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Abstract. We characterize the polynomial Hamiltonian systems
having a global center in R2, and show that the polynomial Hamil-
tonian systems of degree n ≥ 3 having a global center can exhibit
one of all kinds of center: linear type, nilpotent or degenerate.

In particular we characterize all the cubic polynomial Hamil-
tonian systems having a degenerate center, and provide an ap-
proach using dynamical systems for characterizing when real alge-
braic curves H(x, y) = h in R2 are a continuum of ovals varying
h ∈ R.

1. Introduction and statement of the main results

Let H(x, y) be a polynomial of degree n+ 1 in the variables x and y
with coefficients in R, then the polynomial differential system

(1) ẋ = −∂H(x, y)

∂y
= P (x, y), ẏ =

∂H(x, y)

∂x
= Q(x, y),

is called a polynomial Hamiltonian system of degree n with Hamiltonian
H(x, y), where n is a positive integer, denoted by n ∈ N.

The notion of center goes back to Poincaré [19] and Dulac [10]. A
center is an equilibrium point p of system (1) in the plane R2, which
has a neighborhood U such that p is the unique equilibrium in U and
U \ {p} is filled by periodic orbits (closed orbits or ovals) enclosing p.
The center p is global if R2 \ {p} is filled by periodic orbits.

To characterize the real algebraic curves H(x, y) = h in R2 having
ovals for a continuum of the values of h ∈ R, is equivalent to character-
ize the centers of the Hamiltonian system (1) in R2 with the polynomial
Hamiltonian function H(x, y). For a center of system (1) with Hamil-
tonian H(x, y) we can define its period function T (h) as the period of
the periodic orbit contained in the curve H(x, y) = h.
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In the qualitative theory of the planar differential equations there
are three kind of centers: linear type, nilpotent and degenerate, see for
instance [14]. More precisely, after moving the center to the origin of
coordinates and making a linear change of variables, and a scaling of
the time variable (if necessary), the polynomial differential system in
R2 having a center at the origin can be written in one of the following
three forms:

ẋ = −y +X2(x, y), ẏ = x+ Y2(x, y),

which is called a linear type center or an elementary center;

ẋ = y +X2(x, y), ẏ = Y2(x, y),

which is called a nilpotent center;

ẋ = X2(x, y), ẏ = Y2(x, y),

which is called a degenerate center. Where X2(x, y) and Y2(x, y) are
polynomials starting at least with terms of second order.

A classical and difficult problem in the qualitative theory of pla-
nar polynomial differential systems is the characterization of their cen-
ters and of the phase portraits of the systems having some center.
Over one century mathematicians have completely solved the problem
only for the linear and the quadratic polynomial differential systems.
Specially, the linear polynomial differential systems have only a lin-
ear center which is global and its period function T (h) is constant.
The centers of the quadratic polynomial differential systems and their
phase portraits have been classified by Bautin [2], Kapteyn [11, 12],
Schlomiuk [20], Vulpe [21], Żo la̧dek [24]. It has been shown that the
quadratic polynomial differential systems only exhibit linear type cen-
ters. Up to now the classification of the centers for cubic polynomial
differential systems and of their phase portraits are still unsolved prob-
lems. There are many works on the cubic centers for some different
subclasses of cubic polynomial differential systems. For example, the
linear type centers of the cubic polynomial systems without quadratic
terms have been determined by Malkin [18], Vulpe and Sibirskii [22],
Żo la̧dek [25] and references therein. The linear type centers and the
nilpotent centers of the cubic polynomial Hamiltonian systems without
quadratic terms have been determined by Colak, Llibre and Valls [5–8],
together with their phase portraits. The classification of reversible cu-
bic polynomial differential systems with a center has been done by
Żo la̧dek [26,27], and Buzzi et al [3]. How many centers, their distribu-
tion and of which type for the cubic polynomial Hamiltonian systems
having two invariant straight lines which intersect has been done by
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Llibre and Xiao [17], they proved that such systems only can have lin-
ear type centers and nilpotent centers. Other kind of centers can be
found for instance in [1, 15].

Note that all subclasses of cubic polynomial Hamiltonian differen-
tial systems with centers mentioned in the previous paragraph do not
have degenerate centers. Cima and Llibre in [4] characterized the phase
portraits of the centers of the cubic homogeneous polynomial differen-
tial system, all these centers are degenerate. Thus, the cubic polyno-
mial differential systems can exhibit the three kind of centers, linear
type, nilpotent and degenerate, while linear systems and quadratic sys-
tems have only linear type centers. Then several natural questions are:
Can the cubic polynomial Hamiltonian systems have degenerate cen-
ters? And if the answer is positive: What are the phase portraits of
such Hamiltonian systems? Moreover, how to determine if all real al-
gebraic curves H(x, y) = h in R2 are ovals? which is equivalent to
ask what conditions can guarantee that polynomial Hamiltonian sys-
tems have a global center? Can the polynomial Hamiltonian systems
having a global center exhibit centers of the three kinds respectively and
what about their period function, can be monotone?.

Since a translation in the plane transforms a Hamiltonian system in
another Hamiltonian system, we can consider the center at the origin of
coordinates by doing a translation. Hence, without loss of generality we
assume in the rest of this paper that the origin (0, 0) is an equilibrium
point of a Hamiltonian system (1) with Hamiltonian H(x, y) such that
H(0, 0) = 0.

In this paper first we study the conditions in order that the Hamil-
tonian system (1) has a global center at the origin of R2, and after we
answer the above questions. Before stating our main results, we recall
that the polynomial differential systems can be extended analytically
to the infinity of R2, this extension is called the Poincaré compactifi-
cation. Roughly speaking, the Poincaré compactification identify R2

with the interior of the unit disc centered at the origin and its bound-
ary, the circle S1, with the infinity of R2, in the plane R2 we can go to
infinity in as many directions as points have S1. Then the polynomial
differential system can be extended to an analytic differential system
in the closed unit disc D, i.e. in particular to the infinity S1. This
closed disc D is called the Poincaré disc. The equilibrium points of
the extended differential system in S1 are called the infinite equilibria
of the initial polynomial differential system, and the infinite equilibria
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appear on pairs diametrally opposite on S1. For more details on this
Poincaré compactification see for instance Chapter 5 of [9].

Theorem 1. Polynomial Hamiltonian systems (1) of degree 2n cannot
have global centers for any positive integer n.

Theorem 2. Assume that polynomial Hamiltonian system (1) has the
unique finite equilibrium at E0(0, 0) in R2. Then E0(0, 0) is a global
center if and only if either the infinity of system (1) is a periodic orbit,
or all the infinite equilibrium points have its local phase portrait formed
by one hyperbolic sector having its two separatrices at infinity.

Moreover, the infinity of system (1) is a periodic orbit if and only if
the highest homogeneous part of the Hamiltonian H(x, y) has no real
linear factors.

Theorem 2 shows the necessary and sufficient conditions on that the
real algebraic curves H(x, y) = h in R2 are a continuum of ovals varying
h ∈ R.

Proposition 3. There exist polynomial Hamiltonian systems (1) of
degree 2n+ 1 having global centers either of liner type, or nilpotent, or
degenerate for every positive integer n.

Theorems 1 and 2 and Proposition 3 are proved in section 2.

For the polynomial

(2) a+ bz + cz2 + dz3 + ez4,

we define

(3)

D2 = 3d2 − 8ce,

D3 = c2d2 − 3bd3 − 4c3e+ 14bcde− 6d2e− 18b2e2 + 16ce2,

D4 = b2c2d2 − 4c3d2 − 4b3d3 + 18bcd3 − 27d4 − 4b2c3e+
16c4e+ 18b3cde− 80bc2de− 6b2d2e+ 144cd2e−
27b4e2 + 144b2ce2 − 128c2e2 − 192bde2 + 256e3.

The answers to the above first two questions for the Hamiltonian
cubic polynomial systems having degenerate centers are in the next
theorem.

Theorem 4. Let H(x, y) be a Hamiltonian polynomial of degree 4.
Then its associated cubic polynomial Hamiltonian system has a degen-
erate center at the origin of coordinates if and only if the following
conditions (a) and (b) hold.
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(a) After a linear change of variables and a scaling of the time if
necessary the Hamiltonian can be written as

(4) H(x, y) = x4 + bx3y + cx2y2 + dxy3 + ey4

(i.e H(x, y) is a homogeneous polynomial) with e 6= 0.

(b) The coefficients of the polynomial H(x, y) given in (4) satisfy
one of the following conditions:
(i) D4 > 0 and D3 ≤ 0,

(ii) D4 > 0 and D2 ≤ 0,

(iii) D4 = D3 = 0 and D2 < 0,
where Di, i = 2, 3, 4, is defined in (3).

Moreover, (c) if the Hamiltonian cubic polynomial systems have a
degenerate center, then the degenerate center is global and its period
function is strictly monotone.

We identify the set of all cubic polynomial differential systems, or
simply cubic systems, with the set of points of the parameter space R20,
where the components of each point are the 20 coefficients of a cubic
polynomial differential system in a given order. Of course, in order to
have a cubic system the coefficients of some of its monomials of degree
three must be non-zero. Theorem 4 provides the algebraic subsets of
R20 of Hamiltonian cubic polynomial systems having degenerate cen-
ters, more precisely there are two subsets of dimension four and one
subset of dimension two.

Theorem 4 is proved in section 3, and in the last section we give a
brief discussion on the period function of a global center, and study how
to determine if the real algebraic curves H(x, y) = h are a continuum
of ovals varying h ∈ R. In general this is an interesting and challenging
problem. Our results show that the tools of differential equations can
provide an approach to characterize this problem.

2. Global centers for the Hamiltonian systems (1)

In this section first we prove Theorems 1 and 2, and finally we prove
Proposition 3.

Proof of Theorem 1. Since the degree of the polynomial Hamiltonian
systems (1) is 2n, the degree of the polynomial Hamiltonian function
H(x, y) is 2n + 1, which is odd. Then, we claim that near the infinity
the polynomial H(x, y) changes sign at the extrema of every straight
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line through the origin with director vector (u, v) if H2n+1(u, v) 6= 0,
where H2n+1(x, y) is the homogeneous part of H(x, y) of degree 2n+ 1.
From the claim it follows that the curves H(x, y) = h (constant) near
the infinity cannot be closed, and consequently the Hamiltonian system
associated to H(x, y) cannot have a global center.

Now we prove the claim. Define h(t) = H(tu, tv). Note that h(t) is a
polynomial of degree 2n+1 in the variable t, because h(t) = H0(u, v)+
H1(u, v)t + . . . + H2n+1(u, v)t2n+1, where Hj(x, y) is the homogeneous
part of degree j of H(x, y). Then the sign of h(t) when t → +∞ is
opposite to the sign of h(t) when t → −∞. Therefore the claim is
proved. �

From Theorem 1 it follows that the quadratic and in general the even
degree polynomial Hamiltonian systems cannot have global centers in
R2.

To prove Theorem 2, we first give the following lemma, which can
be proved by the qualitative analysis directly.

Lemma 5. Assume that Hamiltonian polynomial (or Hamiltonian an-
alytic) system (1) in R2 has an isolated equilibrium at E0(0, 0). Then
the equilibrium E0(0, 0) is a center if and only if the index of this equi-
librium is one.

We are now in the position to prove Theorem 2.

Proof of Theorem 2. Let H(x, y) =
∑2n

j=1Hj(x, y), where Hj(x, y) is

the homogenous part of degree j of H(x, y). Using the Poincaré trans-
formation

u(τ) =
y(t)

x(t)
, v(τ) =

1

x(t)
, t =

∫
v2n−2(τ)dτ.

Then system (1) becomes

du(τ)

dτ
= v2n−1

(
∂H

∂x

(
1

v
,
u

v

)
+ u

∂H

∂y

(
1

v
,
u

v

))
=

2n∑
j=2

jv2n−jHj(1, u),

dv(τ)

dτ
= v2n∂H

∂y

(
1

v
,
u

v

)
=

2n∑
j=2

v2n+1−j ∂Hj

∂y
(1, u) .

(5)
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Thus, all infinite equilibria of system (1) are determined by the real
roots of H2n(1, u) = 0 except perhaps for one pair of the infinite equi-
libria, the ones which can be at the endpoints of the y-axis. And
H2n(1, u) = 0 has either no real roots or at most 2n isolated real roots
because H2n(x, y) 6= 0.

On the other hand, now we study if the endpoints of the y-axis are
equilibria, let

u(τ) =
x(t)

y(t)
, v(τ) =

1

y(t)
, t =

∫
v2n−2(τ)dτ.

Then system (1) becomes

du(τ)

dτ
= −v2n−1

(
u
∂H

∂x

(
u

v
,

1

v

)
+
∂H

∂y

(
u

v
,

1

v

))
= −

2n∑
j=2

jv2n−jHj(u, 1),

dv(τ)

dτ
= −v2n∂H

∂x

(
u

v
,

1

v

)
= −

2n∑
j=2

v2n+1−j ∂Hj

∂x
(u, 1).

(6)

Hence, all infinite equilibria of system (1) are determined by the real
roots of H2n(1, u) = 0, and the zero root of H2n(u, 1) = 0. This implies
that system (1) has no infinite equilibria if and only if the homogeneous
polynomial H2n(x, y) has no real linear factors. And system (1) has
infinite equilibria if and only if the homogeneous polynomial H2n(x, y)
has real linear factors.

The “only if”part of the theorem is directly from the definition of
global center and above analysis. We next prove the “if”part of the
theorem.

If Hamiltonian polynomial system (1) has no infinity equilibria on
the circle S1 by the Poincaré compactification, then the circle S1 is a
closed orbit of system (1) in the closed unit disc D. Note that system
(1) has the unique finite equilibrium at E0(0, 0). Thus, the index of
E0(0, 0) is one. By Lemma 5, we know that the equilibrium E0(0, 0) is
a center.

On the other hand, if system (1) has infinite equilibria on the circle
S1, then the circle S1 is a singular closed orbit of system (1) in the closed
unit disc D since all the infinite equilibrium points have its local phase
portrait formed by one hyperbolic sector having its two separatrices at
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infinity. Therefore, the index of E0(0, 0) is one too. Hence, E0(0, 0) is
a center by Lemma 5.

We next prove that E0(0, 0) is global center.

If the last either closed orbit or singular closed orbit surrounding
the center localized at the equilibrium E0(0, 0) of system (1) is the
circle S1 the theorem is proved. Otherwise there is a last closed orbit Γ
surrounding E0(0, 0) that it is not the circle S1 of the infinity, that is,
there exist non-closed orbits of system (1) between S1 and Γ. We will
see that this will provide a contradiction and consequently the theorem
will be proved.

Indeed, since Γ is the last periodic orbit surrounding E0(0, 0), we
consider the Poincaré map F associated to a transversal section to Γ.
The map F is analytic because the Hamiltonian system is polynomial.
Note that E0(0, 0) is the unique finite equilibrium point of system (1)
and all orbits of system (1) cannot tend to equilibrium points at the
circle S1 by assumptions. In the region between Γ and S1, we consider
an orbit near Γ, which will spiral by the theorem of continuous depen-
dence on the initial conditions. Since in the bounded region limited by
Γ all the orbits are periodic, the map F which is defined in the part
of the transversal section contained in that bounded region limited by
Γ is the identity, but for analyticity the map F is also the identity in
the part of the transversal section contained in the region between Γ
and S1, and this is a contradiction because in that region the orbits
spiral. �

Proof of Proposition 3. For a given positive integer n, we consider the
polynomial Hamiltonian function of degree 2n+ 2

Hl(x, y) =
1

2
x2 +

1

2
y2 +

1

2n+ 2
x2n+2 +

1

2n+ 2
y2n+2,

which associated Hamiltonian system is

(7)
ẋ = −y(1 + y2n) = P (y),
ẏ = x(1 + x2n) = Q(x).

Clearly the origin is the unique finite equilibrium points of system (7).
And the homogeneous parts H2n+2(x, y) of maximal degree of Hl(x, y)
is

(8)
1

2n+ 2
x2n+2 +

1

2n+ 2
y2n+2,
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which has no real linear factors. Therefore, by Theorem 2, system (7)
has a global linear type center at (0, 0), that is the level set Hl(x, y) =
h, h > 0 is oval.

Now consider the polynomial Hamiltonian function of degree 2n+ 2

Hnc(x, y) =
1

2
y2 +

1

2n+ 2
x2n+2 +

1

2n+ 2
y2n+2,

whose associated Hamiltonian system is

(9)
ẋ = −y(1 + y2n) = P (y),
ẏ = x2n+1 = Q(x).

(0, 0) is a unique equilibrium of system (9). Moreover, the homogeneous
parts H2n+2(x, y) of maximal degree of Hnc(x, y) is (8), which has no
real linear factors. Hence, by Theorem 2, system (9) has a global
nilpotent center at (0, 0).

Finally let

Hc(x, y) =
1

2n+ 2
x2n+2 +

1

2n+ 2
y2n+2.

Then the Hamiltonian system with Hamiltonian Hc(x, y) is

(10)
ẋ = −y2n+1 = P (y),
ẏ = x2n+1 = Q(x),

Using the previous arguments we get that system (10) has a global
degenerate center at (0, 0). This completes the proof of the proposition.

�

3. Degenerate center of Hamiltonian cubic polynomial
systems

From Proposition 3 we know that there are cubic polynomial Hamil-
tonian systems which have degenerate centers. In this section we char-
acterize all the Hamiltonian cubic polynomial systems having a degen-
erate center.

In order to prove Theorem 4 we need the next proposition. This
proposition can be proved shortly by using Proposition 4.2 of [4] and
the conclusion (iii) of page 136 of [13]. For reader’s convenience, we
give the detail of proof.

Proposition 6. Assume that the polynomials P (x, y) and Q(x, y) of
system (1) are homogeneous of degree 2n−1. Then the origin of system
(1) is a center if and only if the homogeneous Hamiltonian H(x, y) of
degree 2n has no real linear factors. Moreover, the center is global, and
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if n ≥ 2, then the global center is degenerate and the period function
T (h) is strictly monotone.

Proof. Since P (x, y) = −∂H/∂y and Q(x, y) = ∂H/∂x we have that

F (x, y) = xQ(x, y)− yP (x, y), and G(x, y) = xP (x, y) + yQ(x, y),

are homogeneous functions of degree 2n, and F (x, y) = 2nH(x, y).

By using the polar coordinates (r, θ) given by x = r cos θ and y =
sin θ, system (1) (except the equilibrium point (0, 0)) becomes

(11)
ṙ = r2n−1G(cos θ, sin θ),

θ̇ = r2n−2F (cos θ, sin θ) = 2nr2n−2H(cos θ, sin θ).

Note that the polynomial H(x, y) has no real linear factors and is ho-
mogeneous of degree 2n. Hence H(x, y) 6= 0 for all (x, y) ∈ R2\{(0, 0)},
that is, the function H(θ) = H(cos θ, sin θ) is either positive, or neg-
ative, for all θ ∈ R. Without loss of generality we can assume that
H(x, y) > 0 for all (x, y) ∈ R2 \ {(0, 0)}, that is H(θ) > 0. Thus
system (11) can be written as

(12)
dr

dθ
=

r

2n

G(cos θ, sin θ)

H(cos θ, sin θ)
,

which has the solutions

r2n(θ; 0, r0) = r2n
0 e

∫ θ

0

G(cosα, sinα)

H(cosα, sinα)
dα
,

for any the initial points (0, r0). Clearly the origin of system (11) is a
center if and only if

(13) I =

∫ 2π

0

G(cos θ, sin θ)

H(cos θ, sin θ)
dθ = 0.

Since
d(lnH(cos θ, sin θ))

dθ
= −G(cos θ, sin θ)

H(cos θ, sin θ)
,

we get that

I =

∫ 2π

0

G(cos θ, sin θ)

H(cos θ, sin θ)
dθ = − lnH(cos θ, sin θ))|2πθ=0 ≡ 0.

This complete the proof on the sufficient condition, and the necessary
condition comes from Theorem 2 directly.
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For any h > 0 for the closed orbit Γh = {r2nH(cos θ, sin θ) = h} we
have

(14) r(θ;h) =

(
h

H(θ)

) 1
2n

.

We now compute the period function T (h) for the closed orbits Γh, i.e.

T (h) =

∮
Γh

1

r2n−2F (cos θ, sin θ)
dθ =

1

2nh
n−1
n

∫ 2π

0

H−
1
n (θ)dθ,

by the second equation of system (11) and (14). Thus

T ′(h) =
1− n
2n2

h
1−2n

n

∫ 2π

0

H−
1
n (θ)dθ < 0.

So the period function T (h) is strictly monotone if n ≥ 2.

Moreover, if n ≥ 2 then system (1) is a homogeneous polynomial
system of degree 2n− 1 ≥ 3, and consequently the global center (0, 0)
is degenerate. This completes the proof. �

The following result is proved in [23].

Proposition 7. The polynomial (2) has no real roots if and only if
one of the following three conditions hold.

(i) D4 > 0 and D3 ≤ 0,

(ii) D4 > 0 and D2 ≤ 0,

(iii) D4 = D3 = 0 and D2 < 0.

The expressions of Dk for k = 2, 3, 4 are given in (3).

Proof of Theorem 4. Assume that the Hamiltonian cubic polynomial
system with Hamiltonian polynomial H(x, y) of degree 4 has a center at
the origin of coordinates. Then in order that the origin be a degenerate
center the polynomial H(x, y) must have only monomials of degree 3
and 4.

Since the Hamiltonian H(x, y) is a first integral of its associated
Hamiltonian system, the origin of such Hamiltonian system is a center
if and only if the polynomial function H(x, y) has at the origin a local
maximum or minimum.

Clearly if the polynomial H(x, y) has some monomial of degree 3,
then the function H(x, y) cannot have a maximum or minimum at the
origin because then in a neighborhood of the orign the function H(x, y)
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would change its sign and consequently the origin would not be a maxi-
mum or mininum of the function H(x, y). Therefore H(x, y) must be a
homogeneous polynomial of degree 4. Hence the corresponding Hamil-
tonian system is a homogeneous cubic polynomial differential system,
and Propositons 6 can be applied.

Now we consider an arbitrary homogeneous Hamiltonian polynomial
of degree 4

H(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4.

If ae = 0, then Hamiltonian system associated to H(x, y) has the in-
variant straight line x = 0, or y = 0, and consequently the origin will
not be a center. Without loss of generality and after a scaling of the
time, if necessary, we can assume that a = 1, otherwise we interchange
the variables x and y. Hence statement (a) is proved.

We now consider the polynomial (2) with a = 1. If this polynomial
has a real root r, then the straight line y − rx = 0 is invariant by the
Hamiltonian system associated to H(x, y), and consequently the origin
cannot be a center. So the polynomial (2) has no real roots, and by
Proposition 7, statement (b) of the theorem follows.

From Proposition 6 it follows that the degenerate center of this
Hamiltonian system is global and its period function is strictly mono-
tone, so statement (c) is proved. �

4. Discussion

In this paper we give the necessary and sufficient conditions for
Hamiltonian polynomial systems having a global center. A natural
problem arises what property has the period function of periodic or-
bits surrounding the global center of Hamiltonian polynomial system?
From Theorem 1, the Hamiltonian polynomial system having global
center should have degree odd, that is, 2n − 1 with n ∈ N. When
n = 1, that is, the linear Hamiltonian system. It is clear that the pe-
riod function of periodic orbits surrounding the global center of linear
Hamiltonian system is constant. From Proposition 6 (the conclusion
(iii) of page 136 of [13]), the period function of periodic orbits surround-
ing the global center of homogenous (and quasi-homogenous) Hamil-
tonian system with degree 2n−1 with n ≥ 2 is strictly monotone. But
if the Hamiltonian polynomial is not homogeneous the period function
can have critical points as the following example shows.
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Example 8. Assume that Hamiltonian function H(x, y) = 1
8
(x2 +

y2)4 −
√

7
6

(x2 + y2)3 + 1
2
(x2 + y2)2. Then the associated Hamiltonian

system

(15)
ẋ = −y(x2 + y2)

(
(x2 + y2)2 −

√
7(x2 + y2) + 2

)
,

ẏ = x(x2 + y2)
(
(x2 + y2)2 −

√
7(x2 + y2) + 2

)
,

has a global center at (0, 0), and its period function T (h) has two critical
points.

Proof. System (15) after a rescaling of the time becomes the linear cen-
ter ẋ = −y, ẏ = x, and since (x2 + y2)

(
(x2 + y2)2 −

√
7(x2 + y2) + 2

)
only vanishes at the origin, the origin is the unique equilibrium point
of system (15) and it is a global center.

We now consider the periodic function T (h) of system (15). In polar
coordinates system (15) writes

(16) ṙ = 0, θ̇ = r2

(
(r2 −

√
7

2
)2 +

1

4

)
.

Since H̄ = x2 + y2 is also a first integral of system (15), the closed
orbits of this system are H̄ = h = r2. Therefore the period function of
the closed orbit H̄ = h = r2 from the second equation is

T (h) = T (r2) =
1

r2
(

(r2 −
√

7
2

)2 + 1
4

) ∮
Γh

dθ =
2π

r2
(

(r2 −
√

7
2

)2 + 1
4

) .
And

T ′(h) = − 3h2 − 2
√

7h+ 2

h
(

(h−
√

7
2

)2 + 1
4

)
Thus, the function T (h) has the two critical points

h1 =
1

3

(√
7 + 1

)
, h2 =

1

3

(√
7− 1

)
.

This completes the proof of the example. �

From the example and other computations, an interesting problem
arise to us if the period function of a global center of a Hamiltonian
polynomial system has an even number of critical points. We left it as
an open problem.

Consider the family of real algebraic curves H(x, y) = h with h
varying in an open interval of R. An interesting and difficult problem
is to know when all these algebraic curves are ovals, i.e. closed curves.
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Theorem 2 gives a characterization. Our results show that the tools of
the differential equations allow to provide such characterization. Using
Hamiltonian polynomial system (1), we find that the real algebraic
curves H(x, y) = h are closely related to the finite and the infinite
equilibria of the Hamiltonian system (1). And this method can be
extended for studying the real algebraic hypersurfaces H(X, Y ) = h
with a continuum of the real h in R2n, where X = (x1, · · · , xn), Y =
(y1, · · · , yn), see [16].
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[25] H. Żo la̧dek, On a certain generalization of Bautin’s theorem, Nonlinearity 7
(1994), 273–279.
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