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NEW CLASSES OF POLYNOMIAL MAPS SATISFYING
THE REAL JACOBIAN CONJECTURE IN R2

JACKSON ITIKAWA1 AND JAUME LLIBRE2

Abstract. We present two new classes of polynomial maps satis-
fying the real Jacobian conjecture in R2. The first class is formed
by the polynomials maps of the form (q(x) − p(y), q(y) + p(x)) :
R2 → R2 such that p and q are real polynomials satisfying p′(x)q′(x)
6= 0. The second class if formed by polynomials maps (f, g) : R2 →
R2 where f and g are real homogeneous polynomials of the same
arbitrary degree satisfying some conditions.

1. Introduction and Statement of the Main Results

Let F = (f, g) : R2 → R2 be a polynomial map such that its Jacobian
never vanishes. The celebrated real Jacobian conjecture states that
under these conditions F is injective. This conjecture goes back to
1939, see Keller [6].

In 1994 Pinchuk [7] found a map F = (f, g) with f and g polynomials
of degree 10 and 25 respectively, and with Jacobian strictly positive,
such that F is not injective.

Although the real Jacobian conjecture has been proved false by
Pinchuk, a considerable number of papers has been devoted to this
subject, mainly searching for additional conditions such that the con-
jecture might hold. The problem of determining if F is injective in
the case of its Jacobian to be a non–zero constant, known as the Jaco-
bian conjecture, is still open, see [9] and the references therein for more
information.

In this note we present two new classes of polynomial maps that
satisfies the real Jacobian conjecture. In what follows we present our
main results.
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Theorem 1. Let p and q be real polynomials of one variable and con-
sider the polynomial map F = (f, g) : R2 → R2 with f = f(x, y) =
q(x) − p(y), g = g(x, y) = q(y) + p(x) and p′(x)q′(x) 6= 0. Then the
Jacobian of polynomial map F never vanish and F is injective.

Theorem 1 is proved in section 4.

As usual here p′(x) denotes the derivative of p with respect to the
variable x, and if f = f(x, y) we denote by fx the partial derivative of
f with respect to the variable x. Similarly is defined fy.

Theorem 2. Let f and g be real homogeneous polynomials of the same
degree in the variables x and y such that

(i) the Jacobian of the polynomial map F = (f, g) : R2 → R2 never
vanish,

(ii) f and g has no real linear factors in common,

(iii) the polynomials P = −ffy − ggy and Q = ffx + ggx have no
real common factors, and

(iv)

∫ +∞

−∞

P (1, y)

Q(1, y)− yP (1, y)
dy = 0.

Then the polynomial map F is injective.

Theorem 2 is also proved in section 4.

Other classes of polynomial maps satisfying the real Jacobian con-
jecture were given in [1, 2].

2. Preliminary results

Let P and Q be polynomials in the variables x and y. Consider the
polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y). (1)

We say that an isolated singularity p of system (1) is a center when
there is a neighborhood Vp ⊂ U of p such that every solution in Vp\{p}
is periodic. The biggest open connected set containing p, denoted by
Wp ⊂ U , such that Wp \ {p} is filled with periodic orbits is called the
period annulus of the center. If Wp = R2 then p is a global center of
system (1).

Let q be an isolated singularity of system (1). If X = (P,Q) then
DX(q) is the Jacobian matrix of system (1) at q. If det (DX(q)) 6= 0
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then we say that q is a non–degenerate singular point. Under these
assumptions a necessary condition in order that q be a center is that
the eigenvalues of DX(q) are purely imaginary. Such a center is a
non-degenerate center.

The polynomial differential system (1) is a Hamiltonian system if
there is a polynomial H such that P (x, y) = −Hy(x, y) and Q(x, y) =
Hx(x, y). Then the polynomial H is called the Hamiltonian of the
Hamiltonian system (1).

The following result is due to Sabatini, see Theorem 2.3 of [8]. This
result provides a relation between the real Jacobian conjecture and the
global centers of some polynomial Hamiltonian systems.

Theorem 3. Let F = (f, g) : R2 → R2 be a polynomial map such that
its Jacobian never vanishes and F (0, 0) = (0, 0). Then the following
statements are equivalent.

(a) The polynomial Hamiltonian system with Hamiltonian H = (f(x, y)2

+g(x, y)2)/2 has a global center at the origin of coordinates.

(b) The map F is a global diffeomorphism of R2 onto itself.

In addition we present the following result due to Braun and Llibre,
see Lemma 1 of [3].

Lemma 4. Let F = (f, g) : U → R2 be a C2 function defined in an
open connected set U ⊂ R2 and (x0, y0) ∈ U such that the Jacobian
of F in (x0, y0) does not vanish. Moreover consider the Hamilton-
ian H = (f(x, y)2 + g(x, y)2) /2. Then (x0, y0) is a singular point of
the polynomial Hamiltonian system ẋ = −Hy, ẏ = Hx if and only if
F (x0, y0) = (0, 0). Under these conditions (x0, y0) is a non-degenerate
center and also an isolated global minimum of H. In particular if the
Jacobian of F never vanishes in U all the singular points of the Hamil-
tonian system ẋ = −Hy, ẏ = Hx in U are non–degenerate centers and
are the zeros of the map F .

3. The Poincaré compactification

The set S2 = {y = (y1, y2, y3) ∈ R3 : y21 + y22 + y23 = 1} is called
the Poincaré sphere. Consider TyS2 the tangent space to the Poincaré
sphere at the point y and the central projection f : T(0,0,1)S2 → S2.

Let X be a polynomial vector field of degree n in the plane T(0,0,1)S2.
The map f defines 2 copies of X in S2, one in the northern hemisphere
and the other in the southern hemisphere. Let X ′ be the vector field



4 J. ITIKAWA, J. LLIBRE

Df ◦ X defined on the Poincaré sphere except on its equator S1 =
{y ∈ S2 : y3 = 0}. We remark that X ′ is everywhere tangent to S2

and S1 is identified to the infinity of R2. We define p(X), the Poincaré
compactified vector field associated to X as the analytic extension of
yn−13 X ′ to S2. Note that studying the behavior of p(X) around S1, we
obtain the behavior of X at infinity. Also, S1 is invariant under the
flow of p(X).

The Poincaré disc is the projection of the closed northern hemisphere
of S2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2).

The singular points of p(X) in the interior of the Poincaré disc, or
equivalently in open northern hemisphere {(y1, y2, y3) ∈ S2 : y3 > 0},
are called the finite singular points of X. While the singular points of
p(X) contained in S1 are called the infinite singular points of X.

For more details on the Poincaré compactification, see chapter 5 of
[5].

The following result is the Poincaré–Hopf Theorem for the Poincaré
compactification of a polynomial vector field. For a proof see for in-
stance Theorem 6.30 of [5].

Theorem 5. Let X be a polynomial vector field. If p(X) defined on
the Poincaré sphere S2 has finitely many singular points, then the sum
of their topological indices is two.

4. Proofs of the theorems

Proof of Theorem 1. Since the Jacobian of F is q′(x)q′(y)+p′(x)p′(y) >
0, because p′(x)q′(y) never vanishes, we have that the polynomial map
F = (f, g) with f = q(x) − p(y), g = q(y) + p(x) satisfies the as-
sumptions of Lemma 4 with U = R2. Hence all the singular points of
the polynomial Hamiltonian system with Hamiltonian H = (f(x, y)2+
g(x, y)2)/2 are non–degenerated centers.

We study the infinite singular points of the system

ẋ = P = −Hy = −ffy − ggy, ẏ = Q = Hx = ffx + ggx, (2)

where f = q(x) − p(y), g = q(y) + p(x) with p(x) = axn + l.o.t.,
q(x) = bxm + l.o.t., n and m positive integers, ab 6= 0, and l.o.t. means
lower order terms of the polynomial.

First we assume that n = m. For studying the infinite equilibria
consider the homogeneous polynomial yP2n−1(x, y) − xQ2n−1(x, y) of



POLYNOMIAL MAPS SATISFYING THE REAL JACOBIAN CONJECTURE 5

degree 2n, where P2n−1 and Q2n−1 are the homogeneous parts of degree
2n− 1 of the polynomials P and Q respectively.

Since yP2n−1(x, y) − xQ2n−1(x, y) = −n(a2 + b2)(x2n + y2n) 6= 0 for
(x, y) 6= (0, 0), the Hamiltonian system (2) has no infinite singular
points.

For the cases n > m and n < m we have respectively yP2n−1(x, y)−
xQ2n−1(x, y) = −na2(x2n+y2n) 6= 0 and yP2m−1(x, y)−xQ2m−1(x, y) =
−mb2(x2m + y2m) 6= 0 for (x, y) 6= (0, 0). Therefore again the Hamil-
tonian system has no infinite singular points, and S1 is a periodic orbit
of the Poincaré compactification of system (2).

By the Poincaré–Hopf Theorem (Theorem 5) applied to the Poincaré
sphere and since there are no infinite singular points the sum of the
indices of all the finite singular points is one. Therefore there exists a
unique center, which we denote by c.

To end the proof applying Theorem 3 we must prove that the local
center c is global. Let Wc be the period annulus of c. If the last periodic
orbit of Wc is the infinity in the Poincaré disc we are done.

Assume that γ is the last periodic orbit of Wc and that it does
not coincide with the periodic orbit at S1, and let p be a point of γ.
Consider the Poincaré map Π : Σ0 → Σ associated to γ, where Σ is
a local transverse section to the vector field associated to system (2)
through the point p, for further information on these topics see chapter
1 of [5]. Here Σ0 denotes the domain of definition of the map Π on the
section Σ.

By Proposition 1.21 of [5] the map Π is analytic because system (2) is
polynomial. Clearly the map Π restricted to the part of Σ0 contained in
the period annulus Wc is the identity. Therefore, since Π is an analytic
map of one variable, it is analytic in the whole Σ0. Hence γ cannot be
the last periodic orbit of Wc, a contradiction. Consequently the center
is global and by Theorem 3 we conclude that F = (f, g) is injective. �

Proposition 4.2 of [4] states:

Proposition 6. Let P and Q be two real homogeneous polynomials of
degree n in the variables x and y. Assume that P and Q do not have
real common factors, that xQ(x, y)−yP (x, y) has no real linear factors,
and that ∫ +∞

−∞

P (1, y)

Q(1, y)− yP (1, y)
dy = 0.
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Then the phase portrait of the polynomial vector field (P,Q) is a global
center.

Proof of Theorem 2. Under the assumptions of Theorem 2, first we
shall see that the polynomial xQ(x, y) − yP (x, y) has no real linear
factors. By the Euler’s Theorem for homogeneous functions we have
that

xQ− yP = x(ffx + ggx) + y(ffy + ggy) = n(f 2 + g2).

Therefore since the homogeneous polynomials f and g has no real linear
factors in common, the homogeneous polynomial xQ(x, y) − yP (x, y)
also does not have a real linear factor. Hence, from the hypotheses of
Theorem 2 all the assumptions of Proposition 6 are satisfied. Conse-
quently the Hamiltonian system with Hamiltonian H = (f 2 + g2)/2
has a global center. So by Theorem 3 we get that the polynomial map
F = (f, g) is injective. �
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