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On uniqueness of limit cycles in general

Bogdanov-Takens bifurcation
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Abstract In this paper we present a complete study to the well-known Bogdanov-

Takens bifurcation and give a rigorous proof for the uniqueness of limit cycles.

1 Introduction

General theory of Bogdanov-Takens bifurcation is well-known. It was established by

Bogdanov in [1] and then introduced in many books, see [2, 3, 4, 5, 13] and [9, 10, 20, 21].

However, to our knowledge, we have not found a really satisfactory and complete study

in current works in English. For example, the uniqueness of limit cycles in homoclinic

bifurcation was not considered in all of these works in English. The problem was first

found and solved in the paper [14]. One can find a relatively complete study on it in

books [9, 10, 20, 21] with different details. These books are all in Chinese. The aim of
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this paper is to provide a complete study with all details on the well-known Bogdanov-

Takens bifurcation.

We organize the paper as follows. In section 2 we state some preliminary theorems

which are useful in studying Bogdanov-Takens bifurcation. The preliminary theorems

on Hopf and homoclinic bifurcations were obtained after the paper of Bogdanov [1]. In

section 3 we study Bogdanov-Takens bifurcation in detail. In section 4 we provide some

examples to show that our proof to Bogdanov-Takens bifurcation, especially the proof to

the uniqueness of limit cycles in Hopf and homoclinic bifurcations, is really necessary.

2 Preliminary theorems: a short survey

Consider a C∞ system on the plane of the form

ẋ = f(x, y) + εf0(x, y, ε, δ),

ẏ = g(x, y) + εg0(x, y, ε, δ),

(2.1)

where f, g, f0, g0 are C∞ functions, ε is small, and δ ∈ G ⊂ R
n with G compact and

n ≥ 1. Suppose that for ε = 0 system (2.1) has a C∞ first integral H(x, y), such that the

equation H(x, y) = h defines a closed orbit Lh for h ∈ J , where J = (α, β) is an open

interval. Here, we give a short survey on general theory of limit cycle bifurcation occurred

in system (2.1). For simplicity, we suppose that the limit of Lh as h → α exists and is

an elementary center of (2.1)|ε=0, denoted by C, while the limit of Lh as h → β exists

and is a homoclinic loop of the unperturbed system, denoted by L. The loop L passes

through a hyperbolic saddle S. Then C and L together form the boundary of the family

{Lh}. To state some results on the number of limit cycles bifurcated from the family and

its boundary, introduce the function below

M(h, δ) =

∮

Lh

(fg0 − gf0)e
−

∫ t

0
(fx+gy)dτ |ε=0dt, h ∈ J. (2.2)

First, for h ∈ J , we have the following result on the limit cycle bifurcation from the

period annulus defined by {Lh} which can be found in [18, 12].

Theorem 2.1. Let M(h, δ) be the function defined by (2.2). Then

(i) For h0 ∈ J , a necessary condition for Lh0
to generate a limit cycle isM(h0, δ0) = 0

for some δ0 ∈ G.

(ii) If

M(h0, δ0) = 0,
∂M

∂h
(h0, δ0) 6= 0,
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then there exists a constant ε0 > 0 such that for 0 < |ε| < ε0 and |δ − δ0| < ε0 system

(2.1) has a unique limit cycle near Lh0
.

(iii) If

∂kM

∂hk
(h0, δ0) 6= 0,

∂jM

∂hj
(h0, δ0) = 0, j = 0, 1, · · · , k − 1

for some integer k ≥ 1, then there exists a constant ε0 > 0 such that for 0 < |ε| < ε0 and

|δ − δ0| < ε0 system (2.1) has at most k limit cycles near Lh0
.

According to [18], the above theorem was proved by L. Pontryagin in 1934 in the

case fx + gy ≡ 0. The above general case was obtained by Urabe in 1954, and X. Chen in

1963 respectively.

Now we consider a Hopf bifurcation near the center C. Without loss of generality,

we assume that H(0, 0) = 0, and that for x2 + y2 small we have

f(x, y) + εf0(x, y, ε, δ) = a(ε, δ)x− b(ε, δ)y +O(x2 + y2),

g(x, y) + εg0(x, y, ε, δ) = b(ε, δ)x+ a(ε, δ)y +O(x2 + y2).
(2.3)

In this case the center C has been moved to the origin. By introducing the polar coor-

dinates x = r cos θ, y = r sin θ one can obtain from (2.1) a C∞ periodic equation of the

form
dr

dθ
= R(θ, r, ε, δ).

Let r(θ, x0, ε, δ) denote the solution of this equation satisfying r(0) = x0. Define

∆(x0, ε, δ) = r(2π, x0, ε, δ)− x0.

Note that ∆(x0, 0, δ) = 0 for |x0| small. We can write for |x0| small

∆(x0, ε, δ) = ε
∑

i≥1

∆i(ε, δ)x
i
0. (2.4)

It is known that the right-lower index i of the first nonzero coefficient ∆i must be odd.

For (2.3) we have

∆1(ε, δ) =
1

ε
[e

2πa
b − 1], ∆1(0, δ) =

2π

b̄0

∂a

∂ε
(0, δ),

where b̄0 = b(0, δ).

The following theorem was proved in [10, 6].

Theorem 2.2 (Hopf bifurcation) Let (2.4) hold. Then

(1) If

∆2k+1(0, δ0) 6= 0, ∆i(0, δ0) = 0, i = 1, · · · , 2k
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for some δ0 ∈ G, k ≥ 0, then there exist ε0 > 0 and a neighborhood U of the origin such

that system (2.1) has at most k limit cycles in U for 0 < |ε| < ε0 and |δ − δ0| < ε0.

(2) Let Q(h) = (q(h), 0) denote the intersection point of Lh with the positive x-axis

with q(h) > 0, then

∆3(0, δ) = −sgn(b0) lim
h→0

M(h, δ)

q3
√

f 2(Q) + g2(Q)

provided ∆1(0, δ) = 0. In general, we have

∆2k+1(0, δ) = −sgn(b0) lim
h→0

M(h, δ)

q2k+1
√

f 2(Q) + g2(Q)
,

provided ∆i(0, δ) = 0, i = 1, · · · , 2k − 1.

(3) If system (2.1) is analytic, (f, g) = ±(−Hy, Hx) and M(h, δ0) 6≡ 0 for some

δ0 ∈ G, then for some k ≥ 0 and Nk 6= 0

M(h, δ0) = Nkh
k+1 +O(hk+

3

2 ).

In this case, ∆i(0, δ0) = 0, i = 1, · · · , 2k − 1, and ∆2k+1(0, δ0) = KkNk for some constant

Kk 6= 0. For example, when H(x, y) = K(x2+y2)+o(x2+y2) we have ∆3(0, δ0) = ±K
2
N1.

On the uniqueness of limit cycles in a Hopf bifurcation we have the following corollary

coming from the above theorem.

Corollary 2.1. If ∂a
∂ε
(0, δ0) = 0 and ∆3(0, δ0) 6= 0, then there exists ε0 > 0 and a

neighborhood U of the origin such that for 0 < |ε| < ε0 and |δ − δ0| < ε0, system (2.1)

has a unique limit cycle in U if and only if µεa(ε, δ) < 0 and µ = sgn(b̄0∆3(0, δ0)).

As usual, the set defined by the equation a(ε, δ) = 0 on the (ε, δ) space is called a

Hopf bifurcation curve.

It was proved in [7] that as fx + gy = 0, then M is C∞ at h = 0. Moreover, M is

analytic at h = 0 if system (2.1) is analytic. Therefore in the case of fx + gy = 0 for h

small we can write

M(h, δ) = b0(δ)h+ b1(δ)h
2 + b2(δ)h

3 + · · · .

The formulas for b0, b1, b2 can be found in [8]. For example, if

(f(x, y), g(x, y)) = (Hy(x, y),−Hx(x, y)),

H(x, y) = hc +
1

2
((x− xc)

2 + (y − yc)
2) +

∑

i+j≥3

hij(x− xc)
i(y − yc)

j,
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(f0x + g0y)|ε=0 =
∑

i+j≥0

cij(x− xc)
i(y − yc)

j,

then for 0 < h− hc ≪ 1 we have

M(h, δ) =

∮

Lh

(g0dx− f0dy)|ε=0 = b0(δ)(h− hc) + b1(δ)(h− hc)
2 + · · · , (2.5)

where

b0 = 2πc00, b1 = −c10π(h12 + 3h30)− c01π(h21 + 3h03) + c20π + c02π.

Hence, by Theorem 2.1 a necessary condition in order that the center C(xc, yc) gen-

erates a limit cycle is c00(δ0) = 0 for some δ0 ∈ G. If c00(δ0) = 0 and b1(δ0) 6= 0 for some

δ0 ∈ G, then there exist a constant ε0 > 0 and a neighborhood U of the center C such that

system (2.1) has at most one limit cycle in U for 0 < |ε| < ε0 and |δ − δ0| < ε0. Further,

note that in this case b̄0 = −1, ∆3(0, δ0) = −b1/4 and a(ε, δ) = εc00/2 + O(ε2). If δ ∈ R

and c′00(δ0) =
dc00
dδ

(δ0) 6= 0, then there exists a function ϕc(ε) = δ0 + O(ε), corresponding

to the Hopf bifurcation, such that for 0 < |ε| < ε0 and |δ − δ0| < ε0, system (2.1) has a

unique limit cycle near the center C if and only if

b1(δ0)c
′
00(δ0)(δ − ϕc(ε)) < 0.

Next, we consider the homoclinic bifurcation. Let L be a homoclinic loop defined

by the equation H(x, y) = β. The loop intersects the x-axis transversally at a point A0,

which is not singular. Then for h near β the periodic orbit Lh intersects the x-axis at a

point Q(h) = (q(h), 0) satisfying Q(h) → A0 as h → β. For |ε| small system (2.1) has

a unique saddle S̃(xs(ε, δ), ys(ε, δ)) near the saddle S on L. By the normal form theory

there exists a polynomial change of variables which carries system (2.1), near S̃, into a

system of the form

u̇ = λ1(ε, δ)u+ a1(ε, δ)u
2v +O(u3v2),

v̇ = −λ2(ε, δ)v − b1(ε, δ)uv
2 +O(u2v3),

where (u, v) = (x− xs, y − ys).

Introduce the following four quantities

c0(δ) =M(β, δ),

c1(δ) =
∂

∂ε
(λ1 − λ2)|ε=0 = (f0x + g0y)|ε=0,(x,y)=S,

c2(δ) = − 1
√

f 2(A0) + g2(A0)
lim
h→β

M(h, δ)

d(Q(h), A0)
,

c3(δ) =
∂

∂ε
(a1 − b1)|ε=0.
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On the existence of at most one, two, or three limit cycles we have the following theorem

which was proved in [10].

Theorem 2.3 (Homoclinic bifurcation). Let M(h, δ) be the function defined in

(2.2). Then the following statements hold.

(1) For |ε| small a necessary condition in order that system (2.1) has a limit cycle

near L is c0(δ0) = 0 for some δ0 ∈ G.

(2) If c0(δ0) = 0 and c1(δ0) 6= 0, then system (2.1) has at most one limit cycle near

L for |ε| and |δ − δ0| both sufficiently small.

(3) If c0(δ0) = c1(δ0) = 0, then c2(δ0) is finite, and when c2(δ0) 6= 0 system (2.1) has

at most two limit cycles near L for |ε| and |δ − δ0| both sufficiently small.

(4) If c0(δ0) = c1(δ0) = c2(δ0) = 0 and c3(δ0) 6= 0, then system (2.1) has at most

three limit cycles near L for |ε| and |δ − δ0| both sufficiently small.

(5) If fx + gy ≡ 0 and c0(δ0) = c1(δ0) = 0, then

c2(δ0) =

∮

L

(f0x + g0y)|(ε,δ)=(0,δ0)dt.

For the existence of a unique limit cycle the authors of [14] obtained the result below.

A proof can be found in [10, 8] also.

Theorem 2.4. Let δ ∈ R and let c0(δ0) = 0 for some δ0 ∈ G.

(1) If ∂c0
∂δ

(δ0) 6= 0, then there exists a unique differentiable function δ∗(ε) = δ0+O(ε)

such that for |ε| 6= 0 and |δ − δ0| both small system (2.1) has a homoclinic loop near L if

and and only if δ = δ∗(ε).

(2) If either c1(δ0) 6= 0, or λ1(ε, δ) ≡ λ2(ε, δ) and c2(δ0) 6= 0, then for |ε| 6= 0

and |δ − δ0| both small system (2.1) has at most one limit cycle near L. If additionally

∂c0
∂δ

(δ0) 6= 0, then the limit cycle exists if and only if µ(δ − δ∗(ε)) > 0, where

µ =















sgn(∂c0
∂δ

(δ0)c1(δ0)), if c1(δ0) 6= 0,

sgn(∂c0
∂δ

(δ0)c2(δ0)), if c1(δ0) = 0, c2(δ0) 6= 0.

As usual, the curve defined by δ = δ∗(ε) is called a homoclinic bifurcation curve of

system (2.1).

An useful tool in the proof of the above theorem is a result on the measure of the

distance between the two separatrice near L obtained in 1963 by V. Melnikov in [15].
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If fx + gy ≡ 0 and system (2.1)ε=0 is Hamiltonian, then we have for the function

M(h, δ) the following expansion

M(h, δ) =
∑

k≥0

[c2k(δ)(h− β)k + c2k+1(δ)(h− β)k+1 ln |h− β|].

It was proved in [16] that system (2.1) has at most k limit cycles near L for |ε| 6= 0 and

|δ − δ0| both small if cj(δ0) = 0, j = 0, · · · , k − 1 and ck(δ0) 6= 0.

For the formulas of c0, c1, c2 and c3 see [11]. For the formulas with more coefficients

see the recent work [17].

3 Bogdanov-Takens bifurcation

In this section we use the theorems listed in section 2 to study the Bogdanov-Takens

bifurcation. The problem was studied by Bogdanov in 1976 and Takens in 1974 separately.

Consider a C∞ planar differential system of the form

ẋ = P (x, y, a), ẏ = Q(x, y, a), (3.1)

where a ∈ R
2 for simplicity. Let system (3.1) have a nilpotent singular point (x0, y0) for a

value of a, say a0. Without loss of generality we can suppose that (x0, y0) = (0, 0), a0 = 0

and that for a = 0 we have

∂(P,Q)

∂(x, y)

∣

∣

∣

(x,y)=(0,0)
=





0 1

0 0



 .

Then it is easy to see that for |a| small system (3.1) can be transformed into

ẋ =y,

ẏ =g(x, a) + f(x, a)y +O(y2),

(3.2)

near the origin, where

g(x, a) =g0(a) + g1(a)x+ g2(a)x
2 +O(x3),

f(x, a) =f0(a) + f1(a)x+O(x2),

g0(0) =g1(0) = f0(0) = 0.

For the sake of simplicity assume f1(0)g2(0) 6= 0. Since g2(0) 6= 0 there exists a unique

function x0(a) = O(a) such that gx(x0(a), a) = 0. Then for |x− x0(a)| small we have

g(x, a) = g(x0(a), a) + (g2(0) +O(a))(x− x0(a))
2 +O(|x− x0(a)|3),
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f(x, a) = f̄0(a) + (f1(0) +O(a))(x− x0(a)) +O(|x− x0(a)|2),

where

g(x0(a), a) = g0(a) +O(|a|2), f̄0(a) = f(x0(a), a).

Furthermore suppose

a = (a1, a2) ∈ R2, det
∂(g0, f̄0)

∂(a1, a2)

∣

∣

∣

∣

a=0

6= 0. (3.3)

This nondegenerate condition ensures that the change of parameters

µ1 = g(x0(a), a), µ2 = f(x0(a), a)

has a unique inverse a = a∗(µ1, µ2). Then setting u = x − x0(a) and using x again for u

from (3.2) under the assumption (3.3) we have

ẋ =y,

ẏ =µ1 + µ2y + g∗2(µ)x
2 + f ∗

1 (µ)xy +O(x3 + x2y + y2),

(3.4)

where µ = (µ1, µ2) and

g∗2(0) = g2(0) 6= 0, f ∗
1 (0) = f1(0) 6= 0.

By introducing suitable rescaling of the variables x, y and t, from system (3.4) we

obtain

ẋ =y ≡ P (x, y, µ1, µ2),

ẏ =µ1 + µ2y + x2 + xy +O(x3 + x2y + y2)

≡Q(x, y, µ1, µ2).

(3.5)

Our aim next is to study the local behavior of system (3.5) near the origin for small

values of the parameters µ1 and µ2.

First, noting that

Q(x, 0, µ1, µ2) = µ1 + x2 +O(x3),

∂(P,Q)

∂(x, y)
=





0 1

2x+ y +O(x2 + xy) µ2 + x+O(x2 + y)



 ,

one can see that system (3.5) has no singular points for µ1 > 0, and has the origin as a

saddle-node for µ1 = 0 and µ2 6= 0. For µ1 < 0 system (3.5) has a saddle (
√−µ1+O(µ1), 0)

and a singular point A(µ1) = (−√−µ1 +O(µ1), 0) of index +1. That is, for each µ2 6= 0,

system (3.5) undergoes a saddle-node bifurcation at µ1 = 0.
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The eigen-equation of system (3.5) at A(µ1) has the form

λ2 + λ(µ2 −
√−µ1 +O(µ1)) + 2

√−µ1 +O(µ1) = 0.

Hence there exist two functions

ϕ1(µ1) =2
√
2(−µ1)

1

4 + (−µ1)
1

2 +O(|µ1|
3

4 ),

ϕ2(µ1) =− 2
√
2(−µ1)

1

4 + (−µ1)
1

2 +O(|µ1|
3

4 )

such that A(µ1) is a focus for ϕ2(µ1) < µ2 < ϕ1(µ1), a node for µ2 > ϕ1(µ1) or µ2 <

ϕ2(µ1), a degenerate node for µ2 = ϕ1(µ1) or µ2 = ϕ2(µ1). Obviously, there is a function

ϕ(µ1) =
√−µ1+O(|µ1|), such that A(µ1) is stable for µ2 < ϕ(µ1), unstable for µ2 > ϕ(µ1).

This implies that a possible Hopf bifurcation would occur at A(µ1) when µ2 varies near

ϕ(µ1).

To study the problem in detail we introduce the rescaling change of variables

µ2 = −δ|µ1|
1

2 , x = −u|µ1|
1

2 , y = v|µ1|
3

4 , t = −τ |µ1|−
1

4 ,

and then useing (x, y, t) for (u, v, τ) from system (3.5) we obtain

ẋ =y,

ẏ =1− x2 + ε̃(δ + x)y +O(ε̃2),

where ε̃ = |µ1|
1

4 . Furthermore letting

u =
1

2
(x+ 1), v =

1

2
√
2
y, τ =

√
2t,

and also using (x, y, t) for (u, v, τ), we get the system

ẋ =y,

ẏ =x(1 − x) + ε(λ+ x)y +O(ε2),

(3.6)

where λ = 1
2
(δ−1) and ε =

√
2ε̃. The unperturbed system of system (3.6) is Hamiltonian

with Hamiltonian

H(x, y) =
1

2
y2 − 1

2
x2 +

1

3
x3,

whose level curves define a family of closed orbits Lh for h ∈ (−1
6
, 0). The boundary of

this family consists of a center at (1, 0) and a homoclinic loop L0 passing through a saddle

at the origin. The first order Melnikov function of system (3.6) has the form

M(h, λ) =

∮

Lh

(λ+ x)ydx = λI0(h) + I1(h), h ∈ (−1

6
, 0),
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where

Ij(h) =

∮

Lh

xjydx, j = 0, 1.

Direct computations show that I0(0) = 6/5 and I1(0) = 36/35. Thus

M(0, λ) =
6

5
λ+

36

35
=

6

5

(

λ+
6

7

)

.

Then by Theorem 2.4 we immediately have:

Lemma 3.1 There exist a constant ǫ0 > 0 and a C1 function λ∗(ε) = λ0 + O(ε)

with λ0 = −6/7, such that for 0 < ε 6 ǫ0 and |λ − λ0| 6 ǫ0, system (3.6) has a unique

limit cycle (no limit cycle, respectively) near L0 if λ < λ∗(ε) (λ > λ∗(ε), respectively),

and has a homoclinic loop near L0 if and only if λ = λ∗(ε). Moreover, the limit cycle or

the homoclinic loop is stable.

Rewriting H(x, y) as

H(x, y) =
1

2
(y2 + (x− 1)2) +

1

3
(x− 1)3,

then from (2.5) we get

M(h, λ) = 2π(λ+ 1)

(

h+
1

6

)

− π

(

h+
1

6

)2

+ · · · .

Therefore, from Theorem 2.2 and Corollary 2.1 we obtain:

Lemma 3.2 There exist a constant ǫ1 > 0 and a C1 function λ∗1(ε) = −1 + O(ε),

such that for 0 < ε 6 ǫ1 and |λ + 1| 6 ǫ1 system (3.6) has a unique limit cycle near the

center (1, 0) if and only if λ > λ∗1(ε). Moreover, the limit cycle is stable when it exists.

Now our next step is to prove that the limit cycle of the above two lemmas exists

uniquely for all λ∗1(ǫ) < λ < λ∗(ǫ). For this purpose we rewrite the function M(h, λ) as

M(h, λ) = I0(h)(λ− P (h)), P (h) = −I1(h)/I0(h).

The following lemma provides the properties of the function P (h) due to Bogdanov [1].

Lemma 3.3 The function P (h) is continuous on [−1
6
, 0], differentiable on [−1

6
, 0)

with P (−1
6
) = −1, P (0) = −6

7
, P ′(−1

6
) = 1

2
and P ′(h) > 0 for (−1

6
, 0).

Proof From the proofs of Lemmas 3.1 and 3.2 we have P (0) = −6
7
and P (−1

6
) = −1.

Note that along Lh we get

ydy = xdx− x2dx,
∂y

∂h
=

1

y
.

By writing I1(h) into the form of definite integral in x we find

I ′1(h) =

∮

Lh

xdx

y
=

∮

Lh

xdx− ydy

y
=

∮

Lh

x2dx

y
.
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Then by integration by parts we have

I0(h) =−
∮

Lh

xdy = −
∮

Lh

x2dx− x3dx

y

=

∮

Lh

1

y
(3h+

3

2
x2 − 3

2
y2 − x2)dx

=3hI ′0(h) +
1

2
I ′1(h)−

3

2
I0(h).

Hence

5I0 = 6hI ′0 + I ′1. (3.7)

Similarly, integrating by parts the function I1 we get

35I1 = 6hI ′0 + 6(1 + 5h)I ′1. (3.8)

Solving I ′0 and I ′1 from (3.7) and (3.8) yields to the so-called Picard-Fuchs equations as

follows

I ′1 =
1

1 + 6h
(7I1 − I0), I ′0 =

1

6h(1 + 6h)
[6(1 + 5h)I0 − 7I1].

Therefore we obtain

dP

dh
=

−1

I20
[I0I

′
1 − I1I

′
0] =

−7P 2 + 6(2h− 1)P + 6h

6h(1 + 6h)
.

This means that the function P = P (h) defines an orbit connecting the saddle (−1
6
,−1)

and the node (0,−6
7
) in the plane of the quadratic system

ḣ =6h(1 + 6h),

Ṗ =− 7P 2 + 6(2h− 1)P + 6h.

(3.9)

It follows that the function P (h) is continuously differentiable on the interval [−1
6
, 0).

Consider the isocline equation

−7P 2 + 6(2h− 1)P + 6h = 0.

It is a hyperbola with two branches L1 and L2 with L1 lying above L2. It is easy to see

that L1 passes through the points (0, 0) and (−1
6
,−1

7
), while L2 passes through the points

(0,−6
7
) and (−1

6
,−1). Note that for −1

6
< h < 0 we have

ḣ = 6h(1 + 6h) < 0,

Ṗ =− 7P 2 + 6(2h− 1)P + 6h



















> 0 between L1 and L2,

= 0 on L1 or L2,

< 0 above L1 or below L2.

11



It implies that the curve P = P (h) is below L2 for−1
6
< h < 0. Thus P ′(h) = dP

dh
= Ṗ

ḣ
> 0.

Furthermore the linear variational equation of system (3.9) at the saddle (−1
6
,−1) is

ẋ = −6x, ẏ = −6x+ 6y,

which has the separatrix y = 1
2
x. Hence P ′(−1

6
) = 1

2
. This completes the proof.

On the other hand, the variational equation of system (3.9) at the degenerate node

(0,−6
7
) has the form

ẋ = 6x, ẏ = −30

7
x+ 6y,

from which we get P ′(0− 0) = ∞.

Noting that 0 ≤ x ≤ 3/2 and |y| ≤ 1/
√
3 along the homoclinic loop L0 we can

suppose in system (3.6) that −ε∗ ≤ x ≤ 3/2 + ε∗, |y| ≤ 1/
√
3 + ε∗ and 0 < ε < ε∗

for a small constant ε∗ > 0. In this case there exists a constant N > 0 such that the

divergence of (3.6) is positive or negative (and hence there is no limit cycle) if |λ| > N

and 0 < ε < ε∗. For example, we can take N = 3 for a suitable ε∗ since

|div(3.6)| = |ε(λ+ x+O(ε))| > ε(|λ| − 2 +O(ε)).

That is, in system (3.6) we can assume |λ| ≤ N to discuss the existence of limit cycles.

With this assumption and applying Lemmas 3.1-3.3 we can prove the following theorem.

Theorem 3.1 There exist a constant ε∗ > 0 and two differentiable functions λ∗(ε) =

−6
7
+O(ε) and λ∗1(ε) = −1 +O(ε) such that for all 0 < ε < ε∗ and |λ| ≤ N, system (3.6)

has

(1) no limit cycles for λ > λ∗(ε) or λ 6 λ∗1(ε);

(2) a stable homoclinic loop near L0 for λ = λ∗(ε);

(3) a unique (stable) limit cycle for λ∗1(ε) < λ < λ∗(ε).

Proof. Correspondingly we need only to prove the following three statements:

(i) There exists a constant ε∗1 > 0, such that for 0 < ε < ε∗1 system (3.6) has no limit

cycles when either λ∗(ε) < λ ≤ N or −N ≤ λ 6 λ∗1(ε).

(ii) There exists a constant ε∗2 > 0 such that for 0 < ε < ε∗2 and λ = λ∗(ε) system

(3.6) has a stable homoclinic loop near L0.

(iii) There exists a constant ε∗3 > 0 such that for 0 < ε < ε∗3 and λ∗1(ε) < λ < λ∗(ε)

system (3.6) has a unique limit cycle, and it is stable.

When the three statements are proved, we can take ε∗ = min{ε∗1, ε∗2, ε∗3} to complete

the proof.
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We shall prove the statements by contradiction. If statement (i) is not true, then there

exist sequences εn and λn satisfying εn > 0 and εn → 0 as n→ ∞ and λ∗(εn) < λn ≤ N ,

or −N ≤ λn ≤ λ∗1(εn) such that for (ε, λ) = (εn, λn) system (3.6) has a limit cycle L∗
n.

Note that {λn} and {L∗
n} are all bounded for all n. We can suppose that λn → λ∗ and

L∗
n → Γ∗ (as n→ +∞).

Clearly −6
7
6 λ∗ 6 N, or −N ≤ λ∗ ≤ −1, and Γ∗ should be a closed invariant curve

of system (3.6)ε=0. This means that Γ∗ is defined by an equation H(x, y) = h∗ for some

h∗ ∈ [−1
6
, 0]. By Theorems 3.1-3.3 we have necessarily M(h∗, λ∗) = 0, or λ∗ = P (h∗),

By Lemma 3.3 one obtains −1 6 λ∗ 6 −6
7
. Then by Lemmas 3.1 and 3.2 we have either

λ∗ = −6
7
and Γ∗ should be the loop L0, or λ

∗ = −1 and Γ∗ should be the center (1, 0).

In the first case we have −6
7
− ǫ0 < λn < −6

7
+ ǫ0 and 0 < εn < ǫ0 for n sufficiently

large, which, together with Lemma 3.1, implies that for (ε, λ) = (εn, λn) system (3.6)

has no limit cycles near L0 because λn > λ∗(εn), a contradiction. In the second case a

contradiction occurs similarly by Lemma 3.2. Then statement (i) follows.

Statement (ii) is direct from Lemma 3.1.

For statement (iii), first by Poincaré-Bendixson theorem one can see that for λ∗1(ε) <

λ < λ∗(ε) with ε > 0 small system (3.6) has a limit cycle. We shall prove the uniqueness

of the limit cycle by reduction to a contradiction. That is, we suppose that the uniqueness

conclusion is not true. Then there exists sequences εn > and λn > 0 satisfying εn → 0 and

λ∗1(εn) < λn < λ∗(εn) such that for (ε, λ) = (εn, λn) system (3.6) has two limit cycles L
(1)
n

and L
(2)
n . As before we can assume that as n→ ∞ we have λn → λ∗ with −1 6 λ∗ 6 −6

7
,

and L
(j)
n → Γj for j = 1, 2. Then Γj satisfies H(x, y) = hj for some hj ∈ [−1

6
, 0], j = 1, 2.

Hence, M(hj , λ
∗) = 0, and then λ∗ = P (h1) = P (h2). Thus h1 = h2 by Lemma 3.3.

Therefore, a contradiction must occur in the same way than in Lemma 3.2 for h1 = −1,

Lemma 3.1 for h1 = −6/7 or Lemma 3.2 and Theorem 1.1 for h1 ∈ (−1,−6/7). This ends

the proof of Theorem 3.1.

From the above proof, one can see that each one of Lemmas 3.1-3.3 is indispensable

and plays its own role in the proof. In other words any one of them is not sufficient to

deduce the statements of Theorem 3.1.

Note that µ2 = −δ|µ1|
1

2 = −(2λ+1)|µ1|
1

2 , ε =
√
2|µ1|

1

4 . Back to system (3.5) and we

have from Theorem 3.1 the following result.

Theorem 3.2 There exist a constant ǫ0 > 0, a neighborhood U of the origin and

two continuous functions ψ1(µ1) = (−µ1)
1

2 +O(|µ1|
3

4 ) (corresponding to Hopf bifurcation)

and ψ2(µ1) =
5
7
(−µ1)

1

2 +O(|µ1|
3

4 ) (corresponding to homoclinic bifurcation), such that for

13



0 6 −µ1 6 ǫ0 and |µ2| 6 ǫ0, system (3.5) has a unique limit cycle in U if and only if

ψ2(µ1) < µ2 < ψ1(µ1).

4 Some examples with two limit cycles

In this section we give two examples which have two limit cycles. However the first order

Melnikov function of them has only one nontrivial zero. The first example is a system of

Liénard type

ẋ = y − ε(εx− x3 + x5), ẏ = −x, (4.1)

where ε > 0 is small. The unperturbed system of it is a linear center with the first integral

H(x, y) = x2 + y2. Let Lh denote the circle defined by x2 + y2 = h with h > 0. Then by

(2.2) the first order Melnikov function is

M(h) =

∮

Lh

(−x3 + x5)dy.

Note that Lh can be represented as x =
√
h sin t, y =

√
h cos t. A direct computation

shows that

M(h) =

∫ 2π

0

[h2 sin4 t− h3 sin6 t]dt

= h2[π/2 +
1

4

∫ 2π

0

cos2(2t)dt]− h3[π/4 +
3

8

∫ 2π

0

cos2(2t)dt]

=
3π

4
h2(1− 5h/6),

which has a unique simple positive zero h = 6/5. It follows from Theorem 2.1 that for

ε > 0 small system (4.1) has a unique limit cycle Γ1ε near the circle x2 + y2 = 6/5.

Noting that div(4.1) = ε(3x2 − 5x4 − ε), we have

∮

Γ1ε

div(4.1)dt = ε[−9π/5 + O(ε)] < 0,

for 0 < ε≪ 1. This implies that the limit cycle Γ1ε is stable.

On the other hand, the origin is a stable focus for 0 < ε≪ 1 since

div(4.1)|(x,y)=(0,0) = −ε2.

Therefore there must have an unstable limit cycle, denoted by Γ2ε, inside Γ1ε. By Theo-

rems 2.1 and 2.2 we obtain that Γ1ε and Γ2ε are the only limit cycles of system (4.1).
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From the above discussion one can see that the following system

ẋ = y − ε(εx− x3), ẏ = −x,

has a unique limit cycle Γε for 0 < ε ≪ 1. However its first order Melnikov function is

M(h) = 3π
4
h2, which has no positive zero. This fact implies that for any h0 > 0 there

exists ε0 > 0 such that for 0 < ε < ε0 all orbits starting from a point in the region

x2 + y2 > h0 are unbounded positively. And, by Theorems 2.1 and 2.2 the limit cycle Γε

is unique and approaches the origin as ε→ 0.

Our second example is

ẋ = y + εx[ε+ x(a−H(x, y))],

ẏ = x− x2,

(4.2)

where

H(x, y) =
1

2
(y2 − x2) +

1

3
x3.

The unperturbed system of system (4.2) has a saddle at the origin, a center at (1, 0),

and a family of closed orbits given by

Lh : H(x, y) = h, h ∈ (−1

6
, 0).

The limit of Lh as h→ 0, denoted by L0, is a homoclinic loop satisfying H(x, y) = 0. By

(2.2) the first order Melnikov function has the form

M(h, a) = I(h)[a− h], (4.3)

where

I(h) =

∮

Lh

(−x2)dy = 2

∮

Lh

xydx.

Clearly I(−1
6
) = 0. Noting that yyh = 1 along Lh, one has

I ′(h) =

∮

Lh

2x

y
dx =

∮

Lh

2xdt > 0, (4.4)

which yields I(h) > 0 for all h ∈ (−1
6
, 0). Hence M(h, a) has at most one zero on the

interval (−1
6
, 0). From (4.4) one also has I ′(−1

6
) = 4π, from which it follows

I(h) = 4π(h+
1

6
) +O(|h+ 1

6
|2),

for h+ 1
6
> 0 small. Hence by (4.3) we obtain

M(h, a) = 4π(h+
1

6
)[a +

1

6
− (1 +K(a +

1

6
))(h+

1

6
)] +O(|h+ 1

6
|3),
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for h + 1
6
> 0 small, where K is a constant. By Corollary 2.1 there exists a function

ϕc(ε) = −1
6
+ O(ε) such that for ε + |a + 1

6
| small system (4.2) has a unique limit cycle,

say Γε,a, in a neighborhood of the center (1, 0) if and only if a > ϕc(ε). On the (ε, a)-plane

the curve a = ϕc(ε) defines a Hopf bifurcation curve. Note that by (2.5)

div(4.2)|C = ε[c00 +O(ε)]

= ε[
b0
2π

+O(ε)]

= ε [2(a+ 1/6) +O(ε)] ,

where C denotes the focus of system (4.2) near the center (1,0). Hence

div(4.2)|C > 0 ⇔ a > ϕc(ε). (4.5)

Thus the limit cycle Γε,a is stable.

Now we consider the problem: How does the stable limit cycle Γε,a vary when the

parameter a increases from ϕc(ε)?

To understand the behavior of Γε,a as a increases, let a ∈ (−1
6
, 0). In this case the

function M(h, a) has a unique simple zero h = a for h ∈ (−1
6
, 0). This implies that for

ε > 0 small system (4.2) has a unique limit cycle near La. Along the limit cycle we have

∮

div(4.2)dt = ε[

∮

La

x2(x− x2)dt+O(ε)]

= −ε[I(a) +O(ε)]

< 0

for ε > 0 small. Hence the limit cycle is stable. Then it is clear that when a increases from

ϕc(ε) the stable limit cycle Γε,a enlarges constantly, and it approaches to La as ε → 0.

We consider an additional problem: what happens for a near zero?

First noting that M(0, a) = I(0)a = 72
35
a, by Theorem 2.4(1) and its proof there

exists a function ϕh(ε) = O(ε) such that (4.2) has a homoclinic loop Γ∗
ε if and only if

a = ϕh(ε). Moreover for a near ϕh(ε) the orbit behavior of system (4.2) near L0 is as

shown in Fig.4.1.

For div(4.2)|x=y=0,a=ϕh(ε) = ε2 the homoclinic loop Γ∗
ε is unstable. On the other

hand, by (4.5) the focus C is unstable for ϕc(ε) < a ≤ ϕh(ε). Then it follows that system

(4.2) has a stable limit cycle, denoted by Γ̄ε, inside the loop Γ∗
ε for a = ϕh(ε). In the

same way, from Fig. 4.1, the stable limit cycle Γε,a obtained before always exists for
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(i) a < ϕh(ε) (ii) a = ϕh(ε) (iii) a > ϕh(ε)

Fig. 4.1. Phase portraits of system (4.2) near L0.

(i) ϕc(ε) < a < ϕh(ε) (ii) a = ϕh(ε) (iii) 0 < a− ϕh(ε) ≪ 1

Fig. 4.2. Global behavior of system (4.2).

ϕc(ε) < a < ϕh(ε). Furthermore, for 0 < a − ϕh(ε) ≪ 1 the homoclinic loop Γ∗
ε has

broken and generated an unstable limit cycle Γ∗
ε,a, see Fig. 4.2.

By Theorem 2.3, Γε,a and Γ∗
ε,a are the only limit cycles of system (4.2).

Finally, for any given constant a0 > 0, we have M(h, a) > 0 for all h ∈ [−1
6
, 0] and

a ≥ a0. Hence there exists ε0 = ε0(a0) > 0 such that for 0 < ε < ε0 and a ≥ a0 system

(4.2) has no limit cycles. Thus there exists a function ϕsn(ε) = O(ε) > ϕh(ε) such that

for a = ϕsn(ε) system (4.2) has a semi-stable limit cycle which is the limit of Γε,a and

Γ∗
ε,a when a → ϕsn(ε) from left. The function ϕsn(ε) corresponds to the saddle-node

bifurcation of limit cycles in system (4.2). Therefore we have three bifurcation curves on

(ε, a)-plane: Hopf bifurcation a = ϕc(ε), homoclinic bifurcation a = ϕh(ε) and saddle-

node bifurcation of limit cycles a = ϕsn(ε). The bifurcation diagram is shown in Fig.

4.3.

We have seen from examples (4.1) and (4.2) that the study of the uniqueness of limit
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Fig. 4.3. Bifurcation diagram of limit cycles of system (4.2).

cycles near the boundary of the period annulus in the Bogdanov-Takens bifurcation is

necessary and non-trivial.
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