes and at least one branching point. Assume
that f has all branching points fixed. Then god(n) > e+ 2s− 2v + 2 for
some period n of f if and only if h(f) > 0.

Proof of Theorem 4. Under the assumptions of Theorem 4 we have that
god(n) > e+2s−2v+2 for some period n of f , so h(f) > 0 by Theorem
8. Again by Theorem 7 Theorem 4 is proved. �

Proof of Corollary 5. The proof is a direct consequence of the application
of Theorem 4 taking account that e + 2s − 2v + 2 is respectively equal
to 3 (e = 3, v = 4 and s = 3) for the graph Y ; equal to 4 for the graph
8 (e = 0, v = 1 and s = 2) and for the graph θ (e = 0, v = 2 and s = 3),
and 2 for the glasses graph (e = 2, v = 6 and s = 7). �
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