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NON-EXISTENCE AND UNIQUENESS OF LIMIT CYCLES FOR

PLANAR POLYNOMIAL DIFFERENTIAL SYSTEMS WITH

HOMOGENEOUS NONLINEARITIES

JIANFENG HUANG1, HAIHUA LIANG2 AND JAUME LLIBRE3

Abstract. In this paper we study the limit cycles of the planar polynomial di�erential

systems

ẋ = ax− y + Pn(x, y),

ẏ = x+ ay +Qn(x, y),

where Pn and Qn are homogeneous polynomials of degree n ≥ 2, and a ∈ R. Consider
the functions

φ(θ) = Pn(cos θ, sin θ) cos θ +Qn(cos θ, sin θ) sin θ,

ψ(θ) = Qn(cos θ, sin θ) cos θ − Pn(cos θ, sin θ) sin θ,

ω1(θ) = aψ(θ)− φ(θ),

ω2(θ) = (n− 1)
(
2aψ(θ)− φ(θ)

)
+ ψ′(θ).

First we prove that these di�erential systems have at most 1 limit cycle if there exists a
linear combination of ω1 and ω2 with de�nite sign. This result improves previous knwon

results. Furthermore, if ω1(ν1aψ − ν2φ) ≤ 0 for some ν1, ν2 ≥ 0, we provide necessary
and su�cient conditions for the non-existence, and the existence and uniqueness of the

limit cycles of these di�erential systems. When one of these mentioned limit cycles

exists it is hyperbolic and surrounds the origin.

1. Introduction and statements of main results

In this work we study the limit cycles of the planar polynomial di�erential systems
with homogeneous nonlinearities of the form

dx

dt
= ẋ = ax− y + Pn(x, y),

dy

dt
= ẏ = x+ ay +Qn(x, y),

(1)

where Pn and Qn are homogeneous polynomials of degree n ≥ 2. The study of the limit
cycles of these di�erential systems is a particular case of the second part of Hilbert's
16th problem, which is one of the main problems in the qualitative theory of the planar
polynomial di�erential systems.
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These last decades the di�erential systems (1) have been extensively studied and gained
wide attention. This is mainly due to the fact that each limit cycle surrounding the origin
of a system (1) can be expressed in polar coordinates as r = r(θ), with r(θ) being a
smooth periodic function. More precisely, system (1) in the polar coordinates (r, θ) given
by x = r cos θ, y = r sin θ can be written in the form

ṙ = ar + φ(θ)rn,

θ̇ = 1 + ψ(θ)rn−1.
(2)

And it is known that the limit cycles surrounding the origin of system (1) do not intersect
the curve θ̇ = 1 + ψ(θ)rn−1 = 0 (see [11, 16, 23, 24], etc). Therefore these limit cycles
can be investigated using the di�erential equation

dr

dθ
=

ar + φ(θ)rn

1 + ψ(θ)rn−1
, θ ∈ [0, 2π].(3)

Such particularity provides an opportunity to analyze the Hilbert's 16th problem re-
stricted to the limit cycles surrounding the origin of the di�erential systems (1) in a
relatively simple way.

There are several works studying the limit cycles which bifurcate from the ones of the
di�erential systems (1) under small perturbations, see for instance [5, 24, 33, 34, 38] and
the references therein. But here we are interested in the results for the non-bifurcation
case, now we summarize the more representatives.

(I) If ω1(θ) ̸≡ 0 does not change sign, then the di�erential system (1) has at most
1 limit cycle in the region θ̇ > 0 surrounding the origin (see Coll, Gasull and
Prohens [16]).

(II) If ω1(θ)ψ(θ) ̸≡ 0 does not change sign, then the di�erential system (1) has at
most 1 (resp. 2) limit cycle(s) in the region θ̇ > 0 surrounding the origin when n
is even (resp. odd) (see Carbonell and Llibre [11]).

(III) If ω2(θ) ̸≡ 0 does not change sign, then the di�erential system (1) has at most
2 limit cycles in the region θ̇ > 0 surrounding the origin (see Gasull and Llibre
[23]).

(IV) If either ω1(θ)ψ(θ) ≡ 0, or ω2(θ) ≡ 0, then the di�erential system (1) has at most
1 limit cycle in the region θ̇ > 0 surrounding the origin (see Gasull and Llibre
[23]).

For more works on the di�erential system (1), see [13, 14, 19, 32, 35, 36], etc.

The main goal of this paper is to provide some new criteria for the uniqueness and
non-existence of the limit cycles of the di�erential system (1).

Theorem 1. Suppose there exist µ1, µ2 ∈ R such that µ21 + µ22 ̸= 0 and µ1ω1(θ) +
µ2ω2(θ) ≥ 0 (≤ 0).

(a) If ψ(θ) > 0 and a

∫ 2π

0

φ(θ)

ψ(θ)
dθ ≥ 0, then system (1) has no limit cycles.
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(b) If ψ(θ) > 0 and a

∫ 2π

0

φ(θ)

ψ(θ)
dθ < 0, then system (1) has exactly one limit cycle.

(c) If either ψ(θ) < 0 or ψ(θ) has zeros, then system (1) has at most one limit cycle.
This upper bound is sharp.

Moreover when such a limit cycle exists, it is hyperbolic and surrounds the origin.

We remark that Theorem 1 generalizes the known results (I) and (III), and provides
more information about the result (III) under additional assumptions. Furthermore we
will show in Proposition 13 that, the condition µ1ω1 + µ2ω2 ≥ 0 (≤ 0) in Theorem
1, actually leads to the �tangency� or �transversality� of the vector �eld de�ned by the
di�erential system (1) on an algebraic curve. This provides a geometric meaning to this
condition. Conversely, if this �tangency� or �transversality� is valid, then in some case
we can obtain the best upper bound for the number of limit cycles of the system, see the
following corollary.

Corollary 2. Suppose ψ(θ) ̸= 0 and there exists µ ∈ R\{0} such that ψ(θ)rn−1 + µ = 0
is an invariant curve or a transversal section for the vector �eld of system (2). Then the
di�erential system (1) has at most one limit cycle. Moreover when this limit cycle exists
it is hyperbolic and surrounds the origin.

We remark that Corollary 2 says that the �tangency� or �transversality� of the vector
�eld of system (1) on the algebraic curves (Qnx−Pny)+µ(x2+ y2) = 0 with µ ∈ R\{0}
and (x, y) ̸= (0, 0), provides useful information to know the uniqueness of the limit cycles
of the di�erential system (1). This result is quite similar to the classical result, which
says that a quadratic polynomial di�erential system has at most 1 limit cycle if it has an
invariant straight line, see [17, 18, 40].

We also have a partial improvement for the known result (II), see the next theorem.

Theorem 3. Suppose there exist ν1, ν2 ≥ 0 such that (aν1)
2 + ν22 ̸= 0 and ω1(ν1aψ(θ)−

ν2φ(θ)) ≤ 0. Then the following statements hold.

(i) If ω1φ ≡ 0, then system (1) has no limit cycles.

(ii) If ω1φ ̸≡ 0 and ψ(θ) > 0, then system (1) has no limit cycles.

(iii) If ω1φ ̸≡ 0 and ψ(θ) < 0, then system (1) has at most one limit cycle. In addition,
such a limit cycle exactly exists if ω1 ̸= 0.

(iv) If ω1φ ̸≡ 0, ψ(θ) has zeros and ν1 ≤ ν2, then system (1) has no limit cycles.

(v) If ω1φ ̸≡ 0, ψ(θ) has zeros and ν1 > ν2, then system (1) has at most one limit
cycle.

Moreover when such a limit cycle exists, it is hyperbolic and surrounds the origin.

In what follows by choosing di�erent values for the parameters µ1, µ2, ν1 and ν2 in
Theorems 1 and 3, we recover some of the classical results on the limit cycles of the
di�erential systems (1), and also some new ones.
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Corollary 4. The polynomial di�erential system (1) has at most one limit cycle if one
of the following conditions holds. Moreover when this limit cycle exists, it is hyperbolic
and surrounds the origin.

(i) aψ(θ)− φ(θ) ≥ 0 (≤ 0), i.e. ω1(θ) ≥ 0 (≤ 0).

(ii) (n− 1)(2aψ(θ)− φ(θ)) + ψ′(θ) ≥ 0 (≤ 0), i.e. ω2(θ) ≥ 0 (≤ 0).

(iii) (n− 1)aψ(θ) + ψ′(θ) ≥ 0 (≤ 0), i.e. −(n− 1)ω1(θ) + ω2(θ) ≥ 0 (≤ 0).

(iv) (n− 1)φ(θ) + ψ′(θ) ≥ 0 (≤ 0), i.e. −2(n− 1)ω1(θ) + ω2(θ) ≥ 0 (≤ 0).

(v) (aψ(θ)− φ(θ))aψ(θ) ≤ 0 (i.e. aω1(θ)ψ(θ) ≤ 0) with a ̸= 0.

(vi) (aψ(θ)− φ(θ))φ(θ) ≥ 0, i.e. ω1(θ)φ(θ) ≥ 0.

(vii) ν1aψ(θ)− ν2φ(θ) ≡ 0 with ν1, ν2 ≥ 0 and aν21 + ν22 ̸= 0.

Clearly statement (i) of Corollary 4 includes the result (I) and part of the result (IV).
Statement (ii) of Corollary 4 is an improvement of the result (III). The result (IV) follows
from statements (i), (ii) and (v). Finally statement (v) of Corollary 4 partially improves
the result (II).

We provide three applications of our results. The �rst one shows the uniqueness of
limit cycles and compares our results with the results (I)-(IV). The second one studies
the interval of the parameter a, in which the di�erential system (1) has no no limit cycles,
or exactly one limit cycle. The last application concerns with the non-existence of limit
cycles. These applications are done in section 3.

There are two powerful tools in the proof of our main results. One of them is the Abel
di�erential equation

dx

dt
= S(t, x) = A(t)x3 +B(t)x2 + C(t)x,(4)

where A(t), B(t) and C(t) are C∞([0, κ]) functions with κ > 0, and x ∈ R, because using
the transformation introduced by Cherkas [12], which really goes back to Liouville [31],

ρ =
rn−1

1 + ψ(θ)rn−1
,(5)

the di�erential equation (3) becomes the Abel di�erential equation

dρ

dθ
= S(θ, ρ) = (n− 1)(aψ − φ)ψρ3 +

(
(n− 1)(φ− 2aψ)− ψ̇

)
ρ2 + (n− 1)aρ.(6)

There are many works on the Abel di�erential equation because of its importance in
the qualitative theory of the di�erential equations, see [1�4, 6�10, 15, 19, 21�23, 27�
30, 37, 39] and the references therein. Nevertheless, up to now, the major part of results
on the limit cycles of the Abel di�erential equations require that some coe�cient of the
Abel di�erential equation does not change sign. We want to point out that the proofs of
our theorems use a result of [25] on the Abel di�erential equations where some coe�cients
can change their signs.

On the other hand we will see that the results on the limit cycles of the Abel di�er-
ential equations not always can be used, especially when the function ψ(θ) has zeros.
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In such case we have to investigate directly the di�erential equation (3), which seems
more di�cult. Usually in order to control the maximum number of limit cycles for such
equations, an e�cient way is to �nd some suitable auxiliary functions, see for example
Theorem 5 of [4], or Lemma 2.1 of [25], or Proposition 2.2 of [28].

The second main tool that we shall use in this paper, is a formula on the divergence
from [26]. According to this formula, if the auxiliary function for the Abel di�erential
equation (6) is known when ψ(θ) ̸= 0, then we can obtain an auxiliary function for the
di�erential equation (3) when the function ψ(θ) has zeros. In this way the proofs using
the di�erential equation (3) can be done in a similar way to the proofs using the Abel
di�erential equation (6).

The organization of this paper is as follows. In section 2 we provide some preliminary
results. The proofs of Theorems 1 and 3, and of Corollaries 2 and 4 are given in section
3.

2. Preliminaries

For proving our theorems and corollaries we need some preliminary results, we state
them one by one in the following.

2.1. Some basic de�nitions and results. Consider the di�erential equation

dx

dt
= L(t, x),(7)

where L ∈ C∞([0, κ] × R) and κ is a positive constant. Denote by x(t, x0) the solution
of (7) such that x(0, x0) = x0.

The solution x(t, x0) is a periodic solution of the di�erential equation (7), if it is de�ned
in [0, κ] with x(κ, x0) = x0. Moreover, an orbit (t, x(t, x0)) in the strip [0, κ] × R is a
periodic orbit if x(t, x0) is a periodic solution of equation (7). A periodic orbit is a limit
cycle if it is isolated in the set of all periodic orbits of the di�erential equation (7).

The function H(x0) = x(κ, x0) is the return map of the di�erential equation (7). It is
well-known that

H ′(x0) = exp

∫ κ

0

∂L

∂x

(
t, x(t, x0)

)
dt,(8)

where the prime represents the �rst-order derivative (see Lloyd [37] for instance). When
the solution x(t, x0) is periodic with H ′(x0) ̸= 1 (resp.

(
H − id

)′
(x0) = · · · =

(
H −

id
)(n−1)

(x0) = 0 and
(
H − id

)(n)
(x0) ̸= 0), the solution x(t, x0) provides a limit cycle,

which is called a hyperbolic limit cycle (resp. a limit cycle with multiplicity n). For more
details see for instance [20].

Clearly a limit cycle of equation (7) is hyperbolic if and only if it has multiplicity 1.

Lemma 5. Let U =
{
(t, x) : t ∈ [0, κ], x ∈

(
c1(t), c2(t)

)}
where ci : [0, κ] → R ∪

{+∞,−∞} for i = 1, 2 are two functions. Let F ∈ C1(U) with F (κ, x) = F (0, x).
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Consider the function G : U → R de�ned by

G(t, x) =
∂L

∂x
(t, x) +

∂F

∂t
(t, x) + L(t, x)

∂F

∂x
(t, x).

(i) If x = x(t) is a periodic solution of the di�erential equation (7) in U , then∫ κ

0

∂L

∂x

(
t, x(t)

)
dt =

∫ κ

0
G
(
t, x(t)

)
dt.(9)

(ii) If G
∣∣
U
≥ 0 (resp. ≤ 0) and there exists a non-empty open set E ⊆ [0, κ] such that

G
∣∣
U∩(E×R) ̸= 0, then the di�erential equation (7) has at most 1 limit cycle in U ,

which is hyperbolic and unstable (resp. stable).

The proof of Lemma 5 is easy, and it follows in a similar way to the proof of Lemma
2.1 of [25].

Now we state a second result which follows essentially from Lemma 5. We denote by
W (·, ·) the Wronskian determinant of two functions.

Theorem 6. Suppose there exist two smooth functions λ1(t) > λ2(t) such that for i = 1, 2

we have that λi(t) ̸= 0, λi(κ) = λi(0), S(t, λi(t))− λ̇i(t) does not change signs, and

4λ1(t)λ2(t)
(
S(t, λ1(t))− λ̇1(t)

)(
S(t, λ2(t))− λ̇2(t)

)
+W 2(λ1(t), λ2(t)) ≤ 0.

Then the Abel di�erential equation (4) has at most 2 non-zero limit cycles, counted with
multiplicities.

Theorem 6 with κ = 1 is Theorem 1.1 of [25]. And it can be obtained by rescaling
t 7→ t/κ when κ ̸= 1.

In any case we want to sketch the proof of Theorem 6, which will be helpful for
proving our Theorem 1. It is easy to verify that Theorem 6 holds if S(t, λ1(t))− λ̇1(t) =

S(t, λ2(t)) − λ̇2(t) = W (λ1(t), λ2(t)) ≡ 0. When S(t, λ1(t)) − λ̇1(t), S(t, λ2(t)) − λ̇2(t)
andW (λ1(t), λ2(t)) are not all identically zero, the key point is to �nd a suitable function
F (t, x) and then apply Lemma 5. De�ne f(t, x) = (x− λ1(t))(x− λ2(t))x. Based on the
Lagrange interpolation formula, the authors in [25] take

F (t, x) = − ln

∣∣∣∣ f(t, x)

λ1(t)λ2(t)

∣∣∣∣ , where (t, x) ∈ {(t, x) : x ̸∈ {0, λ1(t), λ2(t)}
}
.(10)

Therefore a direct calculation shows that
∂S

∂x
(t, x) +

∂F

∂t
(t, x) + S(t, x)

∂F

∂x
(t, x) = f(t, x)

IS(t, x)

λ1 − λ2
,(11)

where

IS(t, x) =

2∑
i=1

(−1)i
(
S(t, λi(t))− λ̇i(t)

)
λi(t)(x− λi(t))2

− W (λ1(t), λ2(t))

λ1(t)λ2(t)(x− λ1(t))(x− λ2(t))
.

It is easy to prove that IS
∣∣
U

≥ 0 (≤ 0), where U is an arbitrary connected component
of
{
(t, x) : x ̸∈ {0, λ1(t), λ2(t)}

}
. Moreover there exists a non-empty open set E ⊆ [0, κ]
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such that IS
∣∣
U∩(E×R) ̸= 0. Note that f |U ̸= 0. By Lemma 5 U contains at most 1 limit

cycle of the di�erential equation (7). Therefore the number of non-zero limit cycles of
(7) is no more than 6 (2 in the curves x = λ1(t) and x = λ2(t), and 4 coming at most
one for each connected components of the set

{
(t, x) : x ̸∈ {0, λ1(t), λ2(t)}

}
). By virtue

of further analysis (including bifurcation method and comparison principle), this upper
bound can be reduced to 2 and it is sharp. Thus we obtain Theorem 6, for more details
see [25].

There is no doubt that the Abel di�erential equation is a powerful tool for studying
the limit cycles of the di�erential system (1). However not always we can use it. For
this reason we also need to apply Lemma 5 directly to the di�erential equation (3), but
the di�culty is still to �nd a suitable auxiliary function for applying the Lemma 5 to
equation (3). To this end we introduce the following result given in [26].

Lemma 7. Let V1 and V2 be two open subsets of R2, let T : V1 → V2 be a di�eomorphism,
and let F : V2 → R be a C1 function. Assume that Q and P are two vector �elds on V1
and V2, respectively, with P ◦ T = DTQ. Then

(divP+DPF ) ◦ T = divQ+DQF,

where DQ represents the directional derivative along Q and F = ln |DT |+ F ◦ T .

Proof. Denote by Q = (Q1,Q2), P = (P1,P2) and y = (y1, y2) = T (x) = T (x1, x2). We
have P(y) =

(
DT ·Q

)
(x). Hence a straightforward calculation shows that

P1y1y1x1 + P1y2y2x1 = y1x1x1Q1 + y1x1x2Q2 + y1x1Q1x1 + y1x2Q2x1 ,(12)

P2y1y1x1 + P2y2y2x1 = y2x1x1Q1 + y2x1x2Q2 + y2x1Q1x1 + y2x2Q2x1 ,(13)

P1y1y1x2 + P1y2y2x2 = y1x1x2Q1 + y1x2x2Q2 + y1x1Q1x2 + y1x2Q2x2 ,(14)

P2y1y1x2 + P2y2y2x2 = y2x1x2Q1 + y2x2x2Q2 + y2x1Q1x2 + y2x2Q2x2 .(15)

So, y2x2×(12)−y1x2×(13)−y2x1×(14)+y1x1×(15) leads to

|DT | (P1y1 + P2y2) = |DT |x1Q1 + |DT |x2Q2 + |DT | (Q1x1 +Q2x2) ,

which implies

(divP) ◦ T = divQ+DQ ln |DT |.

Furthermore, observe that

DPF ◦ T = (∇F ◦ T ) · (P ◦ T ) = (∇F ◦ T ) ·DT ·Q = ∇(F ◦ T ) ·Q = DQ(F ◦ T ).

The conclusion of the lemma follows. �

For ending this subsection we state two more lemmas. The �rst provides information
on the stability at in�nity for the polynomial di�erential system (1) when ψ(θ) ̸= 0 (it is
known that the in�nity is a periodic orbit of the system in this case), the second provides
the non-existence of limit cycles under convenient assumptions.
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Lemma 8. Let φ(θ) and ψ(θ) be the functions de�ned in the abstract. If ψ(θ) ̸= 0 and∫ 2π

0

φ(θ)

|ψ(θ)|
dθ > 0 (resp. < 0),

then the periodic orbit at the in�nity of the polynomial di�erential system (1) is stable
(resp. unstable).

Lemma 8 is in fact a particular case of Proposition 4 of [24].

Lemma 9. Let l ∈ C1((a, b)), p ∈ C1([0, κ]) and q ∈ C1
(
[0, κ] × (a, b)

)
, where either

l(a) = 0 or l(b) = 0. Consider the di�erential equation

(16)
dx

dt
= p(t)l(x) + q(t, x).

(i) Assume that q ≡ 0. If either l|(a,b) ̸= 0 or

∫ κ

0
p(t)dt = 0, then the di�erential

equation (16) has no limit cycles in region [0, κ]× (a, b).

(ii) Assume that E is a non-empty set in [0, κ], q|E×(a,b) ̸= 0 and q|[0,κ]×(a,b) ≥ 0 (≤

0). If sgn

(∫ 1

0
p(s)ds

)
sgn
(
l(x)

)
sgn
(
q(t, x)

)
≥ 0 when (t, x) ∈ E × (a, b), then

the di�erential equation (16) has no periodic orbits in [0, 1]× (a, b).

Proof. The lemma can be easily proved by comparing the solutions of the di�erential
equation (16) with the solutions of the di�erential equation dx/dt = p(t)l(x). For more
details we refer the readers to the paper [27]. �

2.2. Limit cycles of a particular Abel di�erential equation. In this subsection we
consider the Abel di�erential equation (4) with

S(t, x) =
(
a1(t)x− b1(t)

)(
a2(t)x− b2(t)

)
x+

1

b1(t)

(
ḃ1(t)x− ȧ1(t)x

2
)
,(17)

where ai, bi ∈ C∞([0, κ]), ai(0) = ai(κ), bi(0) = bi(κ) for i = 1, 2, and b1(t) ̸= 0.

One of the particularities of this Abel di�erential equation is that a1(t)x − b1(t) = 0
is an invariant curve of it.

First we apply Lemma 5 and Theorem 6 to obtain some estimates for the number of
limit cycles of the Abel di�erential equation (4) with S(t, x) given in (17). In order to
do that we consider the function

F (t, x) = α ln |x|+ β ln |a1(t)x− b1(t)| − (α+ β + 1) ln |b1(t)|+ c(t),(18)

where α, β ∈ R, c ∈ C1([0, κ]) with c(0) = c(κ). We shall denote a1(t), b1(t), c(t) and
S(t, x) simply by a1, b1, c and S. Then we have

∂F

∂t
(t, x) + S(t, x)

∂F

∂x
(t, x)

=
αS

x
+

βa1S

a1x− b1
+
β
(
ȧ1x− ḃ1

)
a1x− b1

− (α+ β + 1)
ḃ1
b1

+ ċ
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= α(a1x− b1)(a2x− b2) + βa1(a2x− b2)x− (α+ β)
ȧ1
b1
x− ḃ1

b1
+ ċ,

∂S

∂x
(t, x) = (a1x− b1)(a2x− b2) + a1(a2x− b2)x+ a2(a1x− b1)x− 2

ȧ1
b1
x+

ḃ1
b1
.

Thus a direct calculation shows that
∂S

∂x
(t, x) +

∂F

∂t
(t, x) + S(t, x)

∂F

∂x
(t, x)

= (α+ β + 3)a1a2x
2 −

(
(α+ β + 2)a1b2 + (α+ 2)a2b1 + (α+ β + 2)

ȧ1
b1

)
x

+ (α+ 1)b1b2 + ċ.

(19)

Now we de�ne

V =


{(t, x)|0 < x < b1/a1} when a1b1 > 0,

{(t, x)|x > 0 or x < b1/a1} when a1b1 < 0,

{(t, x)|x > 0, and x < b1/a1 for t with a1b1 > 0} when a1 has zeros,

(20)

and we have the next proposition.

Proposition 10. Suppose that S is de�ned as in (17). Then the Abel di�erential equation
(4) has at most 1 limit cycle (counted with multiplicity) in V , if one of the following
conditions holds:

(i) a1 ≠ 0 and there exists η ∈ R such that a1b2 + ηa2b1 + ȧ1/b1 ≥ 0 (≤ 0).
(ii) a2 ≥ 0 (≤ 0).
(iii) Either a1a2 ≥ 0 and b1b2 ≤ 0, or a1a2 ≤ 0 and b1b2 ≥ 0.

Proof. (i) Denote by E1 = {t|a1b2 + ηa2b1 + ȧ1/b1 ̸= 0}. We will divide the proof into
three cases.

Case (i.a): η = −1. Firstly take transformation y = a1x/b1. Equation (4) is reduced to

ẏ =
b1
a1
y(y − 1)

(
a2b1y − a1b2 −

ȧ1
b1

)
,(21)

and V becomes Ṽ = {(t, y)|0 < y < 1} (resp. Ṽ = {(t, y)|y < 0 or y > 1}) when a1b1 > 0
(resp. < 0).

Observe that equation (21) can be rewritten as

ẏ =
a2b

2
1

a1
y(y − 1)2 − b1

a1

(
a1b2 − a2b1 +

ȧ1
b1

)
y(y − 1),

where in each connected components of Ṽ we have

b1
a1

(
a1b2 − a2b1 +

ȧ1
b1

)
y(y − 1) ≥ 0 (≤ 0).

When E1 = ∅ it follows from statement (i) of Lemma 9 that equation (21) has no limit
cycles in Ṽ , i.e. the Abel equation (4) has no limit cycles in V .
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When E1 ̸= ∅ we claim that at most one connected component of Ṽ (resp. V ) contains
the limit cycles of (21) (resp. (4)). In fact this is trivial if a1b1 > 0. If a1b1 < 0, then

sgn

(∫ 1

0

a2b
2
1

a1
dt

)
sgn
(
y(y − 1)2

)
sgn

(
− b1
a1

(
a1b2 − a2b1 +

ȧ1
b1

)
y(y − 1)

)

=


− sgn

(∫ 1

0

a2b
2
1

a1
dt

)
sgn

(
b1
a1

(
a1b2 − a2b1 +

ȧ1
b1

))
y > 1, t ∈ E1,

sgn

(∫ 1

0

a2b
2
1

a1
dt

)
sgn

(
b1
a1

(
a1b2 − a2b1 +

ȧ1
b1

))
y < 0, t ∈ E1.

Thus, by statement (ii) of Lemma 9, either {(t, y)|y > 1} or {(t, y)|y < 0} contains no
limit cycles of (21), which leads to our assertion.

On the other hand, take α = −1, β = −2 and c ≡ 0 in (19). In each connected
components of V we get

∂S

∂x
(t, x) +

∂F

∂t
(t, x) +

∂F

∂x
(t, x)S(t, x) =

(
a1b2 − a2b1 +

ȧ1
b1

)
x ≥ 0 (≤ 0).

Therefore when E1 ̸= ∅ Lemma 5 implies that each connected component of V has at
most 1 limit cycle of the Abel equation (4) counted with multiplicity. Consequently, the
number of limit cycles of (4) in V is no more than 1.

Case (i.b): η = 0. Similar to the argument in case (i.a) we change (4) to (21) and rewrite
(21) into the form

ẏ =
a2b

2
1

a1
y2(y − 1)− b1

a1
y(y − 1)

(
a1b2 +

ȧ1
b1

)
.

It follows from Lemma 9 that there are no (resp. at most one) connected components of
V containing limit cycles of the Abel equation (4) when E1 = ∅ (resp. E1 ̸= ∅).

Now take α = −2, β = −1 and c = − ln |a1| in (19). In each connected components of
V we get

∂S

∂x
(t, x) +

∂F

∂t
(t, x) +

∂F

∂x
(t, x)S(t, x) =

(
a1b2 +

ȧ1
b1

)(
x− b1

a1

)
≥ 0 (≤ 0).

Thus from Lemma 5 and the above argument the Abel equation (4) has at most 1 limit
cycle (counted with multiplicity) in V when E1 ̸= ∅.
Case (i.c): η ̸= −1, 0. Denote by

λ1 = max

{
b1
a1
,−η b1

a1

}
, λ2 = min

{
b1
a1
,−η b1

a1

}
.

From assumption λ1 > λ2 and λ1, λ2 ̸= 0. In addition we have that

S

(
t,
b1
a1

)
− d

dt

(
b1
a1

)
= 0,

S

(
t, η

b1
a1

)
− d

dt

(
η
b1
a1

)
= −η(η + 1)

b21
a21

(
a1b2 + ηa2b1 +

ȧ1
b1

)
≥ 0(≤ 0),
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W

(
b1
a1
, η
b1
a1

)
≡ 0,

whereW (·, ·) represents theWronskian determinant for two functions. So 4λ1λ2
(
S(t, λ1)−

λ̇1
)(
S(t, λ2)− λ̇2

)
+W 2(λ1, λ2) ≡ 0. According to Theorem 6 the Abel equation (4) has

at most 2 non-zero limit cycles, counted with multiplicities. Note that x = b1/a1 is one
of them and not located in V . Hence the conclusion holds.

(ii) Let E2 = {t|a2 ̸= 0}. When E2 = ∅ we know that (4) is a Riccati equation and
therefore it has at most 1 non-zero limit cycle. In what follows we consider the case that
E2 ̸= ∅.

Take α = β = −1 and c ≡ 0 in (19). Then in each connected components of V we
have by assumption that

∂S

∂x
(t, x) +

∂F

∂t
(t, x) +

∂F

∂x
(t, x)S(t, x) = a2(a1x− b1)x ≥ 0 (≤ 0).

In addition
(
a2(a1x− b1)x

)∣∣
V ∩(E2×R) ̸= 0. According to Lemma 5 the Abel equation (4)

has at most 1 limit cycle in each connected components of V , counted with multiplicity.

When a1b1 > 0 or a1 has zeros the conclusion clearly holds because V is connected in
these cases.

For the case a1b1 < 0 we again use (21) and rewrite the equation as

ẏ = −
(
b1b2 +

ȧ1
a1

)
y(y − 1) +

a2b
2
1

a1
y2(y − 1).

Following a way similar to the argument in case (i.a), we can verify using Lemma 9 that
(21) has no limit cycles in {(t, y)|y > 1} or in {(t, y)|y < 0}. That is all the limit cycles of
the Abel equation (4) can only appear in one connected component of V , and therefore
the number is at most 1.

(iii) If a1a2 ≡ 0 then (4) is reduced to a Riccati equation and therefore the number of
non-zero limit cycle is no more than 1. If a1a2 ̸≡ 0 and a1 ̸= 0, then a2 ≥ 0 (≤ 0). The
case goes back to statement (ii). The remaining case is a1a2 ̸≡ 0 with a1 having zeros.
We know that V is connected. Take α = −2, β = 0 and c ≡ 0 in (19). In V we have by
assumption that

∂S

∂x
(t, x) +

∂F

∂t
(t, x) +

∂F

∂x
(t, x)S(t, x) = a1a2x

2 − b1b2 ≥ 0 (≤ 0).

Moreover let E3 = {t|a1a2 ̸= 0}. Then
(
a1a2x

2 − b1b2
)∣∣
V ∩(E3×R) ̸= 0. Lemma 5 implies

that the Abel equation (4) has at most 1 limit cycle V , counted with multiplicity. �

Now we consider the non-existence of limit cycles for the Abel equation (4). Suppose
that S is de�ned as in (17). Rewrite the equation as

d

dt

(
b1
x

)
= −b1

(a1x− b1)(a2x− b2)

x
+ ȧ1.(22)
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Then for a non-zero periodic orbit x = x(t) of the Abel equation (4) we have∫ κ

0
b1(t)

(
a1(t)x(t)− b1(t)

)(
a2(t)x(t)− b2(t)

)
x(t)

dt = 0.(23)

In particular note that b1(a1x− b1)/x ̸= 0 in V . Thus it is easy to obtain the following
criterion.

Proposition 11. Suppose that S is de�ned as in (17). Then the Abel equation (4) has
no limit cycles in V if a2x− b2 does not change sign in each connected component of V .

Proof. Denote by χ(t, x) = a2(t)x − b2(t). Suppose that x = x(t) is a periodic solution
of the Abel equation (4) in V . Then according to (23) and the assumption we have
χ(t, x(t)) ≡ 0. Note that the function χ is linear in the variable x and the region V is
open. We get that a2 ≡ 0 and therefore b2 ≡ 0. Thus from (22) all the orbits of (4) in V
are periodic. Then the proposition is proved. �

As we have explained in section 1 the limit cycles surrounding the origin of system (1)
can be studied using the equation (6). Moreover these limit cycles in polar coordinates
are all located in the region

V1 =


[0, 2π]× R+ when ψ > 0,(
[0, 2π]× R+

)
\{(θ, r)|1 + rn−1ψ(θ) = 0} when ψ < 0,(

[0, 2π]× R+
)
\{(θ, r)|1 + rn−1ψ(θ) ≤ 0} when ψ has zeros.

(24)

The transformation (5) sends the region V1 into the region

V2 =


{(θ, ρ)|0 < ρ < 1/ψ} when ψ > 0,

{(θ, ρ)|ρ > 0 or ρ < 1/ψ} when ψ < 0,

{(θ, ρ)|ρ > 0, and ρ < 1/ψ for θ with ψ > 0} when ψ has zeros.

(25)

Note that (6) is an Abel equation which can be rewritten as

dρ

dθ
=
(
ψρ− 1

)(
(n− 1)(aψ − φ)ρ− (n− 1)a

)
ρ− ψ̇ρ2,(26)

i.e. it is of the form (17) with

a1 = ψ, a2 = (n− 1)(aψ − φ), b1 = 1, b2 = (n− 1)a.(27)

Hence, as an application of the above propositions, we obtain the following result for
system (1).

Proposition 12. Let φ(θ), ψ(θ), ω1(θ) and ω2(θ) be de�ned as in the abstract.

(i) Suppose there exist µ1, µ2 ∈ R such that µ21 +µ22 ̸= 0 and µ1ω1 +µ2ω2 ≥ 0 (≤ 0).
(i.a) If µ2 = 0, then system (1) has at most 1 limit cycle surrounding the origin.
(i.b) If µ2 ̸= 0 and ψ ̸= 0, then system (1) has at most 1 limit cycle surrounding

the origin.
Moreover when such a limit cycle exists, it is hyperbolic.

(ii) Suppose there exist ν1, ν2 ≥ 0 such that (aν1)
2 + ν22 ̸= 0 and ω1(ν1aψ− ν2φ) ≤ 0.

(ii.a) If ω1φ ≡ 0, then system (1) has no limit cycles surrounding the origin.
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(ii.b) If ω1φ ̸≡ 0, then the following statements hold.
(ii.b.1) System (1) has no limit cycles surrounding the origin when ψ > 0.
(ii.b.2) System (1) has at most 1 limit cycle surrounding the origin when ψ <

0. In addition, such a limit cycle exactly exists when ω1 ̸= 0.
(ii.b.3) System (1) has no limit cycles (resp. at most 1 limit cycle) surrounding

the origin when ψ has zeros and ν1 ≤ ν2 (resp. ν1 > ν2).
Moreover when such a limit cycle exists, it is hyperbolic.

Proof. (i.a) By assumption we have aψ − φ = ω1 ≥ 0 (≤ 0). According to (27) and
statement (ii) of Proposition 10, equation (6) has at most 1 limit cycle in V2, counted
with multiplicity. That is system (1) has at most 1 limit cycle surrounding the origin,
and this limit cycle is hyperbolic if it exists.

(i.b) Without loss of generality suppose that µ2 = 1. Take η = µ1/(n− 1)+1. We get
from (27) and by the assumptions that a1 = ψ ̸= 0 and

a1b2 + ηa2b1 + ȧ1/b1 = η(n− 1)(aψ − φ) + (n− 1)aψ + ψ̇ = µ1ω1 + ω2 ≥ 0 (≤ 0).

Therefore the number of limit cycles of (6) in V2 is at most 1 (counted with multiplicity)
from statement (i) of Proposition 10. The conclusion immediately follows.

In order to prove statement (ii) �rst we observe that

ω1(ν1aψ − ν2φ) = ν1(aψ − φ)2 + (ν1 − ν2)(aψ − φ)φ

= ν2(aψ − φ)2 + (ν1 − ν2)(aψ − φ)aψ.
(28)

Second we de�ne the function

χ(θ, ρ) = (aψ − φ)ρ− a.

From (27) a2ρ− b2 = (n− 1)χ. In what follows we prove the statements one by one.

(ii.a) By assumption either aψ − φ = ω1 ≡ 0 or φ ≡ 0. Thus either χ ≡ −a or
χ = a(ψρ − 1). In any case we get that χ does not change sign in each connected
component of V2. Consequently equation (6) has no limit cycles in V2 by Proposition 11.
System (1) has no limit cycles surrounding the origin.

(ii.b) If (aψ−φ)φ = ω1φ ̸≡ 0, then we have ω1 ̸≡ 0, φ ̸≡ 0 and the following statements:

(i) a ̸= 0 (otherwise ν2 > 0 and ν2φ2 ≤ 0 by assumption, which implies φ ≡ 0).
(ii) ν1 ̸= ν2 (otherwise ν1(aψ − φ)2 ≤ 0 and therefore either ν1 = ν2 = 0 or ω1 ≡ 0).

Moreover due to the assumptions, (28) and (ii) we obtain

(aψ − φ)φ ≤ 0 and (aψ − φ)aψ ≤ 0 when ν1 > ν2,

(aψ − φ)φ ≥ 0 and (aψ − φ)aψ ≥ 0 when ν1 < ν2.
(29)

(ii.b.1) In this case V2 = {(θ, ρ)|0 < ρ < 1/ψ}. A direct calculation shows that χ(θ, 0) =
−a and χ(θ, 1/ψ) = −φ/ψ. Note that a ̸= 0 from (i) and aφ/ψ ≥ 0 from (29). Since the
function χ is linear in the variable ρ, sgn(χ)|V2 ≡ −sgn(a). By Proposition 11 equation
(6) has no limit cycles in V2, and therefore no limit cycles of system (1) surround the
origin.
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(ii.b.2) When ψ < 0 we have that (i) leads to aψ ̸= 0. It is known by (29) that
ω1 = aψ−φ ≥ 0 (≤ 0). Hence statement (i.a) shows that system (1) has at most 1 limit
cycle surrounding the origin, and such limit cycle is hyperbolic when it exists. Moreover,
when ω1 ̸= 0 the equation 1 + ψrn−1 = a + φrn−1 = 0 has no solutions and therefore
the origin is the unique singularity of system (1). Recall that φ ̸≡ 0, and aφ/ψ ≥ 0 from
(29). According to Lemma 8 and a direct calculation the stabilities at the origin and at
in�nity of the system are the same. So such a limit cycle exactly exists.

(ii.b.3) If ν1 > ν2, then (29) implies that either (aψ−φ)ψ ≥ 0 and a < 0, or (aψ−φ)ψ ≤
0 and a > 0. Together with (27) and statement (iii) of Proposition 10, equation (6) has
at most 1 limit cycle in V2, counted with multiplicity, i.e. system (1) has at most 1 limit
cycle surrounding the origin, and this limit cycle is hyperbolic if it exists.

For the case that ν1 < ν2 we again consider the sign of the function χ on V2. Recall
that χ is linear in the variable ρ and χ(θ, 0) = −a. If we denote by E+ = {θ|ψ > 0},
E− = {θ|ψ < 0} and E0 = {θ|ψ = 0}, then

(iii) χ(θ, 1/ψ) = −φ/ψ when θ ∈ E+, and aφ/ψ ≥ 0 from (29). Thus we have that
sgn(χ)|(E+×R+)∩V2 ≡ −sgn(a).

(iv) (−a)(aψ − φ)|E− ≥ 0 by (29). Therefore sgn(χ)|(E−×R+)∩V2 ≡ −sgn(a).
(v) sgn(χ)|(E0×R+)∩V2 ≡ −sgn(a) by (iv), (v) and the connectivity of V2.

Consequently sgn(χ)|V2 ≡ −sgn(a). Applying Proposition 11 we get that equation (6)
has no limit cycles in V2, i.e. no limit cycles of system (1) surround the origin. �

2.3. Application of the divergence formula. As shown in the proof of statement (i)
of Proposition 10, only a1 ̸= 0 can we use in the Abel equation to obtain the conclusion.
For this reason we have to impose the restriction ψ ̸= 0 in statement (i.b) of Proposition
12. Nevertheless with the divergence formula, given in Lemma 7, we are able to consider
the case of ψ having zeros in a simple and similar way.

First we note that the condition µ21+µ
2
2 ̸= 0 and µ1ω1+µ2ω2 ≥ 0 (≤ 0) for system (1),

actually leads to some �tangency� or �transversality� of the system on some curves. This
observation is originated from the geometric condition of Theorem 6 and its application
during the proof of statement (i) of Proposition 10. More precisely we have the following
proposition.

Proposition 13. Let v be the vector �eld de�ned as in (2), and

γ(θ, r) =

(
µ1
n− 1

+ 2µ2

)
ψrn−1 +

(
µ1
n− 1

+ µ2

)
, with µ1, µ2 ∈ R, µ21 + µ22 ̸= 0.

Suppose that {(θ, r)|γ(θ, r) = 0} ̸= ∅. Then (Dvγ) |γ=0 = rn−1 (µ1ω1 + µ2ω2). Therefore
if ψ ̸≡ 0 and µ1ω1 + µ2ω2 ≥ 0 (≤ 0), then every periodic orbit of system (1) either does
not intersect the curve γ = 0, or it is a connected component of γ = 0.

Proof. For convenience we denote by η1 = µ1/(n − 1) + 2µ2 and η2 = µ1/(n − 1) + µ2,
i.e. γ = η1ψr

n−1 + η2.
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It is easy to check that η1 = η2 = 0 if and only if µ1 = µ2 = 0. Thus η1 and η2 are
not simultaneously equal to zero. When η1 = 0 and η2 ̸= 0 the set {(θ, r)|γ(θ, r) = 0} is
clearly empty. We only need to consider the case η1 ̸= 0. A direct calculation shows that

(Dvγ)|γ=0 = η1

(
ψ̇rn−1

(
1 + ψrn−1

)
+ (n− 1)ψrn−1

(
a+ φrn−1

))∣∣∣
ψrn−1=−η2/η1

= rn−1
(
ψ̇ (η1 − η2) + (n− 1) (η1aψ − η2φ)

)
= rn−1 (µ1ω1 + µ2ω2) .

So the �rst part of the proposition is proved.

In order to prove the second part we observe that γ is a curve and (Dvγ)|γ=0 ≥ 0 (≤ 0)

from assumption. Thus an orbit of system (1) which intersects γ = 0, either is contained
in a connected component of γ = 0, or crosses γ = 0 and then stays in one connected
component of γ ̸= 0. Note that an orbit crossing γ = 0 can not be periodic, so the
conclusion follows. �

Remark 14. Proposition 13 provides a geometrical meaning to conditions (I) and (III).
More precisely the condition (I), i.e. the de�nite sign of µ1ω1 + µ2ω2 with µ1 = 1 and
µ2 = 0 implies that: The orbits of system (1) which intersect the curve ψrn−1 + 1 = 0,
all go across the curve from the same side to the other side. This property was also
mentioned by the authors of [16]. Nevertheless, for the condition (III) it seems that such
similar property was never mentioned in the previous works. Actually condition (III)
(the de�nite sign of ω2) means that: The orbits of system (1) which intersect the curve
2ψrn−1 + 1 = 0, all go across the curve from the same side to the other side. We would
like to emphasize that, both of the two geometric properties are equivalent to the original
conditions when ψ < 0.

Now instead of the Abel equation (6) we shall use equation (3) for studying the limit
cycles of system (1) when the function ψ has zeros. Denote by T the transformation of
(5), i.e.

T (θ, r) = (θ, ρ) =

(
θ,

rn−1

1 + ψ(θ)rn−1

)
.

Let V1 and V2 be de�ned as in (24) and (25), respectively. Take P =
(
1,S(τ, ρ)

)
and

Q =
(
1, R(θ, r)

)
, i.e. the vector �elds associated to equations (6) and (3), respectively.

We begin to show the idea of �nding a suitable auxiliary function for the di�erential
equation (3).

Recall that Proposition 10, which is the main result for obtaining statement (i.b) of
Proposition 12, is essentially based on Lemma 5, and for �nding the auxiliary function
�F � (such as �F � in (10) and (18)) for the Abel equation. In summary for equation (6)
we shall use the auxiliary function

F (θ, ρ) = − ln
∣∣(ψρ− 1)(κ1ψρ− κ2)ρ

∣∣, with κ1, κ2 ∈ R, κ21 + κ22 ̸= 0.(30)
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So an essential reason in order that statement (i.b) of Proposition 12 holds is(
divP +DPF

)
(θ, ρ) =

∂S
∂ρ

(θ, ρ) +
∂F

∂θ
(θ, ρ) +

∂F

∂ρ
(θ, ρ)S(θ, ρ) ≥ 0 (≤ 0).(31)

Here F is de�ned as in (30). On the other hand we can verify that T is a di�eomorphism
from V1 to V2. If we de�ne

F = ln |DT |+ F ◦ T
= ln

∣∣ψrn−1 + 1
∣∣− ln

∣∣η1ψrn−1 + η2
∣∣− ln |r| − ln(n− 1),

(32)

where η1 = κ1 − κ2 and η2 = −κ2, then (31) and Lemma 7 imply

∂R

∂r

(
θ, r
)
+
∂F

∂θ

(
θ, r
)
+
∂F

∂r

(
θ, r
)
R
(
θ, r
)
=
(
divQ+DQF

)
(θ, r) ≥ 0 (≤ 0).(33)

Thus when ψ ̸= 0 the number of limit cycles of system (1) can also be estimated by
applying Lemma 5 to equation (3) and using F .

When the assumption ψ ̸= 0 in statement (i.b) of Proposition 12 is changed by ψ = 0
at some points, the inequality (31) is unknown because the functions λi's of Theorem
6 cannot be found. Nevertheless the divergence formula of Lemma 7 formally provides
an auxiliary function F given in (32), which allows to verify the inequality (33) directly,
and then to obtain the conclusion using Lemma 5. More precisely we have the next
proposition.

Proposition 15. Suppose there exist µ1, µ2 ∈ R such that µ21+µ
2
2 ̸= 0 and µ1ω1+µ2ω2 ≥

0 (≤ 0). If ψ has zeros, then system (1) has at most 1 limit cycle surrounding the origin.
Moreover, such a limit cycle is hyperbolic when it exists.

Proof. Due to the previous arguments we only need to consider the periodic orbits of the
di�erential equation (3) which are located in the region V1.

When ψ ≡ 0 equation (3) is reduced to a Bernoulli equation dr/dθ = ar + φrn. Our
claim can be directly checked from the expression of the general solution of this equation.

When ψ ̸≡ 0 take η1 = µ1/(n − 1) + 2µ2 and η2 = µ1/(n − 1) + µ2. Then by
Proposition 13 each periodic orbit either does not intersect the curve η1ψrn−1 + η2 = 0,
or it is a connected component of this curve. Furthermore, since ψ has zeros, the curve
has no compact connected component. Hence such periodic orbits are all contained in
one connected component of the region U = V1\

{
(θ, r)

∣∣η1ψrn−1 + η2 = 0
}
.

Now let F be the function determined by (32). For (θ, r) ∈ U we get

∂R

∂r

(
θ, r
)
+
∂F

∂θ

(
θ, r
)
+
∂F

∂r

(
θ, r
)
R
(
θ, r
)

= − µ1ω1 + µ2ω2(
ψrn−1 + 1

)(
η1ψrn−1 + η2

)rn−1 ≥ 0 (≤ 0).
(34)

Hence, if the set E = {θ|µ1ω1 + µ2ω2 ̸= 0} is not empty, then by Lemma 5 the number
of limit cycles of the di�erential equation (3) in U is at most 1. Moreover, when such a
limit cycle exists, it is hyperbolic.
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For the case that E = ∅ we de�ne a function

F(θ, r) = (η1 − η2) ln
∣∣η1ψrn−1 + η2

∣∣− (n− 1)η1 ln |r|.
If r = r(θ) is an arbitrary orbit of (3) located in U , then a direct calculation shows that

dF
dθ

(
θ, r(θ)

)
= η1

(
(n− 1)(η1aψ − η2φ) + (η1 − η2)ψ̇

η1ψrn−1 + η2
rn−1 − (n− 1)a

)

= η1

(
µ1ω1 + µ2ω2

η1ψrn−1 + η2
rn−1 − (n− 1)a

)
≡ −(n− 1)aη1.

This means that F
(
0, r(2π)

)
−F

(
0, r(0)

)
= −2(n−1)aη1π. Consequently the di�erential

equation (3) has no limit cycles in U . This completes the proof of the proposition. �

2.4. The distribution of limit cycles of system (1). Until now we have studied the
limit cycles surrounding the origin of system (1). Now we consider the existence of limit
cycles which do not surround the origin.

Proposition 16. Any arbitrary periodic orbit of system (1) must surround the origin if
one of the following conditions holds.

(i) There exist µ1, µ2 ∈ R such that µ21 + µ22 ̸= 0 and µ1ω1 + µ2ω2 ≥ 0 (≤ 0).
(ii) There exist ν1, ν2 ≥ 0 such that (aν1)

2 + ν22 ̸= 0 and ω1(ν1aψ − ν2φ) ≤ 0.

Proof. First the periodic orbits of system (1) which do not surround the origin, are also
simple closed curves with r > 0 in the polar coordinates. Hence we can study such orbits
using system (2) and its vector �eld v. Moreover when ψ ≡ 0 we have v =

(
1, ar+φrn

)
,

which implies that each periodic orbit of the system must surround the origin. In what
follows we put our attention to the case ψ ̸≡ 0.

(i) Let η1 = µ1/(n− 1) + 2µ2, η2 = µ1/(n− 1) + µ2 and

g(θ, r) =
1

(η1ψ(θ)rn−1 + η2) r
.

It follows from the assumptions that η21 + η22 ̸= 0. Thus g is a smooth function de�ned
in the region U =

{
(θ, r)

∣∣r > 0, η1ψr
n−1 + η2 ̸= 0

}
. Furthermore in each connected

component of U we obtain

div (gv) =
∂

∂θ

(
ψrn−1 + 1

(η1ψrn−1 + η2) r

)
+

∂

∂r

(
φrn−1 + a

η1ψrn−1 + η2

)
= − µ1ω1 + µ2ω2

(η1ψrn−1 + η2)
2 r

n−2 ≥ 0 (≤ 0).

Observe that η1ψrn−1 + η2 = 0 is either a simple closed curve surrounding the origin,
or a non-closed curve, or does not exist. By Proposition 13 each periodic orbit which does
not surround the origin is located in a connected component of U . Hence if µ1ω1+µ2ω2 ̸≡
0 (i.e. µ1ω1 + µ2ω2 has at most �nitely many zeros), then our conclusion holds by
Bendixson-Dulac Theorem, see for instance Theorem 7.12 of [20]. If µ1ω1 + µ2ω2 ≡ 0,



18 J. HUANG, H. LIANG AND J. LLIBRE

then div (gv) ≡ 0. There exists a �rst integral which only is not de�ned in the curve
η1ψr

n−1 + η2 = 0, in other words it is de�ned in U . Thus the region U contains no limit
cycles which do not surround the origin of the system, and the proposition follows in this
case.

(ii) When ω1 ≡ 0 the conclusion follows from statement (i).

For the case that ω1 ̸≡ 0 we can check that statements (i), (ii) and (29) in the proof
of Proposition 12 still hold by assumptions. Thus ω1ψ ≥ 0 (≤ 0). Now denote by
γ = ψrn−1 + 1. In each connected component of the curve γ = 0, we have ψ < 0 and
therefore ω1|γ=0 does not change sign and has �nitely many zeros. By Proposition 13 we
get that

(Dvγ)|γ=0 = (n− 1)ω1r
n−1 ≥ 0 (≤ 0).

Hence any periodic orbit of system (2) does not intersect the curve γ = 0. Note that a
singularity of the system is contained in γ = 0 if it is not the origin. Consequently all
periodic orbits of system (2) must surround the origin (this observation is also stated in
[16]). Therefore statement (ii) holds. �

3. Proof of the main results

There are two goals in this section. The �rst is to provide the proofs of Theorems 1
and 3, and of Corollaries 2 and 4. The second is to give some examples for illustrating
the application of our results.

Proof of Theorem 1. The distribution of the limit cycles of system (1) is obtained directly
by statement (i) of Proposition 16. Together with statement (i) of Proposition 12 and
Proposition 15, the system has at most 1 limit cycle, and such a limit cycle is hyperbolic
when it exists.

Now we focus on the exact number of the limit cycles of system (1) when ψ > 0.

First, by (2) the origin is the unique singularity of the system. Moreover, taking into
account the sign of a and Lemma 8, the stabilities at the origin and at in�nity of the
system are opposite (resp. the same) if a

∫ 2π
0 (φ/ψ)dθ > 0 (resp. < 0). In these cases it

is easy to verify the exact number of the limit cycles of the system. Hence statement (a)
and statement (b) hold except the case a

∫ 2π
0 (φ/ψ)dθ = 0.

Second, from the de�nition of the functions ω1, ω2, φ and ψ we have that

µ1ω1 + µ2ω2 =
(
µ1 + 2(n− 1)µ2

)
aψ −

(
µ1 + (n− 1)µ2

)
φ+ µ2ψ̇.(35)

For the case that a
∫ 2π
0 (φ/ψ)dθ = 0, the proof is divided into two cases.

Case (i): µ1ω1 + µ2ω2 ≡ 0. We only discuss the case µ2 ̸= 0, the case µ1 ̸= 0 follows in
a similar way. Thus ω2 = −µ1ω1/µ2. Since the limit cycle must surround the origin, we
consider equation (6) in the region V2. Doing the transformation y = ψρ the di�erential
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equation becomes

ẏ =
1

ψ
y(y − 1)

(
(n− 1)ω1y + (n− 1)ω1 − ω2

)
=
ω1

ψ
y(y − 1)

(
(n− 1)y +

µ1 + (n− 1)µ2
µ2

)
,

(36)

and V2 goes over to Ṽ = {(t, y)|0 < y < 1}.
From (35) and µ1ω1 + µ2ω2 ≡ 0 we obtain that(

µ1 + 2(n− 1)µ2
)
2aπ =

(
µ1 + (n− 1)µ2

) ∫ 2π

0

φ(θ)

ψ(θ)
dθ,

and by (36) and a
∫ 2π
0 (φ/ψ)dθ = 0 we have the following three statements:

(i.a) If µ1 + 2(n − 1)µ2 ̸= 0 and µ1 + (n − 1)µ2 ̸= 0, then a =
∫ 2π
0 (φ/ψ)dθ = 0 and

therefore (36) becomes ẏ = −(φ/ψ)y(y − 1)
(
(n− 1)y + (n− 1) + µ1/µ2

)
.

(i.b) If µ1 + (n− 1)µ2 = 0, then (36) becomes ẏ = (n− 1)(ω1/ψ)y
2(y − 1).

(i.c) If µ1 + 2(n− 1)µ2 = 0, then (36) becomes ẏ = (n− 1)(ω1/ψ)y(y − 1)2.

Note that from statement (i) of Lemma 9, the di�erential equation under the three
previous statements has no limit cycles in Ṽ . Hence system (1) has no limit cycles in
this case.

Case (ii): µ1ω1+µ2ω2 ̸≡ 0. We know by (35) that n is odd (otherwise µ1ω1+µ2ω2 must
change sign). So suppose without loss of generality that n = 2k + 1, k ∈ Z. In what
follows we consider the following perturbation

dx

dt
= (a+ ε1)x− y + Pn(x, y) + ε2x(x

2 + y2)k,

dy

dt
= x+ (a+ ε1)y + Pn(x, y) + ε2y(x

2 + y2)k,

(37)

of the di�erential system (1). Clearly system (37) is of the form (1). From the de�nition
of the functions φ, ψ, ω1 and ω2, these functions for system (37) satisfy

φε1,ε2 = φ+ ε2,

ψε1,ε2 = ψ > 0,

µ1ω1,ε1,ε2 + µ2ω2,ε1,ε2 = µ1ω1 + µ2ω2 + ε1
(
µ1 + 2(n− 1)µ2

)
ψ + ε2

(
µ1 + (n− 1)µ2

)
.

We assume that system (1) has a hyperbolic limit cycle and we shall arrive to a
contradiction. According to (35) and a

∫ 2π
0 (φ/ψ)dθ = 0, there are two subcases.

Subcase (ii.a):
(
µ1 + 2(n − 1)µ2

)
a ̸= 0 and

(
µ1 + (n − 1)µ2

) ∫ 2π
0 (φ/ψ)dθ = 0. Observe

that ε1
(
µ1 + 2(n− 1)µ2

)
ψ(µ1ω1 + µ2ω2) ≥ 0 for either ε1 > 0 or ε1 < 0. There exists a

small ε1 ̸= 0 such that (37)|ε1,0 has a hyperbolic limit cycle and

µ1ω1,ε1,0 + µ2ω2,ε1,0 = µ1ω1 + µ2ω2 + ε1
(
µ1 + 2(n− 1)µ2

)
ψ ̸= 0, a+ ε1 ̸= 0.
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Note that
∫ 2π
0 (φ/ψ)dθ = 0 in this case. We can choose ε2 ̸= 0 su�ciently small such

that (37)|ε1,ε2 has a hyperbolic limit cycle and

µ1ω1,ε1,ε2 + µ2ω2,ε1,ε2 ̸= 0,

(a+ ε1)

∫ 2π

0

φε1,ε2
ψε1,ε2

dθ = (a+ ε1)ε2

∫ 2π

0

1

ψ
dθ > 0.

(38)

However as we have proved above (38) implies that the di�erential system (37)|ε1,ε2 has
no limit cycles, this shows a contradiction. Therefore system (1) has no limit cycles.

Subcase (ii.b):
(
µ1 + 2(n − 1)µ2

)
a = 0 and

(
µ1 + (n − 1)µ2

) ∫ 2π
0 (φ/ψ)dθ ̸= 0. It is a

similar argument to subcase (ii.a). We have ε2
(
µ1 + (n − 1)µ2

)
(µ1ω1 + µ2ω2) ≥ 0 for

either ε2 > 0 or ε2 < 0. Thus choosing a suitable small ε2 ̸= 0, (37)|0,ε2 has a hyperbolic
limit cycle and

µ1ω1,0,ε2 + µ2ω2,0,ε2 = µ1ω1 + µ2ω2 + ε2
(
µ1 + (n− 1)µ2

)
̸= 0,∫ 2π

0

φ0,ε2

ψ0,ε2

dθ =

∫ 2π

0

φ+ ε2
ψ

dθ ̸= 0.

Since a = 0 in this case, there exists ε1 ̸= 0 su�ciently small, such that (37)|ε1,ε2 has a
hyperbolic limit cycle and

µ1ω1,ε1,ε2 + µ2ω2,ε1,ε2 ̸= 0,

(a+ ε1)

∫ 2π

0

φε1,ε2
ψε1,ε2

dθ = ε1

∫ 2π

0

φ+ ε2
ψ

dθ > 0.
(39)

Again this still implies that the di�erential system (37)|ε1,ε2 has no limit cycles, which
shows a contradiction. Consequently system (1) has no limit cycles.

In summary the di�erential system (1) has no limit cycles when ψ > 0 and a
∫ 2π
0 (φ/ψ)dθ =

0.

Finally we provide three examples, the �rst one shows the existence and non-existence
of limit cycles, and the second (resp. third) one shows the reachability of the upper
bound of limit cycles when ψ < 0 (resp. ψ has zeros).

Consider system (1) with a = ±1, n = 2k + 1, Pn(x, y) = −(x + y)
(
x2 + y2

)k
and

Qn(x, y) = (x − y)
(
x2 + y2

)k
. Then a straightforward calculation shows that φ = −1,

ψ = 1 and

ω1 = 2, ω2 = 6k (resp. ω1 = 0, ω2 = −2k) when a = 1 (resp. a = −1).

Hence µ1ω1 + µ2ω2 always does not change sign for arbitrary �xed µ1, µ2. In addition,
aφ/ψ = −1 < 0 (resp. aφ/ψ = 1 > 0) when a = 1 (resp. a = −1). From the theorem,
the system has exactly 1 (resp. no) limit cycle when a = 1 (resp. a = −1). Actually one
can check that x2 + y2 = 1 is a limit cycle of the system when a = 1.

If we consider system (1) with a = −1, n = 2k+ 1, Pn(x, y) = (x+ 2y)
(
x2 + y2

)k
and

Qn(x, y) = (−2x+ y)
(
x2 + y2

)k
, then we get that

φ = 1, ψ = −2, ω1 = 1, ω2 = 6k.
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Similar to the previous example, the system has at most 1 limit cycle. Also one can check
that x2 + y2 = 1 is a limit cycle of the system. This veri�es the reachability of the upper
bound when ψ < 0.

Take a = −1, n = 2k+1, Pn(x, y) = x3
(
x2 + y2

)k−1
and Qn(x, y) = y

(
2x2 + y2)

(
x2 +

y2
)k−1

. Then

φ = 1, ψ =
1

2
sin(2θ), ω1 = −1

2
sin(2θ)− 1, ω2 = −2k sin(2θ) + cos(2θ)− 2k.

Thus −4kω1 + ω2 = 2k + cos(2θ) > 0 and the number of limit cycle of the system is at
most 1. Observe that this system has a limit cycle x2 + y2 = 1. The reachability of the
upper bound is true when ψ has zeros. �

Proof of Theorem 3. This theorem follows directly from statement (ii) of Proposition 12
and statement (ii) of Proposition 16.

Now we show a concrete example with the existence and uniqueness of limit cycles.
Consider system (1) with a = −2, n = 2k + 1, Pn(x, y) = (x + y)

(
x2 + y2

)k
and

Qn(x, y) = (−x+ y)
(
x2 + y2

)k
. Then a straightforward calculation shows that

φ = 1, ψ = −1 < 0, ω1 = 1 ̸= 0.

Hence ω1(ν1aψ−ν2φ) ≤ 0 holds taking 2ν1−ν2 ≤ 0. Using statement (iii) of the theorem,
system (1) has exactly 1 limit cycle, which is hyperbolic and surrounds the origin. In
fact one can check that x2 + y2 = 21/(2k) is a limit cycle of the system. �

Using Theorems 1 and 3 we shall prove Corollaries 2 and 4.

Proof of Corollary 2. Let µ1 = (n−1)(2µ−1) and µ2 = 1−µ. Denote by γ = ψrn−1+µ.
From Proposition 13 we get that (µ1ω1 + µ2ω2) r

n−1 = (Dvγ)|γ=0, where v is the vector
de�ned as in (2). Since ψ ̸= 0 and µ ̸= 0, the curve γ = 0 is well-de�ned on the whole
interval [0, 2π]. By assumption, either µ1ω1 + µ2ω2 ≡ 0 or µ1ω1 + µ2ω2 ̸= 0. Observe
that here µ21 + µ22 ̸= 0. So by Theorem 1 the conclusion holds. �

Proof of Corollary 4. The conclusion can be easily veri�ed using Theorems 1 and 3, and
a direct computation. �

Here we provide three examples to illustrate the applications of our results. The �rst
one compares our results with the previous results (I)-(IV) stated in the introduction
section.

Example 1. Consider the di�erential system

dx

dt
= x− y − x3 + 5x2y − xy2 − y3,

dy

dt
= x+ y + 3x3 − x2y + 9xy2 − y3.

(40)
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Clearly it is of the form (1) with a = 1, n = 3 and

(P3, Q3) =
(
−x3 + 5x2y − xy2 − y3, 3x3 − x2y + 9xy2 − y3

)
.

From direct computations we obtain that φ = −1+4 sin(2θ) and ψ = 2+cos(2θ). Hence

(n− 1)aψ + ψ̇ = 4 + 2 cos(2θ)− 2 sin(2θ) > 0.(41)

Applying statement (iii) of Corollary 4, the number of limit cycles of system (40) is at
most 1. Moreover, as stated in the corollary, (41) means that −2ω1 + ω2 > 0. Therefore
by Theorem 1 the system has exactly 1 limit cycle because

a

∫ 2π

0

φ(θ)

ψ(θ)
dθ =

∫ 2π

0

−1 + 4 sin(2θ)

2 + cos(2θ)
dθ = −

∫ 2π

0

1

2 + cos(2θ)
dθ < 0.

Also for system (40) it follows from a direct calculation that

ω1 = 3− 4 sin(2θ) + cos(2θ),

ω1ψ =
(
2 + cos(2θ)

)(
3− 4 sin(2θ) + cos(2θ)

)
,

ω2 = 10− 10 sin(2θ) + 4 cos(2θ).

Obviously all of these three equalities have inde�nite signs, which violate the conditions
of the results (I)-(IV). That is condition (iii) of Corollary 4 is indeed a new result.

In the second example we shall study the interval of the parameter a in which the
system has no limit cycles, or exactly one limit cycle.

Example 2. Consider the di�erential system

dx

dt
= ax− y + 3x3 − 2x2y − xy2 − 2y3,

dy

dt
= x+ ay + 2x3 + 5x2y + 2xy2 + y3.

(42)

It is of the form (1) with n = 3 and

(P3, Q3) =
(
3x3 − 2x2y − xy2 − 2y3, 2x3 + 5x2y + 2xy2 + y3

)
.

One can check that φ = 2 + cos(2θ) and ψ = 2 + sin(2θ). Therefore we obtain

(n− 1)φ+ ψ̇ = 4 + 4 cos(2θ) ≥ 0.(43)

Due to statement (iv) of Corollary 4 system (42) has at most 1 limit cycle counted with
multiplicity. In addition, as stated in the corollary (43) is equivalent to −4ω1 + ω2 ≥ 0.
Since

a

∫ 2π

0

φ(θ)

ψ(θ)
dθ = a

∫ 2π

0

2 + 2 cos(2θ)

2 + sin(2θ)
dθ = 2a

∫ 2π

0

1

2 + sin(2θ)
dθ,

from Theorem 1 it follows that the system has no (resp. exactly 1) limit cycle when
a ∈ [0,+∞) (resp. a ∈ (−∞, 0)).

Finally we give the third example for showing the non-existence of limit cycles in a
di�erential system.
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Example 3. Consider the di�erential system

dx

dt
= x− y + xy − 2y2,

dy

dt
= x+ y + 2xy + y2.

(44)

It is of the form (1) with a = 1, n = 2 and

(P2, Q2) =
(
xy − 2y2, 2xy + y2

)
.

We have φ = sin θ, ψ = 2 sin θ and ω1 = sin θ. If we take ν1 = 1 and ν2 = 3, then

ω1

(
ν1aφ− ν2φ

)
= − sin2 θ ≤ 0.

By statement (iv) of Theorem 3 there is no limit cycle of system (44).
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