Periodic orbits of a perturbed 3-dimensional isotropic oscillator with axial symmetry

Juan L. G. Guirao • Jaume Llibre • Juan A. Vera

Received: 4 April 2015 / Accepted: 29 August 2015 / Published online: 7 September 2015
© Springer Science+Business Media Dordrecht 2015

Abstract

We study the periodic orbits of a generalized Yang-Mills Hamiltonian \mathcal{H} depending on a parameter β. Playing with the parameter β we are considering extensions of the Contopoulos and of the Yang-Mills Hamiltonians in a 3-dimensional space. This Hamiltonian consists of a 3-dimensional isotropic harmonic oscillator plus a homogeneous potential of fourth degree having an axial symmetry, which implies that the third component N of the angular momentum is constant. We prove that in each invariant space $\mathcal{H}=h>0$ the Hamiltonian system has at least four periodic solutions if either $\beta<0$, or $\beta=5+\sqrt{13}$; and at least 12 periodic solutions if $\beta>6$ and $\beta \neq 5+\sqrt{13}$. We also study the linear stability or instability of these periodic solutions.

[^0]Keywords Periodic orbits • Averaging theory • 3D isotropic oscillators • 3D Yang-Mills Hamiltonian • Stability of periodic orbits

Mathematics Subject Classification 70H12. 70H14 • 70H33

1 Introduction and statement of the main results

In this paper we study the periodic solutions of a generalized Yang-Mills Hamiltonian (see [16,19]), which consists of a 3-dimensional (or simply 3D) isotropic harmonic oscillator perturbed by a homogeneous potential of fourth degree

$$
\begin{align*}
\mathcal{H}= & \frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)+\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
& +\varepsilon\left(\left(x_{1}^{2}+x_{2}^{2}\right)^{2}+\beta\left(x_{1}^{2}+x_{2}^{2}\right) x_{3}^{2}\right) \tag{1}
\end{align*}
$$

Of course ε is a small parameter. This perturbation exhibits an axial symmetry with respect to the x_{3}-axis which depends on one real parameters β, and thus its study can be reduced to a family of Hamiltonian systems with 2 degrees of freedom fixing the third component of the angular momentum. In [19] two Hamiltonians are studied whose motions take place in the plane $\left(x_{1}, x_{2}\right)$, one with a cubic potential and another with a quartic one, while we study a Hamiltonian in the space $\left(x_{1}, x_{2}, x_{3}\right)$ whose motion takes place outside the plane $\left(x_{1}, x_{2}\right)$ when the third component of the angular

[^0]: J. L. G. Guirao

 Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, 30203 Cartagena, Región de Murcia, Spain
 e-mail: juan.garcia@upct.es
 J. Llibre (\boxtimes)

 Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain e-mail: jllibre@mat.uab.cat
 J. A. Vera

 Centro Universitario de la Defensa. Academia General del Aire, Universidad Politécnica de Cartagena, 30720 Santiago de la Ribera, Región de Murcia, Spain e-mail: juanantonio.vera@cud.upct.es

