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Abstract. It is known that for smooth differential systems in the plane R2 the

Melnikov and the averaging methods for studying the limit cycles produce the
same results. Here we prove that this is not the case for nonsmooth differential

systems in the plane.

More precisely, we prove that the linear center ẋ = y, ẏ = −x, can pro-
duce at most 5 limit cycles using the first order averaged function and also

produce at most 5 limit cycles using the second order averaged function, when

it is perturbed by a discontinuous piecewise differential systems of two pieces
separated by the cubic curve y = x3, and having in each piece a quadratic

polynomial differential system. While using the Melnikov method up to order

two these discontinuous piecewise differential systems already produce 7 limit
cycles having in each piece a linear polynomial differential system.

1. Introduction and statement of the main results

In the past few decades, nonsmooth differential systems with discontinuous right-
hand sides have received a lot of attentions because they play a crucial role in differ-
ent fields, such as control systems, economy, electrical circuits and mechanics (see
the books [3, 29] and the survey [27]). The vector fields at each point of the phase
space are unique for a smooth differential system. A nonsmooth differential system
with discontinuous right-hand sides is multivalued in its discontinuous boundary.
For a nonsmooth differential system we use the Filippov’s convention to define the
vector fields at points of its discontinuous boundary (see [11]).

In recent years many authors focus on the number of limit cycles or the cyclicity
of the Hopf bifurcation for a nonsmooth differential system (see [8–10, 16, 23, 25]).
The method of averaging and the Melnikov method are two classical and mature
tools to study the dynamics of nonlinear differential systems (see [5, 12, 21, 28]
for smooth differential systems and [13, 15, 20, 22, 30] for nonsmooth differential
systems).

It is well-known that planar smooth linear differential systems may have periodic
orbits but no limit cycles. A planar polynomial differential system having a linear
center is equivalent to the linear system (ẋ, ẏ)T = (y,−x)T . The linear differential
system perturbed by discontinuous piecewise polynomials of two zones Σ± = R2\Σ,
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where Σ is the switching boundary, takes the form

(1)

(
ẋ

ẏ

)
=

(
y +Σm

i=1ε
if±

i (x, y)

−x+Σm
i=1ε

ig±i (x, y)

)
if (x, y) ∈ Σ±,

where f±
i and g±i (i = 1, . . . ,m) are real polynomials. The perturbed system (1)

can have limit cycles even if f±
i and g±i (i = 1, . . . ,m) are real polynomials of

degree 1.

Attentions were made to investigate limit cycles of system (1) using the method of
averaging or the Melnikov method (see [1, 2, 6, 7, 19, 20, 24]). When the switching
boundary Σ is the x-axis, i.e. Σ = {y = 0}, Buzzi, Pessoa and Torregrosa [6]
used the Melnikov functions up to order 7 to prove that system (1) with linear
perturbations has at most 3 limit cycles. For the same switching boundary Σ as
[6], Llibre and Tang [24] applied the method of averaging up to order 5 to obtain
that system (1) has at most 8 crossing limit cycles for quadratic perturbations and
13 crossing limit cycles for cubic perturbations, respectively.

When the switching boundary Σ = Σα is nonregular, for example, Σ is the
nonnegative x-axis and the ray x = y cotα with α ∈ (0, π) and y > 0, Cardin and
Torregrosa [7] used the Melnikov functions up to order 6 to obtain that system
(1) with linear perturbations has at most 5 limit cycles. Moreover they proved
again using the Melnikov functions up to order 6 that the maximum number of
crossing limit cycles is 2 for discontinuous piecewise linear Liénard system (1),
where g± = 0 and f± are only functions of x. Later on Li and Llibre [19] used
the averaging method up to any order, which was developed in [17], to provide an
upper bound for the maximum number of limit cycles of system (1).

Recently, Llibre, Mereu and Novaes [20] discussed crossing limit cycles of system
(1) with quadratic perturbations for the nonlinear switching boundary Σ = {y =
x2}, and obtained that the maximum number of crossing limit cycles is 6 using the
method of averaging up to order 2. Bastos, Buzzi, Llibre and Novaes [2] proved that
the maximum number of limit cycles is 7 for system (1) with linear perturbations
and Σ = {y = x3} using the Melnikov functions up to order 2. This last result
together with our results will prove that the Melnikov and the averaging methods
do not produce the same result on the number of limit cycles when the differential
systems are nonsmooth. Later on Andrade, Cespedes, Cruz and Novaes [1] con-
sidered the case Σ = {y = xn} for system (1) with linear perturbations using the
higher order Melnikov methods, and obtained that H(2) ≥ 4, H(3) ≥ 8, H(n) ≥ 7,
for n ≥ 4 even, and H(n) ≥ 9, for n ≥ 5 odd, where H(n) denotes an upper bound
of the maximum number of limit cycles for system (1) with linear perturbations
and Σ = {y = xn}.

In this paper stimulated by the references [2, 20], we use the method of averaging
to investigate the number of crossing limit cycles for system (1) in the case that
Σ = {y = x3} but with perturbations of order two in a small parameter ε, i.e. the
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following system

(2)

(
ẋ

ẏ

)
=



(
y + εA1(x, y) + ε2A2(x, y)

−x+ εB1(x, y) + ε2B2(x, y)

)
if h(x, y) ≥ 0,(

y + εC1(x, y) + ε2C2(x, y)

−x+ εD1(x, y) + ε2D2(x, y)

)
if h(x, y) ≤ 0,

where h(x, y) := y − x3 and for i = 1, 2,

Ai(x, y) :=

2∑
j+k=0

aijkx
jyk, Bi(x, y) :=

2∑
j+k=0

bijkx
jyk,

Ci(x, y) :=

2∑
j+k=0

cijkx
jyk, Di(x, y) :=

2∑
j+k=0

dijkx
jyk.

Let Q1 be the set of the following conditions

(3)
a110 = −b101 − c110 − d101, a120 = c120,
a111 = 3a100 − b120 − 3c100 + c111 + d120,
a102 = −b111 + c102 + d111, b100 = d100, b102 = d102,

and Q2 the set of the following conditions

(4)
a100 = a120 = b100 = b102 = c100 = c110 = c120 = d100 = d101 = d102 = 0,
a102 = −b111, a110 = −b101, a111 = −b120, c101 = −d110,
c111 = −d120, c102 = −d111,

where Q2 is a subset of Q1. Our main results are the following.

Theorem 1. For |ε| sufficiently small system (2) using the averaging theory of
first order has at most 5 crossing limit cycles when the condition Q1 does not hold.
Moreover we can choose parameters aijk, bijk, cijk and dijk such that system (2)
has exactly 0, 1, 2, 3, 4 or 5 limit cycles.

Theorem 2. For |ε| sufficiently small system (2) using the averaging theory of sec-
ond order has at most 5 crossing limit cycles when the condition Q2 holds. Moreover
we can choose parameters aijk, bijk, cijk and dijk such that system (2) has exactly
0, 1, 2, 3, 4 or 5 limit cycles.

Theorems 1 and 2 are proven in Section 3.

In this paper we study the maximum number of crossing limit cycles for system
(2) using the method of averaging up to order 2. We prove that system (2) produces
at most 5 crossing limit cycles using the first order averaging theory. Here the
second order averaging theory produces the same result as the first order averaging
theory. However, Bastos, Buzzi, Llibre and Novaes [2] using the Melnikov functions
up to order 2 proved that system (1) with linear perturbations and Σ = {y = x3}
has at most 7 limit cycles. Their results together with our results show that the
Melnikov and the averaging methods do not produce the same result on the number
of limit cycles when the differential systems are nonsmooth, while the number of
limit cycles obtained by these two methods coincide for smooth systems (see [14]).
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2. Preliminaries

In order to prove our results we state some necessary elements. Let A and D be
open subsets of S1 ×Rd and S1 = R/T be the circle with period T . We denote the
characteristic function by χA(t, x) = 1 (resp. 0) if (t, x) ∈ A (resp. ̸∈ A). Given
the following discontinuous piecewise differential system

(5) ẋ = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε),

where Fi := ΣM
j=1χS̄j

(t, x)F j
i (t, x) for i = 1, 2, R := ΣM

j=1χS̄j
(t, x)Rj

i (t, x, ε), and

F j
i : S1×D → Rd, Rj

i : S1×D×(−ε0, ε0) → Rd with ε0 > 0, i = 1, 2, j = 1, . . . ,M ,
are all continuous functions and are all T -periodic in the variable t. From [20] the
averaged functions of orders 1 and 2 for system (5) are

(6) f1(z) =

∫ T

0

F1(t, z)dt, f2(z) =

∫ T

0

(
∂F1(t, z)

∂x
y1(t, z) + F2(t, z)

)
dt,

respectively, where y1(t, z) =

∫ t

0

F1(s, z)ds.

A point p ∈ Σ is called a generic point of discontinuity if there exists a neigh-
borhood U of p such that Sp = U ∩ Σ is a Ck embedded hypersurface.

The crossing hypothesis (HC) given in [20] for system (5) is

(HC) There exists an open bounded set C ⊂ D such that for each z ∈ C the
curve {(t, z) : t ∈ S1} reaches transversally the set Σ and only at generic
points of discontinuity.

In what follows we state the averaging theory for computing periodic orbits up to
order one and two for discontinuous piecewise differential systems that we need for
studying system (5), where the notation dB(fi, U, 0) (i = 1, 2) denote the Brouwer
degree of the function fi in the neighborhood U of zero (see [4] or the Appendix A
of [20]).

Theorem 3 ([20, Theorem A]). In addition to the crossing hypothesis (HC) assume
the following conditions.
(Ha1) For i = 1, 2 and j = 1, 2, . . . ,M , the continuous functions F j

i and Rj
i are

locally Lipschitz with respect to x, and T-periodic with respect to the time
t. Furthermore, for j = 1, 2, . . . ,M , the boundaries of Sj are piecewise Ck

embedded hypersurfaces with k ≥ 1.

(Ha2) For a∗ ∈ C with f1(a
∗) = 0, there exists a neighborhood U ⊂ C of a∗ such

that f1(z) ̸= 0 for all z ∈ U\{a∗} and dB(f1, U, 0) ̸= 0.
Then for |ε| ≠ 0 sufficiently small, there exists a T -periodic solution x(t, ε) of
system (5) such that x(0, ε) → a∗ as ε → 0.

Theorem 4 ([20, Theorem B]). Suppose that f1(z) ≡ 0. In addition to the crossing
hypothesis (HC) assume the following conditions.

(Hb1) For j = 1, 2, . . . ,M , the functions F j
1 (t, ·) are of class C1 for all t ∈ R; for

j = 1, 2, . . . ,M , the functions DxF
j
1 , F

j
2 and R are locally Lipschitz with

respect to x. Furthermore, for j = 1, 2, . . . ,M , the boundaries of Sj are
piecewise Ck embedded hypersurfaces with k ≥ 1.
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(Hb2) If (t, z) ∈ Σ then (0, y1(t, z)) ∈ T(t,z)Σ.

(Hb3) For a∗ ∈ C with f2(a
∗) = 0, there exists a neighborhood U ⊂ C of a∗ such

that f2(z) ̸= 0 for all z ∈ U\{a∗} and dB(f2, U, 0) ̸= 0.

Then for |ε| ≠ 0 sufficiently small, there exists a T -periodic solution x(t, ε) of
system (5) such that x(0, ε) → a∗ as ε → 0.

It is known that if a function f is C1 then it is sufficient to check that the
determinant of the Jacobian matrix D(f) is non-zero in order to have that the
Brouwer degree dB(f, U, 0) ̸= 0, for more details see [26].

Besides we also resort to the ECT-system that we shall use in the proof of our
results. Let I denote a proper real interval of R. An ordered set of complex-
valued functions F = (f0, f1, . . . , fn) defined on I is called an Extended Chebyshev
system or ET-system on I if and only if any nontrivial linear combination of fi (i =
0, 1, . . . , n) has at most n zeros counting multiplicities. Furthermore F becomes an
Extended Complete Chebyshev system or an ECT-system on I if and only if for any
0 ≤ k ≤ n, (f0, f1, . . . , fk) is an ET-system. We can see the monograph [18] for more
details. The set F is an ECT-system on I if and only if W (f0, f1, . . . , fk)(t) ̸= 0 on
I for 0 ≤ k ≤ n, where W (f0, f1, . . . , fk)(t) denotes the Wronskian of the functions
(f0, f1, . . . , fk) with respect to t, i.e.

W (f0, f1, . . . , fk)(t) =

∣∣∣∣∣∣∣∣∣
f0(t) f1(t) · · · fk(t)
f ′
0(t) f ′

1(t) · · · f ′
k(t)

...
...

. . .
...

f
(k)
0 (t) f

(k)
1 (t) · · · f

(k)
k (t)

∣∣∣∣∣∣∣∣∣ .

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. In the polar coordinates x = r cos θ and x = r sin θ
system (2) takes the form

(7)

(
ṙ

θ̇

)
=




ε
(
A1(x, y) cos θ +B1(x, y) sin θ

)
+ε2

(
A2(x, y) cos θ +B2(x, y) sin θ

)
,

−1 + ε
(
B1(x, y) cos θ −A1(x, y) sin θ

)
/r

+ε2
(
B2(x, y) cos θ −A2(x, y) sin θ

)
/r

 if h̃(θ, r) ≥ 0,


ε
(
C1(x, y) cos θ +D1(x, y) sin θ

)
+ε2

(
C2(x, y) cos θ +D2(x, y) sin θ

)
,

−1 + ε
(
D1(x, y) cos θ − C1(x, y) sin θ

)
/r

+ε2
(
D2(x, y) cos θ − C2(x, y) sin θ

)
/r

 if h̃(θ, r) ≤ 0,

where x = r cos θ, y = r sin θ and h̃(θ, r) := r sin θ − r3 cos3 θ. Taking θ as the new
time variable and expanding it as a power series of ε, system (7) is equivalent to
the following

(8) ṙ =

{
P (θ, r) := εP1(θ, r) + ε2P2(θ, r) +O(ε3) if h̃(θ, r) ≥ 0,

Q(θ, r) := εQ1(θ, r) + ε2Q2(θ, r) +O(ε3) if h̃(θ, r) ≤ 0,
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where now ṙ denotes the derivative with respect to the variable θ, Qi(θ, r) :=
Pi(θ, r)|aijk=cijk, bijk=dijk

for i = 1, 2, j, k = 0, 1, 2, 0 ≤ j + k ≤ 2, and

P1(θ, r) :=− a120r
2 cos3 θ − (r2(a111 + b120) sin θ + a110r) cos

2 θ

− (r2(a102 + b111) sin
2 θ + r(a101 + b110) sin θ + a100) cos θ

− b102r
2 sin3 θ − b101r sin

2 θ − b100 sin θ,

P2(θ, r) := {−a120b120r
4 cos6 θ − (r4(a111b120 − a2120 + a120b111 + b2120) sin θ

+ r3(a110b120 + a120b110 + a220)) cos
5 θ − (r4(a102b120 − 2a111a120

+ a111b111 + a120b102 − a120b120 + 2b111b120) sin
2 θ + r3(a101b120

− 2a110a120 + a110b111 + a111b110 + a120b101 + 2b110b120 + a211

+ b220) sin θ + r2(a100b120 + a110b110 + a120b100 + a210)) cos
4 θ

+ (r4(2a102a120 − a102b111 + a2111 − a111b102 + a111b120 + a120b111

− 2b102b120 − b2111) sin
3 θ + r3(2a101a120 − a101b111 − a102b110

+ 2a110a111 − a110b102 + a110b120 − a111b101 + a120b110 − 2b101b120

− 2b110b111 − a202 − a220 − b211) sin
2 θ + r2(2a100a120 − a100b111

− a101b110 + a2110 − a110b101 − a111b100 − 2b100b120 − b2110 − a201

− b210) sin θ − r(a100b110 + a110b100 + a200)) cos
3 θ + (r4(2a102a111

− a102b102 + a102b120 + a111b111 + a120b102 − 2b102b111) sin
4 θ

+ r3(2a101a111 − a101b102 + a101b120 + 2a102a110 − a102b101 + a110b111

+ a111b110 + a120b101 − 2b101b111 − 2b102b110 − a211 − b202 − b220) sin
3 θ

+ r2(2a100a111 − a100b102 + a100b120 + 2a101a110 − a101b101 − a102b100

+ a110b110 + a120b100 − 2b100b111 − 2b101b110 − a210 − b201) sin
2 θ

+ r(2a100a110 − a100b101 − a101b100 − 2b100b110 − b200) sin θ

− b100a100) cos
2 θ + (r4(a2102 + a102b111 + a111b102 − b2102) sin

5 θ

+ r3(2a101a102 + a101b111 + a102b110 + a110b102 + a111b101 − 2b101b102

− a202 − b211) sin
4 θ + r2(2a100a102 + a100b111 + a2101 + a101b110

+ a110b101 + a111b100 − 2b100b102 − b2101 − a201 − b210) sin
3 θ

+ r(2a100a101 + a100b110 + a110b100 − 2b100b101 − a200) sin
2 θ

+ (a100 − b100)(a100 + b100) sin θ) cos θ + a102b102r
4 sin6 θ

+ r3(a101b102 + a102b101 − b202) sin
5 θ + r2(a100b102 + a101b101

+ a102b100 − b201) sin
4 θ + r(a100b101 + a101b100 − b200) sin

3 θ

+ a100b100 sin
2 θ}/r.

We write

h̃(θ, r) = r sin θ − r3 cos3 θ =


r if θ = π/2 or −r if θ = 3π/2,(
tan3 θ + tan θ − r2

)
r cos θ

1 + tan2 θ
if θ ̸= π/2, 3π/2.
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Solving h̃(θ, r) = 0 (i.e. tan3 θ+tan θ−r2 = 0) yields θ = θ1(r) or θ = θ2(r), where
θ1 ∈ [0, π/2) and

(9)

θ2 := θ1 + π, θ1 := arctan(ϖ(r)),

ϖ :=
3

√
r2

2
+

√
r4

4
+

1

27
−

3

√
−r2

2
+

√
r4

4
+

1

27
.

Then the discontinuous set of system (8) is given by Σ̃ := {(θ1(r), r) : r > 0} ∪
{(θ2(r), r) : r > 0}. Moreover one can check that h̃(r, θ) > 0 (resp. < 0) if
θ ∈ (θ1, θ2) (resp. θ ∈ [0, θ1) ∪ (θ2, 2π]). Computation shows that〈

∇h̃(θ1(r), r), (1, P (θ1(r), r))
〉〈

∇h̃(θ1(r), r), (1, Q(θ1(r), r))
〉

=
r2(3ϖr2 +ϖ2 + 1)2

(ϖ2 + 1)3
+O(ε) > 0,〈

∇h̃(θ2(r), r), (1, P (θ2(r), r))
〉〈

∇h̃(θ2(r), r), (1, Q(θ2(r), r))
〉

=
r2(3ϖr2 +ϖ2 + 1)2

(ϖ2 + 1)3
+O(ε) > 0.

Hence the hypothesis (HC) below (6) holds for system (8). From (6) the averaged
function of order 1 is

f1(r) =

∫ 2π

0

dṙ

dε

∣∣∣
ε=0

dθ

=

∫ θ1

0

Q1(θ, r)dθ +

∫ θ2

θ1

P1(θ, r)dθ +

∫ 2π

θ2

Q1(θ, r)dθ

=− {−4(2a120 + b111 + a102 − 2c120 − c102 − d111)r
2ϖ3

+ 12(b102 − d102)r
2ϖ2 − 12(a120 − c120)r

2ϖ + 4(a111 + b120 + 2b102

− c111 − d120 − 2d102)r
2 + 3π(a110 + b101 + c110 + d101)(ϖ

2 + 1)3/2r

− 12(a100 − c100)ϖ
3 + 12(b100 − d100)ϖ

2 − 12(a100 − c100)ϖ

+ 12(b100 − d100)}/{6(ϖ2 + 1)3/2},

where θi (i = 1, 2) are given in (9). Introducing new variable u =
√
ϖ(r) =

r − (1/2)r5 + (11/8)r9 + O(|r|13), equivalently r = u
√
1 + u4 = u + (1/2)u5 −

(1/8)u9 +O(|u|13) we reduce f1(r) to

f̃1(u) := f1(r(u)) =
k1 + k2u+ k3u

2 + k4u
4 + k5u

5 + k6u
6 + k7u

8

6
√
1 + u4

,

where k5 := k2 and

k1 := −12(b100 − d100), k2 := −3π(c110 + d101 + a110 + b101),

k3 := 4(3a100 − 3c100 − 2b102 − a111 − b120 + 2d102 + d120 + c111),

k4 := 12(a120 − c120), k6 := −12(b102 − d102),

k7 := 4(a102 + 2a120 + b111 − c102 − 2c120 − d111).

Obviously the zeros of f̃1(u) are determined by its numerator, which is a polynomial

of degree at most 8. From Theorem 3 we know that every simple zero of f̃1(u) on
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the interval (0,+∞) corresponds to a crossing limit cycle of system (2). We take

g1 := 1, g2 := u2, g3 := u4, g4 := u6, g5 := u8, g6 := u+ u5.

One can compute the six Wronskians

W1(g1) := 1, W2(g1, g2) := 2u, W3(g1, g2, g3) := 16u3, W4(g1, g2, g3, g4) := 768u6,

W5(g1, g2, g3, g4, g5) := 294912u10, W6(g1, g2, g3, g4, g5, g6) := 4423680u6(3u4 + 7).

Note that none of the six Wronskians is zero for u > 0. It implies that the set
of functions {g1, g2, g3, g4, g5, g6} is an ECT-system on the interval (0,+∞). Then

f̃1(u) has at most 5 simple zeros on the interval (0,+∞). Hence system (2) has at
most 5 crossing limit cycles bifurcated from the center annulus. Furthermore one
can compute that

det
∂(k1, k2, k3, k4, k6, k7)

∂(a110, a120, a111, a102, b100, b102)
= det


0 0 0 0 −12 0

−3π 0 0 0 0 0
0 0 −4 0 0 −8
0 12 0 0 0 0
0 0 0 0 0 −12
0 8 0 4 0 0


= 82944π ̸= 0,

which implies that k1, k2, k3, k4, k6 and k7 are linearly independent with respect to
a110, a120, a111, a102, b100 and b102. Thus we can choose parameters aijk, bijk, cijk
and dijk (i = 1, 2 and 0 ≤ j + k ≤ 2) such that system (2) has exactly 0, 1, 2, 3, 4
or 5 crossing limit cycles. This completes the proof of Theorem 1.

Proof of Theorem 2. We compute the averaged function of order 2. Solving
f̃1(u) ≡ 0, equivalently k1 = . . . = k7 = 0, yields the condition Q1 given in (3). Let

Φ1(r) := ⟨∇h(θ1(r), r), (s, y1(θ1(r), r))⟩, Φ2(r) := ⟨∇h(θ2(r), r), (s, y1(θ2(r), r))⟩,

where θi (i = 1, 2) are given in (9) and

y1(θ, r) :=

∫ θ

0

dṙ

dε

∣∣
(ε,θ)=(0,φ)

dφ

with ṙ in (8). Computations show that

Φ1(r) =

〈
∇h
(
θ1(r), r

)
,

(
s,

∫ θ1

0

Q1(t, r)dt

)〉
= s(3r3 sin θ1 cos

2 θ1 + r cos θ1) +
(sin θ1 − 3r2 cos3 θ1)Ψ1(r)

12
,

Φ2(r) =

〈
∇h
(
π + θ1, r

)
,

(
s,

∫ θ1

0

Q1(t, r)dt+

∫ π+θ1

θ1

P1(t, r)dt

)〉
= −s(3r3 sin θ1 cos

2 θ1 + r cos θ1)−
(sin θ1 − 3r2 cos3 θ1)

(
Ψ1(r) + Ψ2(r)

)
12

,

where

Ψ1(r) :=− 12d100 − 3(c101 + d110)r − 12c100 sin θ1 + 3(c101 + d110)r cos(2θ1)

− 3(c102 + 3c120 + d111)r
2 sin θ1 + (c102 − c120 + d111)r

2 sin(3θ1)

− 6(c110 + d101)rθ1 − 3(c110 − d101)r sin(2θ1) + 12d100 cos θ1
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+ 3(c111 + 3d102 + d120)r
2 cos θ1 + (c111 − d102 + d120)r

2 cos(3θ1)

− 4(c111 + 2d102 + d120)r
2,

Ψ2(r) :=− 6π(a110 + b101)r + 24a100 sin θ1 + 6(a102 + 3a120 + b111)r
2 sin θ1

− 2(a102 − a120 + b111)r
2 sin(3θ1)− 6(a111 + 3b102 + b120)r

2 cos θ1

− 2(a111 − b102 + b120)r
2 cos(3θ1)− 24b100 cos θ1.

In order to ensure that Φi = 0 if and only if s = 0, we need to eliminate Ψi for
i = 1, 2, equivalently that all coefficients of Ψi are equal to zero, from which we
obtain

(10)

a100 = a120 = b100 = b102 = c100 = c110 = c120 = d100 = d101 = d102 = 0,

a102 = −b111, a110 = −b101, a111 = −b120,

c101 = −d110, c111 = −d120, c102 = −d111.

Under (10) the assumption (Hb2) in Theorem 4 holds for system (8). Taking the
intersection between Q1 and (10) yields the condition Q2 given in (4), where Q2

is actually (10) because (10) is a subset of Q1. From (6) the averaged function of
order 2 is

f2(r) =

∫ 2π

0

{(
∂2ṙ

∂r∂ε

∣∣∣
ε=0

∫ θ

0

∂ṙ

∂ε

∣∣∣
(ε,θ)=(0,φ)

dφ

)
+

1

2

∂2ṙ

∂ε2

∣∣∣
ε=0

}
dθ

=

∫ θ1

0

{
∂Q1(θ, r)

∂r

∫ θ

0

Q1(φ, r)dφ+Q2(θ, r)

}
dθ

+

∫ θ2

θ1

{
∂P1(θ, r)

∂r

(∫ θ1

0

Q1(φ, r)dφ+

∫ θ

θ1

P1(φ, r)dφ

)
+ P2(θ, r)

}
dθ

+

∫ 2π

θ2

{
∂Q1(θ, r)

∂r

(∫ θ1

0

Q1(φ, r)dφ+

∫ θ2

θ1

P1(φ, r)dφ+

∫ θ

θ2

Q1(φ, r)dφ

)

+Q2(θ, r)

}
dθ.

Using the change u =
√
ϖ(r) (i.e. r = u

√
1 + u4) we reduce f2(r) to

f̃2(u) := f2(r(u)) =
k̃1 + k̃2u

2 + k̃3u
4 + k̃4u

6 + k̃5u
8 + k̃6(u+ u5)

6
√
1 + u4

,

where

k̃1 := 12(d200 − b200),

k̃2 := 4(3a200 − a211 − b101b111 − a101b120 − b110b120 − 2b202 − b220 − 3c200

+ c211 + 2d202 + d220),

k̃3 := 12(a220 − b101b120 − c220), k̃4 := −12(b101b111 + b202 − d202),

k̃5 := 4(a202 + 2a220 + a101b111 + b110b111 − b101b120 + b211 − c202 − 2c220 − d211),

k̃2 := −3π(a210 + b201 + c210 + d201).

Note that f̃2(u) has the same form as f̃1(u). Combining that {g1, . . . , g6} is an

ECT-system, which is proven in the proof of Theorem 1, we obtain f̃2(u) has at
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most 5 simple zeros. Furthermore one can compute the determinant

det
∂(k̃1, k̃2, k̃3, k̃4, k̃5, k̃6)

∂(a200, a210, a202, a220, d200, d202)
= det


0 0 0 0 12 0
0 −3π 0 0 0 0
12 0 0 0 0 8
0 0 0 12 0 0
0 0 0 0 0 12
0 0 4 8 0 0


= 248832π ̸= 0,

implying that k̃i (i = 1, . . . , 6) are linearly independent. Hence there exist param-
eters aijk, bijk, cijk and dijk (i = 1, 2 and 0 ≤ j + k ≤ 2) such that system (2) has
exactly 0, 1, 2, 3, 4 or 5 limit cycles. This completes the proof of Theorem 2.
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