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Abstract. We study the number of limit cycles that bifurcate
from the periodic solutions surrounding a uniform isochronous cen-
ter located at the origin of the quartic polynomial differential sys-
tem ẋ = −y+xy(x2+y2), ẏ = x+y2(x2+y2), when it is perturbed
inside the class of all quartic polynomial differential systems. Us-
ing the averaging theory of first order we show that at least 8 limit
cycles can bifurcate from the period annulus of the considered cen-
ter. Recently this problem was studied in Electron. J. Differ. Equ.
95 (2014), 1–14 where the authors only found 3 limit cycles.

1. Introduction and Statement of the MainResults

One of the main open problems in the qualitative theory of
polynomial differential systems in R2 is the determination of their limit
cycles, see for instance [5]. A classical method to produce limit cycles is
by perturbing a system which has a center. In this case the perturbed
system displays limit cycles that can bifurcate, either from the center
(having the so-called Hopf bifurcation); or from some of the periodic
orbits around the center, see for instance Pontrjagin [10], the second
part of the book [2], and the hundreds of references quoted there; or
from the graphic in the boundary of the period annulus of the center.

Isochronous differential systems constitute a large class of polynomial
systems with interesting properties, and such systems also arise in many
applications. The study of the bifurcation of limit cycles in planar
polynomial differential systems having a uniform isochronous center
has been increasing recently, see for instance [4, 6, 7]. In this paper we
shall perturb the uniform isochronous center of the quartic polynomial
differential system

(1) ẋ = −y + xy(x2 + y2), ẏ = x+ y2(x2 + y2),
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inside the class of all quartic polynomial differential systems.
Peng and Feng [9] studied the differential system (1), showing that

under any quartic homogeneous polynomial perturbations, at most 2
limit cycles bifurcate from the period annulus of such system using
averaging theory of first order, and this upper bound can be reached. In
addition these authors proved that for the family of perturbed quartic
polynomial differential systems

(2)

ẋ =− y + xy(x2 + y2) + ε(a10x+ a01y + a11xy + a21x
2y + a03y

3

+ a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4),

ẏ =x+ y2(x2 + y2) + ε(b10x+ b01y + b20x
2 + b02y

2 + b30x
3

+ b12xy
2 + b40x

4 + b31x
3y + b22x

2y2 + b13xy
3 + b04y

4),

there are at most 3 limit cycles bifurcating from the period annulus of
(1) using averaging theory of first order, and this upper bound is sharp.
We remark that the perturbed system (2) studied by Peng and Feng do
not cover all possible perturbed quartic polynomial differential systems
because the authors do not consider the coefficients a00, a20, a02, a30, a12,
b00, b11, b21, b03 in their analysis.

We study the limit cycles which bifurcate from the periodic solutions
of the uniform isochronous center located at the origin of system (1)
when it is perturbed inside the whole class of quartic polynomial differential
systems. More precisely we consider the following differential systems

(3)

ẋ = −y + xy(x2 + y2) + ε

4∑
i=0

pi(x, y),

ẏ = x+ y2(x2 + y2) + ε
4∑

i=0

qi(x, y),

where pi =
∑
j+k=i

ajkx
jyk, qi =

∑
j+k=i

bjkx
jyk are homogeneous

polynomials of degree i, and ajk, bjk ∈ R.
In what follows we state our main result.

Theorem 1. For |ε| ̸= 0 sufficiently small there are quartic polynomial
differential systems (3) having at least 8 limit cycles bifurcating from
the periodic orbits of the period annulus of the uniform isochronous
center located at the origin of system (1).

Note that Theorem 1 improves the result of Peng and Feng in 5
additional limit cycles.

All calculations were performed with the assistance of the software
Mathematica.
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2. Preliminary results

In this section we introduce some preliminary results on uniform
isochronous centers and on averaging theory that we shall use in our
study.

Let p ∈ R2 be a center of a differential polynomial system in R2.
Without loss of generality we can assume that p is the origin of
coordinates. We say that p is an isochronous center if it is a center
having a neighborhood such that all the periodic orbits in this
neighborhood have the same period. We say that p is a uniform
isochronous center if the system, in polar coordinates (r, θ) where

x = r cos θ, y = r sin θ, takes the form ṙ = G(θ, r), θ̇ = k, k ∈ R \ {0},
for more details see Conti [3]. The period annulus of a center is the
biggest connected set of periodic solutions surrounding a center and
having in its inner boundary the center itself. The next result is well-
known.

Proposition 2. Assume that a planar differential polynomial system
ẋ = P (x, y), ẏ = Q(x, y) of degree n has a center at the origin of
coordinates. Then, this center is uniform isochronous if and only if
by doing a linear change of variables and a rescaling of time it can be
written under the form

(4) ẋ = −y + x f(x, y), ẏ = x+ y f(x, y),

where f(x, y) is a polynomial in x and y of degree n−1, and f(0, 0) = 0.

Conti [3] proved the following result in 1994.

Theorem 3. Let f(x, y) =
∑

i+j=n−1

pi,jx
iyj be a homogeneous polynomial

of degree n− 1. Then system (4) has a uniform isochronous center at
the origin if either n is even, or if n is odd and

n−1∑
ν=0

[
pn−1−ν,ν

∫ 2π

0

cosn−1−ν θ sinν θ dθ

]
= 0.

The next result is the first order averaging theory developed for
continuous differential systems.

Consider the differential system

(5) ẋ = εF1(t, x) + ε2F2(t, x, ε), x(0) = x0

with x ∈ D, where D is an open subset of Rn, t ≥ 0. Furthermore we
suppose that the functions F1(t, x) and F2(t, x, ε) are T−periodic in t.
We define in D the averaged differential system

(6) ẏ = εf1(y), y(0) = x0,
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where

f1(y) =
1

T

∫ T

0

F1(t, y)dt.

As we shall see under convenient assumptions, the equilibria solutions
of the averaged system will provide T−periodic solutions of system (5).

Theorem 4. Consider the two initial value problems (5) and (6).
Assume that

(i) the functions F1, ∂F1/∂x, ∂
2F1/∂x

2, F2 and ∂F2/∂x are defined,
continuous and bounded by a constant independent of ε in [0,∞)×
D and ε ∈ (0, ε0];

(ii) the functions F1 and F2 are T−periodic in t (T independent of
ε).

Then the following statements hold.

(a) If p is an equilibrium point of the averaged system (6) satisfying

det

(
∂f1
∂y

)∣∣∣∣
y=p

̸= 0,

then there is a T−periodic solution φ(t, ε) of system (5) such
that φ(0, ε) → p as ε → 0.

(b) The kind of stability or instability of the periodic solution φ(t, ε)
coincides with the kind of stability or instability of the equilibrium
point p of the averaged system (6). The equilibrium point p has
the kind of stability behavior of the Poincaré map associated to
the periodic solution φ(t, ε).

For a proof of Theorem 4, see sections 6.3, 11.8 of Verhulst [11].
The next theorem provides a method to write a perturbed differential

system under the form (5).

Theorem 5. Consider the unperturbed system ẋ = P (x, y), ẏ = Q(x, y),
where P,Q : R2 → R are continuous functions, and assume that this
system has a continuous family of period solutions {Γh} ⊂ {(x, y) :
H(x, y) = h, h1 < h < h2}, where H is a first integral of the system.
For a given first integral H assume that xQ(x, y) − yP (x, y) ̸= 0
for all (x, y) in the period annulus formed by the ovals {Γh}. Let
ρ : (

√
h1,

√
h2)× [0, 2π) → [0,∞) be a continuous function such that

H(ρ(R, θ) cos θ, ρ(R, θ) sin θ) = R2

for all R ∈ (
√
h1,

√
h2) and all θ ∈ [0, 2π). Then the differential

equation which describes the dependence between the square root of
the energy R =

√
h and the angle θ for the perturbed system ẋ =
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P (x, y) + εp(x, y), ẏ = Q(x, y) + εq(x, y), where p, q : R2 → R are
continuous functions is

(7)
dR

dθ
= ε

µ(x2 + y2)(Qp− Pq)

2R(Qx− Py)
+O(ε2)

where µ = µ(x, y) is the integrating factor corresponding to the first
integral H of the unperturbed system and x = ρ(R, θ) cos θ, y = ρ(R, θ)
sin θ.

For more details see [1].
We also need the next result, which can be found in Proposition 1

of [8].

Proposition 6. Let f0, . . . , fn be analytic functions defined on an open
interval I ⊂ R. If f0, . . . , fn are linearly independent then there exists
s1, . . . , sn ∈ I and λ0, . . . , λn ∈ R such that for every j ∈ {1, . . . , n} we

have
n∑

i=0

λifi(sj) = 0.

3. Proof of Theorem 1

By Theorem 3 it follows that system (1) has a uniform isochronous
center at the origin. A first integralH and its corresponding integrating
factor µ for system (1) are

H(x, y) =
1

3(x2 + y2)3/2
− x

(x2 + y2)1/2
, µ(x, y) =

1

(x2 + y2)5/2
,

respectively. If h ∈ (1,+∞) then H(x, y) = h are periodic solutions
around the center (0, 0). For proving Theorem 1 we shall use Theorem
5. We choose

ρ(R, θ) =
1

(R2 + 3 cos θ)1/3
,

thenH(ρ cos θ, ρ sin θ) = R2/3 for allR >
√
3 and θ ∈ [0, 2π). Therefore

all the hypotheses of Theorem 5 are satisfied for system (1). Using
Theorem 5 we transform the perturbed differential system (3) into the
form

(8)
dR

dθ
= ε

(
3

2R

Qp− Pq

ρ5

)∣∣∣∣
x=ρ cos θ,y=ρ sin θ

+O(ε2),

where
Qp− Pq = A+B,

with

A =a00x+ b00y + (a02 + b11)xy
2 + a20x

3 + (a00 + b03)y
4
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− b00xy
3 + (a00 + a12 + b21)x

2y2 − b00x
3y + a30x

4 + a02y
6

+ (a02 + a20 − b11)x
2y4 + (a20 − b11)x

4y2 + (a12 − b03)xy
6

(a12 + a30 − b03 − b21)x
3y4 + (a30 − b21)x

5y2,

B =a10x
2 + (a01 + b10)xy + b01y

2 + (a11 + b20)x
2y + b02y

3

+ (a21 + b30)x
3y + (a03 + b12)xy

3 + a40x
5 + (a31 + b40 − b10)x

4y

+ (a22 + a10 + b31 − b01)x
3y2 + (a13 + a01 + b22 − b10)x

2y3

+ (a04 + a10 + b13 − b01)xy
4 + (a01 + b04)y

5 − b20x
5y

+ (a11 − b20 − b02)x
3y3 + (a11 − b02)xy

5 − b30x
6y

+ (a21 − b30 − b12)x
4y3 + (a21 + a03 − b12)x

2y5 + a03y
7

− b40x
7y + (a40 − b31)x

6y2 + (a31 − b40 − b22)x
5y3

+ (a40 + a22 − b31 − b13)x
4y4 + (a31 + a13 − b22 − b04)x

3y5.

We remark that the coefficients {aij, bij}i,j∈{0,...,4} which appear in A
and B are different. The expression B corresponds to the perturbed
system (2) studied in [9]. The authors of [9] obtained for this system
the following averaging function
(9)

gB(R) =
3

4R

[(
M4 −

3M1 + 4M2 + 8M3

36

)
R2 − M1 + 2M2

82
R6 − 2M1

729
R10

+

(
2M1

729
R12 +

2M2

81
R8 +

2M3

9
R4 − 2(M1 +M2 +M3)

)
1√

R4 − 9

]
,

where

(10)

M1 =a22 − a40 − a04 + b31 − b13,

M2 =− 2a22 + a40 + 3a04 − b31 + 2b13,

M3 =a22 − 3a04 − b13,

M4 =a10 + b01.

Peng and Feng proved that the function gB(R) has at most 3 zeros
in R ∈ (

√
3,+∞), and using the averaging theory of first order they

showed that the maximum number of limit cycles of system (2) emerging
from the period annulus of the unperturbed system (1) is 3.

In this work we extend the results presented in [9] by calculating the
part of the averaging function of system (3) which corresponds to the
expression A. In order to do that, we perturb the center of system
(1) inside the whole class of quartic polynomial differential systems.
We note that (8) is continuous and bounded for θ ∈ (0, 2π) and R ∈
(
√
3,+∞) therefore the integral of (8) is the sum of the integrals of its
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parts A and B. Then from the expression (8) we have

dR

dθ
= ε

(
3

2R

A

ρ5

)∣∣∣∣x=ρ cos θ
y=ρ sin θ

+ ε

(
3

2R

B

ρ5

)∣∣∣∣x=ρ cos θ
y=ρ sin θ

+O(ε2).

We obtain the averaging function f(R) = gA(R) + g∗B(R) where

gA(R) =a00g0(R) + a02g1(R) + a12g2(R) + a20g3(R) + a30g4(R)

+ b03g5(R) + b11g6(R) + b21g7(R),

g∗B(R) =
4∑

i=1

Mi gMi(R),

and g∗B(R) is the function (9) rearranged in a convenient way, with
Mi, i ∈ {1, . . . , 4} given in (10). The expressions of gi(R), i ∈
{0, . . . , 7} are shown in the Appendix A, and the functions gMi(R), i ∈
{1, . . . , 4} are presented in the Appendix B.

Out of the 12 functions Gi = gi : (
√
3,+∞) → R, i ∈ {0, . . . , 7},

Gi+7 = gMi : (
√
3,+∞) → R, i ∈ {1, . . . , 4} we have that 9 are linearly

independent. Indeed, using the software Mathematica to calculate the
Taylor expansions for those 12 functions in the variable R until its 15th

power around R = 2, which are too long and therefore they are not
presented here, we construct a 12× 16 matrix, where in the k row we
place the 16 coefficients of R0, R1, . . . , R15 of the Taylor expansion of
Gk, k ∈ {0, . . . , 11}, and we conclude that the rank of such matrix is
9.

By Proposition 6 since there are 9 linearly independent functions
among the 12 previously described, then there exists a linear combination
of them with at least 8 zeros, because all the coefficients of these
functions are linearly independent, as it is easy to check. Thus there
exist R1, R2, . . . , R8 ∈ (

√
3,+∞) and coefficients aij, bij ∈ R, i, j ∈

{0, . . . , 4} such that f(Rk) = 0, k ∈ {1, . . . , 8}.
In summary, applying Theorem 4 we conclude that there are planar

quartic polynomial differential systems (3) having at least 8 limit cycles
bifurcating from the period orbits of the period annulus of the uniform
isochronous center located at the origin of the unperturbed differential
system (1).

Appendix A. Averaging functions gi(R), i ∈ {0, . . . , 7}

g0 =− 3π((R2 + 3)(−6R10(R2 + 3)2/3 + 59R6(R2 + 3)2/3 − 1440R2

(R2 + 3)2/3 + 6R8((R4 − 9)2/3
3
√
R2 − 3 + 3(R2 + 3)2/3)−R4(709
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(R4 − 9)2/3
3
√
R2 − 3 + 177(R2 + 3)2/3) + 360(12(R2 + 3)2/3

− 61
3
√
R2 − 3(R4 − 9)2/3)) 2F1(−

1

2
,
2

3
; 1;

6

R2 + 3
)

3
√
R2 − 3

+ (7320(R4 − 9)2/3
3
√
R2 − 3− 1440(R2 + 3)2/3 +R2(1346

(R4 − 9)2/3
3
√
R2 − 3 + 6R8(R2 + 3)2/3 + 618(R2 + 3)2/3 − 6R6

((R4 − 9)2/3
3
√
R2 − 3 + (R2 + 3)2/3)−R4(12(R4 − 9)2/3

3
√
R2 − 3 + 71(R2 + 3)2/3) +R2(685(R4 − 9)2/3

3
√
R2 − 3 + 59

(R2 + 3)2/3))) 2F1(
1

2
,
2

3
; 1;

6

R2 + 3
)(R2 − 3)4/3 + (R2 + 3)4/3

((−1346(R4 − 9)2/3
3
√
R2 + 3 + 618(R2 − 3)2/3 +R2(685(R4 − 9)2/3

3
√
R2 + 3− 59(R2 − 3)2/3 +R2(12(R4 − 9)2/3

3
√
R2 + 3− 71

(R2 − 3)2/3 + 6R2(−(R4 − 9)2/3
3
√
R2 + 3 +R2(R2 − 3)2/3

+ (R2 − 3)2/3))))R2 + 120(61(R4 − 9)2/3
3
√
R2 + 3

+ 12(R2 − 3)2/3)) 2F1(
1

2
,
2

3
; 1;− 6

R2 − 3
)− (R2 − 3)

3
√
R2 + 3(6R10

(R2 − 3)2/3 − 59R6(R2 − 3)2/3 + 1440R2(R2 − 3)2/3 + 360(61

(R4 − 9)2/3
3
√
R2 + 3 + 12(R2 − 3)2/3) +R4(709

3
√
R2 + 3(R4 − 9)2/3

− 177(R2 − 3)2/3) + 6R8(3(R2 − 3)2/3 − 3
√
R2 + 3(R4 − 9)2/3))

2F1(−
1

2
,
2

3
; 1;− 6

R2 − 3
))
/
14560R(R2 − 3)2/3(R2 + 3)2/3(R4 − 9)2/3;

g1 =π(−(2R4 − 39)(3R2 3
√
R2 − 3 + 9

3
√
R2 − 3 + 2(R2 + 3)2/3

3
√
R4 − 9)R2

2F1(−
2

3
,
1

2
; 1;

6

R2 + 3
) + 2(R4 − 12)((R2 + 3)(3R2 3

√
R2 + 3

− 9
3
√
R2 + 3 + 2(R2 − 3)2/3

3
√
R4 − 9) 2F1(

1

3
,
1

2
; 1;− 6

R2 − 3
)

+ (R2 − 3)(3R2 3
√
R2 − 3 + 9

3
√
R2 − 3 + 2(R2 + 3)2/3

3
√
R4 − 9)

2F1(
1

3
,
1

2
; 1;

6

R2 + 3
))−R2(2R4 − 39)(3R2 3

√
R2 + 3− 9

3
√
R2 + 3

+ 2(R2 − 3)2/3
3
√
R4 − 9) 2F1(−

2

3
,
1

2
; 1;− 6

R2 − 3
))/

880R
3
√
R4 − 9;
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g2 =3π((R2 + 3)(72R14(R2 + 3)2/3 − 840R10(R2 + 3)2/3 + 391R6

(R2 + 3)2/3 + 50688R2(R2 + 3)2/3 − 72R12((R4 − 9)2/3
3
√
R2 − 3

+ 3(R2 + 3)2/3) + 24R8(73(R4 − 9)2/3
3
√
R2 − 3 + 105(R2 + 3)2/3)

− 51R4(261(R4 − 9)2/3
3
√
R2 − 3 + 23(R2 + 3)2/3)− 1728(88

(R2 + 3)2/3 − 15
3
√
R2 − 3(R4 − 9)2/3)) 2F1(−

1

2
,
2

3
; 1;

6

R2 + 3
)

3
√
R2 − 3 + ((12294(R4 − 9)2/3

3
√
R2 − 3− 24702(R2 + 3)2/3 +R2

(8535(R4 − 9)2/3
3
√
R2 − 3 + 391(R2 + 3)2/3 +R2(−2640(R4 − 9)2/3

3
√
R2 − 3− 1711(R2 + 3)2/3 − 24R2(61(R4 − 9)2/3

3
√
R2 − 3 + 3R6

(R2 + 3)2/3 + 35(R2 + 3)2/3 − 3R4((R4 − 9)2/3
3
√
R2 − 3 + (R2 + 3)2/3)

−R2(6(R4 − 9)2/3
3
√
R2 − 3 + 41(R2 + 3)2/3)))))R2 + 576(88

(R2 + 3)2/3 − 15
3
√
R2 − 3(R4 − 9)2/3)) 2F1(

1

2
,
2

3
; 1;

6

R2 + 3
)(R2 − 3)4/3

+
3
√
R2 + 3((50688(R2 − 3)2/3 +R2((391(R2 − 3)2/3 + 24R2(73

(R4 − 9)2/3
3
√
R2 + 3 + 3R6(R2 − 3)2/3 − 35R2(R2 − 3)2/3 − 105

(R2 − 3)2/3 +R4(9(R2 − 3)2/3 − 3
3
√
R2 + 3(R4 − 9)2/3)))R2 + 51(23

(R2 − 3)2/3 − 261
3
√
R2 + 3(R4 − 9)2/3)))R2 + 1728(15(R4 − 9)2/3

3
√
R2 + 3 + 88(R2 − 3)2/3)) 2F1(−

1

2
,
2

3
; 1;− 6

R2 − 3
)(R2 − 3)

− (R2 + 3)4/3(((−8535(R4 − 9)2/3
3
√
R2 + 3 + 391(R2 − 3)2/3

+R2(−2640(R4 − 9)2/3
3
√
R2 + 3 + 1711(R2 − 3)2/3 + 24R2(61

(R4 − 9)2/3
3
√
R2 + 3− 35(R2 − 3)2/3 +R2(6(R4 − 9)2/3

3
√
R2 + 3

− 41(R2 − 3)2/3 + 3R2(−(R4 − 9)2/3
3
√
R2 + 3 +R2(R2 − 3)2/3

+ (R2 − 3)2/3)))))R2 + 6(2049(R4 − 9)2/3
3
√
R2 + 3

+ 4117(R2 − 3)2/3))R2 + 576(15(R4 − 9)2/3
3
√
R2 + 3

+ 88(R2 − 3)2/3)) 2F1(
1

2
,
2

3
; 1;− 6

R2 − 3
))/

442624R(R2 − 3)2/3(R2 + 3)2/3(R4 − 9)2/3;

g3 =π((−29R2 3
√
R2 + 3 + 87

3
√
R2 + 3 + 6R6 3

√
R2 + 3
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+ 98(R2 − 3)2/3
3
√
R4 − 9 +R4(4(R2 − 3)2/3

3
√
R4 − 9

− 18
3
√
R2 + 3))R2

2F1(−
2

3
,
1

2
; 1;− 6

R2 − 3
)

+ (−29R2 3
√
R2 − 3− 87

3
√
R2 − 3 + 6R6 3

√
R2 − 3

+ 98(R2 + 3)2/3
3
√
R4 − 9 + 2R4(9

3
√
R2 − 3

+ 2(R2 + 3)2/3
3
√
R4 − 9))R2

2F1(−
2

3
,
1

2
; 1;

6

R2 + 3
)

− 2(R2 + 3)(8R2 3
√
R2 + 3− 24

3
√
R2 + 3 + 3R6 3

√
R2 + 3

+ 64(R2 − 3)2/3
3
√
R4 − 9 +R4(2(R2 − 3)2/3

3
√
R4 − 9

− 9
3
√
R2 + 3)) 2F1(

1

3
,
1

2
; 1;− 6

R2 − 3
)− 2(R2 − 3)(8R2 3

√
R2 − 3

+ 3R6 3
√
R2 − 3 +R4(9

3
√
R2 − 3 + 2(R2 + 3)2/3

3
√
R4 − 9)

+ 8(3
3
√
R2 − 3 + 8(R2 + 3)2/3

3
√
R4 − 9)) 2F1(

1

3
,
1

2
; 1;

6

R2 + 3
))/

880R
3
√
R4 − 9;

g4 =3π((R2 + 3)(6R8 − 7R4 − 1056)(R2 − 3)2/3 2F1(−
1

2
,
2

3
; 1;

6

R2 + 3
)

+ (R2 + 3)2/3(6R8 − 7R4 − 1056)(R2 − 3) 2F1(−
1

2
,
2

3
; 1;− 6

R2 − 3
)

− (6R8 + 12R6 + 17R4 + 58R2 − 352)(R2 − 3)5/3 2F1(
1

2
,
2

3
; 1;

6

R2 + 3
)

+ (R2 + 3)2/3(−6R10 − 6R8 + 19R6 + 7R4 + 526R2 + 1056)

2F1(
1

2
,
2

3
; 1;− 6

R2 − 3
))
/
2912R(R4 − 9)2/3;

g5 =− 9π(−(R2 + 3)(−120R14(R2 + 3)2/3 + 1704R10(R2 + 3)2/3

− 3641R6(R2 + 3)2/3 − 11520R2(R2 + 3)2/3 + 120R12((R4 − 9)2/3

3
√
R2 − 3 + 3(R2 + 3)2/3) + 17280(7(R4 − 9)2/3

3
√
R2 − 3

+ 2(R2 + 3)2/3)− 8R8(403(R4 − 9)2/3
3
√
R2 − 3 + 639(R2 + 3)2/3)

+ 3R4(10587(R4 − 9)2/3
3
√
R2 − 3 + 3641(R2 + 3)2/3))

2F1(−
1

2
,
2

3
; 1;

6

R2 + 3
)

3
√
R2 − 3 + ((35994(R4 − 9)2/3

3
√
R2 − 3



LIMIT CYCLES BIFURCATION 11

− 9858(R2 + 3)2/3 +R2(22585(R4 − 9)2/3
3
√
R2 − 3 + 3641(R2 + 3)2/3

+R2(−5008(R4 − 9)2/3
3
√
R2 − 3− 6449(R2 + 3)2/3

− 8R2(343(R4 − 9)2/3
3
√
R2 − 3 + 213(R2 + 3)2/3

+ 3R2(−10(R4 − 9)2/3
3
√
R2 − 3 + 5R4(R2 + 3)2/3 − 81(R2 + 3)2/3

3
√
R2 − 3 + (R2 + 3)2/3))))))R2 + 5760(7(R4 − 9)2/3

3
√
R2 − 3

+ 2(R2 + 3)2/3)) 2F1(
1

2
,
2

3
; 1;

6

R2 + 3
)(R2 − 3)4/3

+
3
√
R2 + 3((11520(R2 − 3)2/3 +R2(−31761(R4 − 9)2/3

3
√
R2 + 3

+ 10923(R2 − 3)2/3 +R2(3641(R2 − 3)2/3 + 8R2(403(R4 − 9)2/3

3
√
R2 + 3 + 15R6(R2 − 3)2/3 − 213R2(R2 − 3)2/3 − 639(R2 − 3)2/3

+ 15R4(3(R2 − 3)2/3 − 3
√
R2 + 3(R4 − 9)2/3)))))R2

+ 17280(2(R2 − 3)2/3 − 7
3
√
R2 + 3(R4 − 9)2/3))

2F1(−
1

2
,
2

3
; 1;− 6

R2 − 3
)(R2 − 3)− (R2 + 3)4/3((35994(R4 − 9)2/3

3
√
R2 + 3 + 9858(R2 − 3)2/3 +R2(−22585(R4 − 9)2/3

3
√
R2 + 3

+ 3641(R2 − 3)2/3 +R2(−5008(R4 − 9)2/3
3
√
R2 + 3 + 6449(R2 − 3)2/3

+ 8R2(343(R4 − 9)2/3
3
√
R2 + 3− 213(R2 − 3)2/3

+ 3R2(10(R4 − 9)2/3
3
√
R2 + 3− 81(R2 − 3)2/3 + 5R2(−(R4 − 9)2/3

3
√
R2 + 3 +R2(R2 − 3)2/3 + (R2 − 3)2/3))))))R2 + 5760(2(R2 − 3)2/3

− 7
3
√
R2 + 3(R4 − 9)2/3)) 2F1(

1

2
,
2

3
; 1;− 6

R2 − 3
))/

2213120R(R2 − 3)2/3(R2 + 3)2/3(R4 − 9)2/3;

g6 =π(2(29R2 3
√
R2 + 3− 87

3
√
R2 + 3− 6R6 3

√
R2 + 3 + 78(R2 − 3)2/3

3
√
R4 − 9 + 2R4(9

3
√
R2 + 3− 2(R2 − 3)2/3

3
√
R4 − 9))R2

2F1(−
2

3
,
1

2
; 1;− 6

R2 − 3
) + 2(29R2 3

√
R2 − 3 + 87

3
√
R2 − 3

− 6R6 3
√
R2 − 3 + 78(R2 + 3)2/3

3
√
R4 − 9− 2R4(9

3
√
R2 − 3

+ 2(R2 + 3)2/3
3
√
R4 − 9))R2

2F1(−
2

3
,
1

2
; 1;

6

R2 + 3
)

+ 4(R2 + 3)(8R2 3
√
R2 + 3 + 3R6 3

√
R2 + 3− 24(

3
√
R2 + 3
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+ (R2 − 3)2/3
3
√
R4 − 9) +R4(2(R2 − 3)2/3

3
√
R4 − 9− 9

3
√
R2 + 3))

2F1(
1

3
,
1

2
; 1;− 6

R2 − 3
) + 4(R2 − 3)(8R2 3

√
R2 − 3

+ 3R6 3
√
R2 − 3 +R4(9

3
√
R2 − 3 + 2(R2 + 3)2/3

3
√
R4 − 9)

+ 24(
3
√
R2 − 3− (R2 + 3)2/3

3
√
R4 − 9)) 2F1(

1

3
,
1

2
; 1;

6

R2 + 3
))/

1760R
3
√
R4 − 9;

g7 =3π(3(R2 + 3)(2R8 − 11R4 + 64)(R2 − 3)2/3 2F1(−
1

2
,
2

3
; 1;

6

R2 + 3
)

+ 3(R2 + 3)2/3(2R8 − 11R4 + 64)(R2 − 3) 2F1(−
1

2
,
2

3
; 1;− 6

R2 − 3
)

− (6R8 + 12R6 − 9R4 + 6R2 + 64)(R2 − 3)5/3 2F1(
1

2
,
2

3
; 1;

6

R2 + 3
)

− (R2 + 3)5/3(6R8 − 12R6 − 9R4 − 6R2 + 64) 2F1(
1

2
,
2

3
; 1;− 6

R2 − 3
))/

2912R(R4 − 9)2/3;

where 2F1(a, b, c, z) is the hypergeometric function which has the following
series expansion

+∞∑
k=0

(a)k(b)k
(c)k

zk

k!
,

with

(a)k =

{
1 if k = 0;
a(a+ 1)(a+ 2) · · · (a+ k − 1) if k > 0.

Appendix B. Averaging functions gMi(R), i ∈ {1, . . . , 4}

gM1 =− R

16
− R5

108
− R9

486
− 3

2R
√
R4 − 9

+
R11

486
√
R4 − 9

;

gM2 =− R

12
− R5

54
+

√
R4 − 9

6R
+

1

54

√
R4 − 9R3;

gM3 =− R

6
+

√
R4 − 9

6R
;
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gM4 =
3R

4
.
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