HAMILTONIAN POLYNOMIAL DIFFERENTIAL SYSTEMS WITH GLOBAL CENTERS IN \mathbb{R}^2

HONGJIN HE¹, JAUME LLIBRE² AND DONGMEI XIAO^{3†}

ABSTRACT. We characterize the polynomial Hamiltonian systems having a global center in \mathbb{R}^2 , and show that the polynomial Hamiltonian systems of degree $n \geq 3$ having a global center can exhibit one of all kinds of center: linear type, nilpotent or degenerate.

In particular we characterize all the cubic polynomial Hamiltonian systems having a degenerate center, and provide an approach using dynamical systems for characterizing when real algebraic curves H(x, y) = h in \mathbb{R}^2 are a continuum of ovals varying $h \in \mathbb{R}$.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let H(x, y) be a polynomial of degree n + 1 in the variables x and y with coefficients in \mathbb{R} , then the polynomial differential system

(1)
$$\dot{x} = -\frac{\partial H(x,y)}{\partial y} = P(x,y), \qquad \dot{y} = \frac{\partial H(x,y)}{\partial x} = Q(x,y),$$

is called a polynomial Hamiltonian system of degree n with Hamiltonian H(x, y), where n is a positive integer, denoted by $n \in \mathbb{N}$.

The notion of center goes back to Poincaré [17] and Dulac [9]. A *center* is an equilibrium point p of system (1) in the plane \mathbb{R}^2 , which has a neighborhood U such that p is the unique equilibrium in U and $U \setminus \{p\}$ is filled by periodic orbits (closed orbits or ovals) enclosing p. The center p is global if $\mathbb{R}^2 \setminus \{p\}$ is filled by periodic orbits.

To characterize the real algebraic curves H(x, y) = h in \mathbb{R}^2 having ovals for a continuum of the values of $h \in \mathbb{R}$, is equivalent to characterize the centers of the Hamiltonian system (1) in \mathbb{R}^2 with the polynomial Hamiltonian function H(x, y). For a center of system (1) with Hamiltonian H(x, y) we can define its *period function* T(h) as the period of the periodic orbit contained in the curve H(x, y) = h.

²⁰¹⁰ Mathematics Subject Classification. 37J35, 14H70, 37C27.

Key words and phrases. Polynomial Hamiltonian systems, global center, real algebraic curves.