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Abstract. We characterize the Hamiltonian flows in the plane which are structurally stable
(in a global sense) among Hamiltonian flows. This notion is closely related to, but distinct
from, the topological stability of the generating function as a map from the plane to the
line.

1. Introduction and statement of results
In this paper we give a dynamic characterization of the Hamiltonian flows whose phase
space is the planeR2 which possess a certain global kind of structural stability.

The essentially unique topology for the space of continuous functions on a compact
space leads to a natural notion of structural stability for dynamical systems on a closed
manifold. However, the continuous functions on a non-compact space have a number
of natural topologies. As a result, several distinct versions of structural stability can be
formulated for dynamical systems on an open manifold, such as the plane. The comparative
discussion of these notions in [KKN ] gives a rationale for the version we shall adopt here.

For r a non-negative integer,F r denotes the set ofCr functionsf : R
2 → R. Given

f ∈ F r andx ∈ R
2, let ‖f (x)‖Cr be the maximum among the absolute values off (x)

and its partial derivatives up to and including orderr, all evaluated atx. A basis for the
neighborhoods off ∈ F r in thestrongCr topologyof Whitney is given by the sets

Nε(f ) = {g ∈ F r | ‖g(x) − f (x)‖Cr < ε(x) ∀x ∈ R
2}

whereε : R
2 → R

+ = (0,∞) ranges over positive functions onR2. The spaceX r of Cr

vectorfields is topologized by applying these estimates componentwise.
A dynamical equivalencebetween two flows8 and9 on R

2 is a homeomorphismh :
R

2 → R
2 taking directed8-trajectories to directed9-trajectories. GivenK ⊂ U ⊂ R

2
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with K compact andU open, we sayh ∈ Nco(K,U) (a compact-open neighborhood of
the identity) if h(K) ⊂ U . Note that, givenK andU , a subset ofNco(K,U) is specified
by an estimate of the form

|h(x) − x| < δ, ∀x ∈ K

whereδ is less than the distance fromK to the exterior ofU .
The notion of structural stability in [KKN ] is given by the following.

Definition 1. A Cr flow 8 with velocity vectorfieldX is globally Cr structurally stable
if given a compact-open neighborhoodNco(K,U) of the identity, there exists a basic
neighborhoodNε(X) of X such that every flow9 with velocity vectorfield inNε(X) is
dynamically equivalent to8, with h ∈ Nco(K,U).

GloballyCr structurally stable flows in the plane (r ≥ 1) were characterized in [KKN ],
giving a kind of extension of Peixoto’s classic structural stability theorem for flows on
closed surfaces. A functionf : R

2 → R generates aHamiltonian vectorfieldXf

(respectively,Hamiltonian flow8f ) via the Hamiltonian system of o.d.e.’s

dx

dt
= ∂f

∂y
,

dy

dt
= −∂f

∂x
.

Observe that the generating functionf is determined up to an additive constant byXf , and
the passage fromf to Xf drops one degree of differentiability.

In [JL1, JL2], the Hamiltonian flows which are globallyCr structurally stable were
characterized. These results address a strong kind of stability, which requires the
Hamiltonian flow to be equivalent to all nearby flows, Hamiltonian or not. A natural
weakening of this notion considers only perturbations within the subspaceHr ⊂ X r of
Hamiltonian vectorfields.Hr inherits the strongCr topology fromX r , but this can also be
formulated in terms of the strongCr+1 topology on the generating functions.

Definition 2. A function f ∈ F r+1 (respectively, Hamiltonian flow8f ∈ Hr with
velocity vectorfieldXf ) is HamiltonianCr stableif given a compact-open neighborhood
Nco(K,U) of the identity, there exists a strongCr neighborhoodNε(Xf )∩Hr of Xf inHr

(equivalently, a strongCr+1 neighborhoodNε′(f ) in F r+1) such that every Hamiltonian
flow 8g with Xg ∈ Nε(Xf ) (equivalentlyg ∈ Nε′(f )) is dynamically equivalent to8f ,
with h ∈ Nco(K,U).

In [JL1], related notions of stability for Hamiltonian flows generated by polynomial
functions were considered, using the strongCr topology and the coefficient topology,
respectively, to define neighborhoods off within the subspace of polynomial functions.

In this paper, we characterize the Hamiltonian stable flows (or functions) in the plane.
We shall see that HamiltonianC1 stability is equivalent, for aCr flow (respectively,Cr+1

function), to HamiltonianCr stability for allr ≥ 1 (the latter isa priori weaker), and so our
results are formulated without explicit reference tor, which is assumed positive. Examples
of Hamiltonian stable flows which are not globally structurally stable abound (see below).

The generating functionf of a Hamiltonian flow8f is automatically constant along
trajectories, so that the dynamic structure of the flow is closely related to the structure of
the level sets

Lc = Lc(f ) = {p ∈ R
2 | f (p) = c}
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of the function. A level set corresponding to a regular value is a disjoint union of simple
curves, and when all critical points are non-degenerate (see §2), a critical level is also
a union of curves, which may cross themselves at critical points. We will refer to any
component of a level set off as alevel curvefor f .

By the invariance off , every trajectory of8f is contained in a level curve off ; in
fact, such a trajectory is either equal to the level curve containing it, or else its boundary
points in this level curve are critical points off . From this we can formulate the following
correspondence between the dynamics of8f and the level curve structure off .

Remark 1.If the critical points off ∈ F form a totally disconnected set, andh : R
2 → R

2

is a homeomorphism, thenh takes the level curves off to the level curves of some function
g ∈ F if and only if h is a dynamical equivalence between8f and one of the two flows
8g, 8−g (which differ by time reversal).

This means that HamiltonianCr stability of f ∈ F r+1 is closely related to the
topological stability off as aCr+1 mapping, for which there exists an elegant theory
[dPW]. However, there is a subtle but substantive difference between the notions of
equivalence in these two theories. Two mappingsf, g : R

2 → R are topologically
equivalent in the sense of [dPW] if there exist homeomorphismsh : R

2 → R
2 and

φ : R → R such that
g ◦ h = φ ◦ f.

Again assuming some non-degeneracy (as in Remark 1) the existence ofφ is guaranteed
provided we haveh : R

2 → R
2 taking levelsetsof f to levelsetsof g, and this property

is required ofh. However, in Remark 1, distinct levelcurvesof f inside the same level
setare allowed to map to level curves ofg which are contained in distinct level sets. We
shall explore this distinction further in §5, and in particular will in Proposition 5 produce a
non-empty open set of functions which are Hamiltonian stable (in our sense) but fail to be
topologically stable as maps (in the sense of [dPW]).

Nonetheless, the close connection between these notions of stability allows us to adapt
to our purposes several ideas from [dPW]. We are indebted to James Montaldi for
making us aware of [dPW], and to Andrew du Plessis for directing our attention to [dPW,
Theorem 3.6.1], which greatly influenced our proof of the sufficiency of our conditions.

To formulate our result, we recall some dynamical notions. Fixf ∈ F2, and the related
C1 Hamiltonian vectorfield (respectively, flow)Xf (respectively,8f ). An equilibrium
point p of 8f is a zero ofXf , or equivalently a critical point off . This point is called
hyperbolic if the eigenvalues of the linearization matrix atp of Xf


∂X1

∂x
(p)

∂X1

∂y
(p)

∂X2

∂x
(p)

∂X2

∂y
(p)




have non-zero real parts. WhenX is Hamiltonian, the characteristic polynomial of this
matrix is λ2 − Df , whereDf is the discriminant off , so the cases of sink and source
(where both eigenvalues are on the same side of the imaginary axis) cannot occur. The only
hyperbolic possibility is ahyperbolic saddle, where the eigenvalues are real and satisfy
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λs < 0 < λu. This corresponds in the Hamiltonian case to a non-degenerate critical point
of f which is not a local extremum. The well-known local phase portrait near a saddle
involves two pairs of ‘separatrix trajectories’: one pair ofstable separatrices, tending
toward the equilibrium (and asymptotically tangent to the eigenspace ofλs) as t → ∞,
the otherunstable separatrices, tending to equilibrium alongλu ast → −∞.

For a dense open subset ofX , every equilibrium is hyperbolic. However, another
kind of equilibrium, corresponding to a local extremum off , is not removable within
H. Generically inH, this is anon-degenerate center, where the eigenvalues are a pair
of complex-conjugate, non-zero, pure, imaginary numbers, and the local phase portrait
consists of nested periodic orbits surrounding the equilibrium point.

The relevant behavior at infinity is formulated as in [KKN ] (following Nemytskii–
Stepanov [NS]). A point p ∈ R

2 escapes to infinityin positive (respectively, negative)
time if for every compact setK ⊂ R

2 there exists a timeT = T (K,p) ∈ R such that
8t(p) is not inK for t > T (respectively,t < T ). A point q ∈ R

2 belongs to the positive
prolongational limit setof p if there existpi → p in R

2 andti → +∞ in R such that
8ti (pi) → q; we writeq ∈ J+(p), or equivalentlyp ∈ J−(q), in this case. It is easy to
see that this is invariant under the flow: for eacht ∈ R,

8t(J±(p)) = J±(p) = J±(8t(p)).

The local phase portrait near a hyperbolic saddle yields the following, which we formalize
for later reference.

Remark 2.Supposes is a hyperbolic saddle of the flow8.
(1) If pi → p with pi on distinct orbits, andp belongs to a stable (respectively, unstable)

separatrix ofs, then there existqi → q with qi on the orbit ofpi andq belonging to
an unstable (respectively, stable) separatrix ofs.

(2) If q ∈ J+(p), whereq belongs to a stable or unstable separatrix ofs, thenJ+(p)

includes at least one stable and one unstable separatrix ofs.
(3) If p belongs to a stable separatrix ofs andq belongs to an unstable separatrix ofs,

thenq ∈ J+(p).

We say that asaddle at infinityoccurs wheneverq ∈ J+(p) andp (respectively,q)
escapes to infinity in forward (respectively, backward) time; the orbit ofp (respectively,
q) is then thestable separatrix(respectively,unstable separatrix) of this (infinite) saddle.
We refer to hyperbolic saddle points as ‘finite saddles’. Asaddle connectionbetween
two saddles (finite or infinite, and not necessarily distinct) is a trajectory which is
simultaneously a stable separatrix of one saddle and an unstable separatrix of the other.
Special cases are: ahomoclinic contour, a saddle connection between a finite saddle
and itself, and ahomoclinic contour at infinity—an orbit escaping to infinity in both
time directions which belongs to its own prolongational limit set (in other words, a non-
wandering orbit with emptyα- andω-limit sets).

Examples of vectorfields exhibiting these phenomena are given in [KKN ]. Here we
note some Hamiltonian examples.

Consider first the function (Figure 1)

f (x, y) = y2 − x2

x4 + 1
,
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FIGURE 1. Finite-to-infinite saddle connection.

which has an absolute minimum value−1/2, achieved at the pair of points(±1, 0), and a
saddle critical point at the origin, with value zero. For 1/2 < c < 0, the level setLc(f )

consists of a pair of ovals, one around each of the minimum points. The level setL0(f )

consists of the four separatrices of the origin, two asymptotic to each of the positive and
negativex-axis. Each such pair forms a saddle at infinity (the ovals contain the pointspi ,
qi in the definition). Forc > 0, the level setLc(f ) consists of the two nearly horizontal
curvesy = ±[c + x2/(x4 + 1)]1/2. Thus, we have a saddle connection between the finite
saddle at the origin and the two saddles at infinity.

Second, consider the polynomial function (Figure 2)

f (x, y) = x + x2y.

This has no critical points, but they-axis forms a saddle at infinity with each branch of
the hyperbolaxy = −1, and hence we have a saddle connection between two saddles at
infinity.

Third, consider the function (Figure 3)

f (x, y) = y

(x2 + 1)(y2 + 1)
.

This has an absolute maximum at(0, 1) (with value 1/2) and an absolute minimum at
(0,−1) (with value−1/2). The level setL0(f ) is thex-axis, and for 0< |c| < 1/2 the
level setLc(f ) is an oval surrounding one of the two extrema noted above. Clearly, each
point p on thex-axis satisfiesp ∈ J+(p), and so thex-axis is a homoclinic contour at
infinity.

Fourth, consider the function

f (x, y) = y2 + 4x3 − 3x2.

This has a relative minimum at(1/2, 0) (with value−1/4) and a saddle point at the origin
with value zero. The level setL0(f ) is a curve crossing itself at the origin, and forming
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FIGURE 2. Connection between saddles at infinity.
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FIGURE 3. Homoclinic contour at infinity.

a loop around(−1/2, 0), and with two branches escaping to infinity (withy → ±∞,
respectively) in the left half-plane. The loop is a homoclinic contour for the saddle at the
origin. There are no saddles at infinity (Figure 4).

Finally, we sketch a way to use this last example to construct accumulating separatrices
as in [KKN ]; note that this phenomenon cannot occur for polynomial functions. Letγ0 be
the branch ofL0(f ) in the lower (left) half-plane

γ0 : y = x
√

4x − 3, x < 0

andγ1 the part ofL1(f ) in the lower half-plane:

γ1 : y = −
√

1 + 3x2 − 4x3, x < 1.

The regionR of the lower half-plane between these curves is diffeomorphic to the strip

S0 = [0, 1] × (−∞,∞)
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FIGURE 4. Homoclinic contour.

with γα (α = 0, 1) mapping to{α} × (−∞,∞). This transfersf to a functionF0 on S0.
By adjusting the diffeomorphism, we can assume that:
(1) F0 is C∞, and its value and all partial derivatives at each point of the boundary agree

with those of the function(x, y) 7→ x;
(2) for y ≤ 0, F0(x, y) = x.
Note that the diffeomorphism maps the two level curves inL0(f )∩R to a saddle at infinity
for 8F0 in S0, with one separatrix along they-axis and the other contained in the upper
half-plane; this gives us a template similar to [KKN , Figure 2.8(a)]. Now, we can create
a similar template functionFn, n = 1, . . . , defined onSn = [0, 1/2n] × (−∞,∞), by
scaling and translation:

Fn(x, y) = 2−nF0(2nx, y − n).

Note thatFn also satisfies the first property above, as well as the second, but fory ≤ n,
and the left edge forms a saddle at infinity with a curve lying above the liney = n. Now,
we can define a new functionF onR

2 by

F(x, y) =




x, x ≤ 0 andx ≥ 1

1

2n
+ Fn

(
x − 1

2n
, y

)
,

1

2n
≤ x ≤ 1

2n−1 .

Then it is easy to check from the conditions onFn above thatF(x, y) is a well definedC∞
function onR

2. Each linex = 1/2n forms a saddle at infinity with a curve in the region
1/2n < x < 1/2n−1, y ≥ n; in particular, they-axis is an accumulation of separatrices
of saddles at infinity for8F . By Theorems 1 and 3 below, this phenomenon does not
prevent structural or Hamiltonian stability. We can, however, use the same procedure
to create more complicated examples of accumulation of separatrices by replacing any
‘parallelizable’ region of a Hamiltonian flow with a copy ofF on [0, 1] × (−∞,∞); for
example, we can create examples in which separatrices (of saddles at infinity) accumulate
at a separatrix of a finite saddle or one in which both stable and unstable separatrices (of
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saddles at infinity) accumulate on a non-separatrix orbit. Theorem 3 below tells us that
the former kind of example is not even Hamiltonian stable, while the latter is Hamiltonian
stable, but (by Theorem 1) not structurally stable.

The globally structurally stable flows inR2 are characterized by the following.

THEOREM 1. [KKN ] A flow in the plane is globallyCr structurally stable (forr ≥ 1) if
and only if all the following hold:

(1) every equilibrium is hyperbolic,
(2) every periodic orbit is a non-degenerate limit cycle,
(3) every unbounded semi-orbit escapes to infinity, and
(4) the closure of the set of all stable separatrices (of finite or infinite saddles) intersects

the closure of the set of all unstable separatrices precisely in the set of (finite)
hyperbolic saddle points.

These conditions can be simplified when the flow is Hamiltonian.

THEOREM 2. [JL2] A Hamiltonian flow8f in the plane is globallyCr structurally stable
(r ≥ 1) if and only if

(1) every equilibrium is a hyperbolic saddle, and
(2) the closure of the set of all stable separatrices (of finite or infinite saddles) intersects

the closure of the set of all unstable separatrices precisely in the set of equilibria.

To see this, observe the following.
• A Hamiltonian flow has no sinks or sources, so a hyperbolic equilibrium is

automatically a saddle. Note that the first condition in Theorem 2 thus rules out
relative extrema forf .

• Since a periodic orbit of8f must enclose a relative extremum off , the first
condition in Theorem 2 already rules out periodic orbits.

• While it is possible to construct a Hamiltonian flow inR
2 with an unbounded semi-

orbit that does not escape to infinity, such an example requires a curve of critical
points, and this can be avoided generically.

Our result on Hamiltonian stability can be formulated in terms of either the dynamics of
8f or the level curve structure off . The following captures, in terms of the level curves
of f , the notion of a ‘saddle at infinity’ for8f .

Definition 3. p ∈ R
2 is virtually critical for f ∈ F if there exists a sequence of embedded

intervalsCi with endpointspi , yi , on each of whichf has a constant value distinct from
f (p), with pi → p, yi convergent, but some sequenceri ∈ Ci has no accumulation points
in R

2.

If p andq belong, respectively, to the stable and unstable separatrix of some saddle at
infinity, then the sequence of segments of8f -trajectoriesCi gives the above condition for
p (and forq). Conversely, we shall prove in §2, Lemma 3 that for a Morse function, the
above situation implies the existence of a saddle at infinity whose separatrices intersect the
level curves throughp andq. Note that ifp is virtually critical (and all critical points are
non-degenerate), then so is every point on the level curve throughp.
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Definition 4. By a critical curve for f ∈ F we mean a level curve containing a critical
point. A critical curveC is proper if there is a neighborhoodV of C (which we call an
isolating neighborhoodfor C) such that:
(1) V contains a unique critical point (which must belong toC);
(2) V contains no virtually critical points;
(3) C is the only critical curve intersectingV .

Our main result can then be formulated as follows (the equivalence of the dynamic and
functional formulations of the second condition will follow from Lemma 3).

THEOREM 3. For r ≥ 1, supposef ∈ F r+1. Thenf (respectively, the Hamiltonian flow
8f generated byf ) is HamiltonianCr stable if and only if:
(1) every critical point off is non-degenerate (equivalently, every equilibrium of8f is

either a hyperbolic saddle or a non-degenerate center);
(2) every critical curve is proper (equivalently, a separatrix of a finite saddle is isolated

from the separatrices of all other finite or infinite saddles for8f ).

Observe the following phenomena which are prohibited in Theorem 2, but allowed in
Theorem 3:
• (non-degenerate) relative extrema off ;
• homoclinic contours;
• periodic orbits (hence compact level curves);
• regular points, not lying on any separatrix of a finite saddle, which are limits of a

pair of sequences, one sequence contained in stable separatrices of (finite or infinite)
saddles, the other in unstable separatrices.

We will prove this theorem in the next three sections, as follows. In §2, we sketch
the necessary modifications to adapt to the plane the standard proofs of density of Morse
functions on compact manifolds, and as a consequence prove the necessity of the first
condition, and those parts of the second dealing only with critical curves, for Hamiltonian
stability. In §3 we complete the proof of necessity of the second condition via a study of
saddles at infinity for Hamiltonian flows. In §4 we prove sufficiency of these conditions
for Hamiltonian stability.

Finally, in §5 we clarify the distinction between Hamiltonian stability and topological
stability for a planar function by constructing a non-empty open set of Hamiltonian stable
functions which fail to be topologically stable.

2. Morse functions
In this section, we use well known generic properties of functions to prove the necessity of
the first condition, and part of the second, in Theorem 3.

The generic structure of a real-valued function on a compact manifold is well known.
Denote by crit(f ) the set of critical points off . At anyp ∈ crit(f ), the hessianHpf is
a symmetric bilinear form given in local coordinates by the matrix of second-order partial
derivatives off at p. The critical point isnon-degenerateif this matrix is non-singular:
p is a local extremum off if Hpf is positive (or negative) definite, and otherwise is a
non-degenerate saddle. A functionf is aMorse functionif
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(1) every critical point off is non-degenerate, and
(2) distinct critical points belong to distinct level sets off .

A standard application of transversality arguments (e.g. [H]) shows that Morse
functions form a dense open set in the space ofCr functions on a compact manifold (for
r ≥ 2). These arguments are a combination of local estimates and applications of the Baire
category theorem, and can be adapted to show density in the case of open manifolds. In
the plane, the delicate constructions found in most transversality theorems are not needed,
so we sketch the argument directly in this case.

LEMMA 1. The functionsf : R
2 → R, for which every critical point is non-degenerate,

form a dense open subset ofF r for r ≥ 2.

Proof. (Sketch) Note first that ifp is a critical point off ∈ F r , we have, using subscript
notation for derivatives (f1 = ∂f /∂x, f2 = ∂f /∂y) that f1(p) = 0 = f2(p), and the
critical point is non-degenerate if the discriminant

Df (p) = f1,1(p)f2,2(p) − f1,2(p)2

is non-zero atp. Note that this expression makes sense at any point in the plane, not just
at critical points.

Openness:A non-degenerate critical point is isolated in crit(f ), so we can cover crit(f )

with a finite or countable family of open discsBi , i ∈ N, such that the unique critical point
in Bi is its center,pi . By shrinking these discs, we can assume thatDf (p) is bounded away
from zero on eachBi . Now, cover the complement of

⋃
Bi with open setsUj , j ∈ N, such

thatf1 andf2 are bounded away from zero on eachUj , and so that theBi ’s andUj ’s form
a locally finite cover ofR2. For eachBi , we can findεi > 0 such that any functiong whose
values and first and second derivatives differ from those off , pointwise onBi , by less than
εi , has a unique critical pointqi in Bi , andDg 6= 0 onBi . Note for later reference that by
reducingεi , we can also ensure, givenδi > 0, that|f (pi) − g(qi)| < δi . For eachUj , we
can findεj > 0 such that a function with first derviatives differing from those off by less
thanεj (pointwise onUj ) has no critical points inUj . Now, the conditions 0< ε(p) < εi

on Bi and 0< ε(p) < εj on Uj are locally finite, so we easily findε : R
2 → (0,∞)

continuous satisfying all these conditions. Clearly, eachg ∈ Nε(f ) has only the critical
pointsqi , and they are non-degenerate.

Density:If the origin inR
2 is a degenerate critical point off , then for any(ε, δ) ∈ R×R

the function

g(x, y) = f (x, y) + ε

2
x2 + δ

2
y2

has a critical point at the origin, with the same critical value asf , but with

g1,1(0, 0) = f1,1(0, 0) + ε

g2,2(0, 0) = f2,2(0, 0) + δ

g1,2(0, 0) = f1,2(0, 0).

Using a bump function, we can create a function which agrees withg in a neighborhood
of the origin and withf outside a slightly larger neighborhood, and given these
neighborhoods, we can adjustε and δ so that this new function is inside any specified
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basic neighborhood off in F r . Clearly, a similar operation can be carried out at any
critical point off . A Baire category argument (which we omit) then completes the proof
of density. 2

Since non-degenerate critical points are isolated and crit(f ) is closed, a function on
a compact manifold with no degenerate critical points has crit(f ) finite. If two critical
points of such a function have the same critical value, we can add a small bump function
near one of them to separate these values. The openness of Morse functions on a compact
space follows immediately. In the plane, we can only conclude that a function without
degenerate points has crit(f ) discrete, and the set of critical valuesf (crit(f )) is finite or
countable. In fact, the critical values can form a dense set (see Remark 6 in §5).

Since we can, by a local perturbation, change the value of a function at any specified
critical point to any nearby value, it follows that the second condition for Morse functions
cannot hold on a dense open subset ofF r . However, given any pair of (non-degenerate)
critical points forf , we can make a local perturbation at one of them that ensures these
two belong to different level sets, and certainly every function near this new one also
assigns them different values. Givenf with no degenerate critical points, we can cover
its critical set with disjoint discs centered at the critical pointspi , and findNε(f ) so that
eachg ∈ Nε(f ) has a unique (non-degenerate) critical pointqi in Bi , and no others. The
argument above shows that for each pair of distinct indicesi, j the subset ofg ∈ Nε(f )

for which qi andqj belong to different level sets is open and dense inNε(f ). It follows
from the Baire category theorem that the intersection of these sets (for all pairsi 6= j ) is
residual (and dense). We have shown the following.

LEMMA 2. The set of Morse functions in the plane is a residual subset ofF r for r ≥ 2.

Now, the necessity of condition (i) and part of (ii) in Theorem 3 is a consequence of the
following.

Remark 3.If f ∈ F is a Morse function, then its Hamiltonian flow8f satisfies
(1) every equilibrium point is a hyperbolic saddle or a non-degenerate center;
(2) there are no saddle connections between distinct finite saddles.

The first statement follows from the local structure of the level sets of a function near a
non-degenerate critical point (since the level curves off are the trajectories of8f ), while
for the second we observe that since a saddle connection for8f is contained in a level
curve off , two finite saddles which are connected must belong to the same level set.

We close this section with some further dynamical properties of Hamiltonian flows in
R

2. Note that a transversal to the flow8f (an embedded intervalT nowhere tangent to the
velocity Xf ) has the further property thatf is strictly monotone alongT . Thus, a given
transversal intersects any orbit in at most one point, so that an orbit intersecting the same
transversal twice is periodic.

Recall that theω-limit set (respectively,α-limit set) of p ∈ R
2 under the flow8 is

the setω(p) (respectively,α(p)) of accumulation points of sequences of the form8ti (p)

whereti → ∞ (respectively,ti → −∞). In the Hamiltonian case, sincef is invariant
under the flow8f , ω(p) andα(p) lie in the same level set off asp, and so a regular point
lies inω(p) or α(p) only if it lies on the orbit ofp, and that orbit is periodic. On the other
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hand, a non-degenerate critical pointq lying in ω(p) (respectively,α(p)), if p 6= q, is
necessarily a saddle point withp on one of its stable (respectively, unstable) separatrices.
Note, finally, that a semi-orbit escapes to infinity if and only if the appropriate limit set (ω

or α) is empty. Thus we have the following.

Remark 4.Suppose8f is a Hamiltonian flow satisfying both conditions of Remark 3.
Then for eachp ∈ R

2, exactly one of the following holds:
(1) p escapes to infinity ast → ∞, andω(p) = ∅;
(2) the orbit ofp is periodic, and equalsω(p);
(3) p is an equilibrium point, andω(p) = {p};
(4) p belongs to a stable separatrix of a saddle pointq, andω(p) = {q}.
Also, exactly one of the analogous statements witht → ∞ (respectively,ω(p)) replaced
by t → −∞ (respectively,α(p)) and ‘stable’ with ‘unstable’ holds forp.

The following result relates the notion of virtual critical points forf ∈ F to saddles at
infinity for the associated Hamiltonian flow8f .

LEMMA 3. Supposep is a virtually critical point for the Morse functionf . Then the
level curve throughp intersects a separatrix for some saddle at infinity of the associated
Hamiltonian flow8f .

Proof. Suppose, as in Definition 3,Ci is a sequence of simple curves, with endpointspi ,
qi , such thatf takes the constant valueci 6= f (p) onCi , pi → p, qi → q, andri ∈ Ci is a
sequence with no accumulation points. We can assume thatp andq are regular points and
thatpi (respectively,qi) form a monotone sequence in some transversalTp (respectively,
Tq ) throughp (respectively,q).

We claim thatCi can be replaced by orbit segments of8f . To this end it suffices to show
that for eachi, the quadrilateralQi bounded byCi−1, Ci+1 and the transversal segments
[pi−1, pi+1], [qi−1, qi+1] contains an orbit segment of8f which meets both transversals.
Note that all points on the same transversal edge ofQi enterQi in the same time direction.
If some such point subsequently leavesQi , it does so via the other transversal edge. If a
pointx fails to leaveQi , then by Remark 4 it lies on a separatrix of a saddles in Qi , and
the whole segment of this separatrix fromx to s is contained inQi . SinceQi is compact,
there are only finitely many possibilities fors and, for each, at most four points can fit the
preceding description forx. It follows that all but finitely many points enteringQi via one
transversal leave it via the other, proving our claim.

Now, it follows that there existti > 0 such that

Ci = {8t
f (pi) | 0 ≤ t ≤ ti}.

If a subsequence of{ti} converges, say tot , thenq = 8t
f (p), and any sequenceri ∈ Ci

has a subsequence converging to a point on the orbit segment fromp to q. Hence we
must haveti → +∞, andq ∈ J+(p). Observe thatp (respectively,q) is not periodic,
because otherwise every point on a transversal would be periodic with nearby period, and
in particular theti would be bounded by the period ofpi , contradicting our last conclusion.

Finally, by Remark 4, ifp (respectively,q) fails to escape to infinity in forward
(respectively, backward) time, then it belongs to a stable (respectively, unstable) separatrix
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of some finite saddle, and for some pointp′ (respectively,q ′) on an unstable (respectively,
stable) separatrix of the same saddle point—which does escape to infinity—we still have
q ′ ∈ J+(p′), by Remark 2. Sincep′ belongs to the same level curve asp, the lemma
follows. 2

3. Behavior at infinity
In this section, we consider structures associated to saddles at infinity for a planar
Hamiltonian flow 8f , and complete the proof that the conditions of Theorem 3 are
necessary for Hamiltonian stability.

Fix a functionf ∈ F r with its associated Hamiltonian flow8f and velocity vectorfield
Xf . Observe that wheneverq ∈ J+(p) under8f , we must havef (q) = f (p). In
particular, it makes sense to talk about the value off at a saddle at infinity: any such value
is avirtual critical valueof f (equivalently, a virtual critical value is any value occuring
at some virtually critical point); collectively, the critical and virtual critical values are the
extended critical valuesof f . While the (ordinary) critical values can be dense inR for an
open set of functions, we have seen that generically there are countably many. We wish to
establish this also for the extended critical values. The argument is based on the following
observations.

Remark 5.A homoclinic contour (finite or at infinity) for a Hamiltonian flow is a limit of
closed orbits.

This follows immediately from the observation that, if a sequencepi → p andti → ∞
satisfyqi = 8ti (pi) → q = p with p a regular point, then the trajectories of thepi must
cross a transversal throughp twice, and hence must be closed orbits.

LEMMA 4. SupposeT is a transversal to8f and pi , i = 1, 2, 3 are distinct points at
whichT intersects the stable separatrices of some saddles at infinity. Then the unstable
separatrices of these saddles cannot all intersect a single transversalT ′.

Proof. We will prove the lemma by contradiction. Number thepi ’s so thatf (p1) <

f (p2) < f (p3), and supposep′
i ∈ T ′, i = 1, 2, 3, are the intersections of the

corresponding unstable separatrices with a transversalT ′. We can assume thatT andT ′
are disjoint. We have fori = 1, 2, 3

ω(pi) = α(p′
i ) = ∅

p′
i ∈ J+(pi).

The latter says we can pickqi ∈ T , q ′
i ∈ T ′, i = 1, 2, 3, with q ′

i = 8ti (qi), ti > 0, qi

arbitrarily nearpi , andq ′
i arbitrarily nearp′

i . We can assume that8t(qi) 6∈ T ∪ T ′ for
0 < t < ti .

We claim also thatp2 andp′
2 lie on different orbits. For otherwise, by Remark 5,q2 can

be taken to lie on a closed orbit, which must separatep1 from p3, and hence one of these
two orbits must be bounded (in both time directions), a contradiction to the hypothesis that
each escapes to infinity in some time direction. As a consequence, the orbit ofp2 cannot
crossT ′.
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Let Ci denote the orbit segment fromqi to q ′
i , and for two pointsα, β ∈ T (respectively,

α′, β ′ ∈ T ′), [α, β] (respectively,[α′, β ′]) the segment ofT (respectively,T ′) between
them.

By the Jordan curve theorem, the union[q1, q3]∪C3 ∪[q ′
3, q

′
1]∪C1 separates the plane

into two components, one a topological disc and the other unbounded. Every point on
the transversal[q1, q3] leaves one of these components, sayD1, and enters the other,D2.
SinceC1 andC3 are orbit segments, the only other possible passage betweenD1 andD2

is across[q ′
1, q

′
3], where points pass fromD2 to D1. Sincep2 ∈ [q1, q3] has an unbounded

forward semi-orbit which does not cross[q ′
1, q

′
3], D2 must be unbounded (andD1 a disc).

Sincep1 andp3 also have unbounded forward semi-orbits, they must lie on[q1, q3]. Now,
q2, which is nearp2, must lie betweenp1 andp3. By an argument similar to that givingD1

andD2, the union[q2, q3] ∪ C3 ∪ [q ′
3, q

′
2] ∪ C2 separates the plane into two components,

D′
1 andD′

2, with
D1 ⊂ D′

1, D′
2 ⊂ D2,

and passage betweenD′
1 andD′

2 can occur only along the transversal segments[q2, q3]
and[q ′

3, q
′
2]. By looking at the values off , we see that the forward semi-orbit ofp1 is

contained inD′
1, while that ofp3 is contained inD′

2 ∪ D1. Since one of these two sets is
bounded, the semi-orbits ofp1 andp3 cannot both escape to infinity, a contradiction.2

As a corollary of Lemma 4 we obtain our desired counting result.

PROPOSITION1. A planar functionf : R
2 → R has at most countably many virtual

critical values.

Proof. We can cover the set of regular points off with countably manyflowboxes: sets of
the form{8t(x) | x ∈ T , 0 ≤ t ≤ τ } whereT is a transversal and 0< τ < ∞. For each
saddle at infinity, we pick a disjoint pair of these flow boxes such that the first (respectively,
second) intersects the stable (respectively, unstable) separatrix of the saddle. By Lemma 4,
a particular pair of choices can be associated to at most two different saddles at infinity;
since there are countably many possible pairs, this proves the proposition. 2

Using this result, we can show that the rest of the conditions in Theorem 3 are necessary
for Hamiltonian stability.

PROPOSITION2. If f is HamiltonianCr stable (r ≥ 1) then every critical curve forf is
isolated.

Proof. Since the Morse functions are dense, we can assumef is Morse, so thatq is the
only critical point off with value equal toc = f (q) = f (p). Since non-degenerate local
extrema are automatically isolated from other critical and virtually critical points, we can
assumeq is a saddle point.

Let U be a neighborhood ofq containing no other critical points off , bounded by
transversals to the four separatrices ofq and orbit segments joining their ends. We
can assume that one of these transversals,T , goes throughp. Let V andW be closed
neighborhoods ofq such that

V ⊂ int(W), W ⊂ int(U).
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Consider perturbationsg of f of the form

g(x, y) = f (x, y) + δ(x, y)

whereδ : R
2 → R is a ‘bump function’ satisfying, for some constantδ0 > 0,

δ = 0 off W

0 ≤ δ ≤ δ0 onW

δ = δ0 onV.

Given aCr neighborhoodNε(f ) of f , it is possible to findα0 > 0 such that, for every
value ofδ0 satisfying 0< δ0 < α0, there existsδ as above such thatg ∈ Nε(f ). Every
such perturbation hasq a hyperbolic saddle for8g , with g(q) = c + δ0, and by narrowing
Nε(f ) we can ensure thatg has no other critical point inU . The stable and unstable
separatrices ofq leaveU at the points on the four transversals wheref = c + δ0, and the
vectorfieldsXf andXg agree offU .

It follows that if c + δ0 is not an extended critical value off , then 8g has no
saddle connection betweenq and another finite or infinite saddle. By Proposition 1, the
complement of the extended critical values off is dense inR. A dynamical equivalence
between8f and8g in an appropriate compact-open neighborhood of the identity must
takeq to itself, and so8f cannot be Hamiltonian stable unlessf also has no connection
betweenq and any other saddle.

Thus, if p is not isolated from stable and unstable separatrices of other saddles, then
there existci → c such that the8f -orbit crossingT wheref = ci is a stable or
unstable separatrix of some saddle. Supposeci > c (otherwise we defineg asf − δ).
By condition (i) in Remark 2, we can, without loss of generality, assume thatp lies on an
unstable separatrix and all the orbits withf = ci are stable separatrices. A perturbation
g as above withc + δ0 = ci then has a saddle connection betweenq and another saddle.
Thus8f and8g cannot be dynamically equivalent (at least by a homeomorphism in some
compact-open neighborhood of the identity), again preventing structural stability of8f in
H. 2

Combining Proposition 2 with Lemma 2 and Remark 3, we have shown necessity in
Theorem 3. We summarize.

PROPOSITION3. If f (respectively,8f ) is HamiltonianCr stable for somer ≥ 1, then
(1) every critical point off is non-degenerate (i.e. every equilibrium of8f is a

hyperbolic saddle or non-degenerate center);
(2) each critical curve forf is proper (i.e. the separarices of each finite saddle are

isolated from the separatrices of all other finite or infinite saddles for8f ).

4. Stability results
In this section, we will show that the conditions of Theorem 3 are sufficient for Hamiltonian
stability.

Fix f ∈ F2 satisfying
(1) every critical point off is non-degenerate, and
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(2) each critical curve is proper.
Also, fix K ⊂ R

2 compact andδ > 0. We shall provef is HamiltonianC1 stable by
defining a strongC2 neighborhoodNε(f ) and, for eachg ∈ Nε(f ), a homeomorphism
h : R

2 → R
2 mapping level curves off to level curves ofg, with |h(x) − x| < δ for all

x ∈ K. Our construction ofh is greatly influenced by the proof of [dPW, Theorem 3.6.1].
We will make extensive use of the gradient lines off . Recall that the gradient

vectorfield∇f = (∂f/∂x, ∂f/∂y) vanishes precisely at the critical points off and is
orthogonal at each regular point to the Hamiltonian vectorfieldXf . The gradient flow,
0f , generated by∇f (whose trajectory through a pointp, denotedγp, will be called the
gradient lineof f throughp) satisfies:
(1) 0f has a node wherever8f has a center: a local maximum (respectively, minimum)

for f is a sink (respectively, source) for0f ;
(2) 0f has a hyperbolic saddle wherever8f does (i.e. at every non-degenerate non-

extremum critical point off );
(3) the gradient lines foliate the set of regular points off transversally to the flow lines

of 8f (i.e. the level curves off ).
By condition (3), the functionf is strictly monotone along each gradient line, and so for
each regular pointx ∈ R

2 \ crit(f ), the set of values achieved byf along the gradient line
throughx forms an open interval

I (x) = {f (0t
f (x)) | t ∈ R} = (m−(x),m+(x))

where
m±(x) = lim

t→±∞ f (0t
f (x)).

Definel±(x) by
m±(x) = f (x) ± l±(x)

so thatl±(x) is strictly positive, possibly infinite. Givens ∈ I (x), we can findt ∈ R with
s = f (0t

f (x)), and if xi → x, thensi = f (0t
f (xi)) → s, with si ∈ I (xi). It follows

that each of the two functionsl±(x) is lower semicontinuous. Thus we can find arbitrarily
smooth functionsµ±(x) defined on the regular points such that

0 < µ±(x) < l±(x)

for everyx ∈ R
2 \ crit(f ). Given a pair of such functions and a subsetA ⊂ R

2 \ crit(f )

whose intersection with each level curve is relatively open, we can form a neighborhood
of A via

U(A,µ±) = {y = 0t
f x | x ∈ A andf (x) − µ−(x) < f (y) < f (x) + µ+(x)}.

The gradient lines foliateU(A,µ±) in such a way that for eachx ∈ A, the functionf takes
each value in the interval(f (x) − µ−(x), f (x) + µ+(x)) at a unique point on the leaf0x

throughx.
We shall combine a structure of this sort with a system of open setsV ′(p) ⊂ V (p),

p ∈ crit(f ), where theV (p)’s are disjoint, such that for eachp ∈ crit(f ):
(1) V (p) is the component of the preimagef −1 {(c−, c+)} containingp, wherec± =

c±(p) satisfyc− < f (p) < c+, and the critical curve throughp is the only critical
or virtually critical curve intersectingV (p);
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FIGURE 5. V (p) andV ′(p) for a saddle point.

(2) V ′(p) is a neighborhood ofp with diameter at mostδ/2, and for eachx ∈
V ′(p) \ {p},

0x ∩ V (p) = 0x ∩ V ′(p)

is an interval with

f (0x ∩ V (p)) = J (x) = (a, b),

wherea, b ∈ {c−, c+, f (p)} (the possibilities depend on whetherp is a maximum,
minimum or saddle forf ).

Whenp is a local maximum (respectively, minimum) forf andc = f (p), we can find
c−(p) < c (respectively,c+(p) > c) sufficiently close toc that the level curve where
f = c− (respectively,c+) bounds a topological disc of diameter at mostδ/2 containingp
and filled by simple closed level curves surroundingp with f = s for eachs ∈ (c−, c)

(respectively,(c, c+)). Picking c− < c (respectively,c+ > c) arbitrarily, we obtain
V ′(p) = V (p) satisfying both conditions.

When p is a saddle point, we can still invoke the second condition onf to pick
c− < f (p) < c+ so that the componentV (p) of f −1 {(c−, c+)} containingp intersects no
other critical or virtually critical curves off , and so that each0f -separatrix atp reaches
one of the level setsLc±(f ). By takingc± sufficiently close to each other, we can make
each of these0f -separatrix segments arbitrarily short, and then defineV ′(p) to be the
union of the gradient line segments0x ∩ V (p) which intersect some small neighborhood
of p: this can be made to have arbitrarily small diameter, as well (see Figure 5).

Observe that the relative boundary ofV ′(p) in V (p) consists of four gradient lines0i ,
i = 1, . . . , 4, each crossing the critical curve off throughp in a unique point. We will
refer to the components ofV (p) \ ⋃4

i=1 0i other thanV ′(p) asarmsof V (p). Each arm
intersects a unique separatrix orbit forp under the Hamiltonian flow8f . If this separatrix
is a homoclinic contour, the arm is a relatively compact rectangle bounded by two gradient
lines0i1, 0i2 and a finite segment of each of the level curvesLc±(f ) boundingV (p); we
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will call this a closed arm. By contrast, a separatrix which escapes to infinity is trapped in
anopen armof V (p), bounded by one gradient line0i and an unbounded segmentL± of
each of the level curvesLc±(f ). A priori, the boundary of an open arm may also contain
additional components of either of the level setsLc±(f ), but the second condition onf
prevents this, as follows easily from the next lemma.

LEMMA 5. Suppose0 is an open interval with endpointsq−, q+, transverse to8. Suppose
a saddlep has an unstable (respectively, stable) separatrix which escapes to infinity,
crossing0, andclos0 intersects no stable (respectively, unstable) separatrices of other
finite or infinite saddles. Then the forward (respectively, backward) saturation of0

S± = {8t(q) | q ∈ 0,±t > 0}
is an open set whose boundary inR

2 is the union of0 with the forward (respectively,
backward) orbitsL± = {8t(q±) | t ≥ 0} (respectively,L± = {8t(q±) | t ≤ 0}) of the
endpoints of0.

Proof. We prove the case of an unstable separatrix forp; the stable case follows by time
reversal. Note that, by Remark 4, our hypotheses on0 imply that ω(q) = ∅ for each
q ∈ clos0.

Supposer is a boundary point ofS+ which does not lie on0 ∪ L+ ∪ L−. Pick ri → r

with ri ∈ S+, so ri = 8ti (qi) for someqi ∈ 0 and ti > 0. Going to a subsequence,
qi → q ∈ clos0. If some subsequence ofti converges, say tot , thenr = 8t(q), and
r ∈ S+ ∪ 0 ∪ L+ ∪ L−. But this contradicts the hypothesis thatr is a boundary point of
S+ not in0 ∪L+ ∪L−, soti → +∞. However, thenq belongs to the stable separatrix of
some saddle at infinity, contradicting our assumption on0. 2

We now wish to foliate the set of regular points by curvesT transverse toXf so that,
wheneverx ∈ V (p) \ {p} for some critical pointp, the curveTx throughx intersects the
boundary ofV (p) in at least one pointσ±(x) ∈ Lc±(f ), and if not at two, then the other
end ofTx is p. A first candidate for this foliation is the gradient lines: indeed, the choice
Tx = 0x satisfies this condition ifx ∈ V ′(p) \ {p} (and thus forx ∈ V (p) \ {p} when
p is a local extremum forf ). Similarly, if x belongs to a closed arm of a saddle pointp,
then the gradient flow enters this arm alongLc−(f ), has noω-limit inside the arm (since
there are no equilibria), and hence must leave the arm—which is only possible viaLc+(f ).
It follows that we can takeTx tangent to∇f in V ′(p) for eachp ∈ crit(f ), and in every
closed arm ofV (p) for each saddle.

However, we have no guarantee that this condition holds in an open arm, since we
cannot exclude the possibility of saddles at infinity for thegradientflow. We will need,
therefore, to defineT as a modification of the gradient foliation inside (some) open arms
of saddles. To make sure our construction yields a global foliation (particularly at points of
accumulation of arms for different saddles), we need to control it using the setsU(A,µ±)

described earlier.
Denote byV the union of all open arms of saddles; the complementVc is a closed set

containing all the setsV ′(p) (for all critical points) as well as the bounding level curves
Lc±(f ) for all setsV (p). We would like to pick smooth functionsµ± onVc so that the set

U = U(Vc \ crit(f ), µ±) ∪ crit(f )
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is an open set containingVc. This is not automatic, becauseVc need not intersect each level
curve in a relatively open set. However, the only points which are not automatically interior
to U (for everypositive choice ofµ±) are those along the gradient lines0i bounding the
open arms inV . Clearly, we can pickµ± so that near the ends of0i the gradient line
segments definingU join L− toL+, and this ensures that0i is interior toU .

A boundary pointz of U must belong to an open arm ofV (p) for some saddlep, and
so the intersection withV (p) of some gradient line must contain an open interval with
one endpoint atz and the other at a boundary pointσ±(z) ∈ Lc±(f ) of V (p). If both
possibilities (σ+(z) andσ−(z)) occur, then the gradient line throughz intersectsV (p) in
an open interval joiningLc−(f ) toLc+(f ), with z the only point of this interval not inU .

It will prove useful to introduce a certain coordinate system on each open armVi(p).

LEMMA 6. For each open armVi(p), there is a diffeomorphism ofclosVi(p) with the
subset ofR2

Ṽi(p) = [c−, c+] × [0,∞)

under which0i corresponds to(c−, c+) × {0} and, for eachs ∈ [c−, c+], Ls (f ) ∩ Vi(p)

corresponds to{s} × [0,∞), and which carriesXf to the unit vertical vectorfield.

Proof. The transports under8t
f of the bounding transversal0i of Vi(p) foliate its

saturationS±, which by Lemma 5 equalsVi(p), but then the inverse of the desired
diffeomorphism is given by(s, t) 7→ 8t

f (qs), whereqs is the unique point on clos0i

with f (qs) = s. 2

Since the gradient lines inVi(p) are transverse toXf , they correspond to the graphs
y = γ (x) of functions defined on subintervals of[c−, c+]. We would also like to have the
boundary ofU in Vi(p) described by a functiony = u(x).

Note that if a gradient line inVi(p) joins both sides (i.e. it corresponds iñVi(p) to
the graph of a functiony = γ (x) defined on all of[c−, c+]), then the same holds for
the gradient line passing through any point(x, y) with y < γ (x). Thus, if a gradient
line joining the sides ofVi(p) meets the boundary ofU in Vi(p) at a unique point, then
we can ‘thicken’U to engulf all points below this gradient line. In this way, we ensure
that a gradient line inVi(p) above some unique pointz intersects the complement ofU in
an open subinterval. Finally, by making the functionsµ+(x) onLc− andµ−(x) onLc+
strictly decreasing (µ±(8t

f (x)) < µ±(x) for x ∈ Lc∓ and t > 0), we can ensure that

the boundary ofU in Vi(p) corresponds to a graphy = u(x) in Ṽi(p), whereu is defined
on some open interval(a−, a+) ⊂ (c−, c+), with a unique minimum atz and strictly
monotone on either side, and limx→a± u(x) = +∞. Let z = (x0, y0).

With this picture, we see that for eachr > y0, there are precisely two points(x−, r) and
(x+, r) with

c− ≤ a− < x− < x0 < x+ < a+ ≤ c+

and
u(x±) = r.

By definition, there is a gradient line inU joining a point ofLc± to (x±, r), and so we
can form a foliation ofVi(p) by piecewise-smooth curves transverse to the level sets of
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f which agree with the gradient lines inU and correspond to horizontal line segments in
Vi(p)\U . The possible ‘corners’ alongy = u(x) are easily smoothed out locally to obtain
a smooth foliationT of Vi(p) such that
(1) Tx is tangent to∇f if x ∈ U , and transverse toXf everywhere;
(2) each leaf crosses bothLc−(f ) andLc+(f ).

We would also like to ensure that the leaves inV intersecting our compact setK have
length at mostδ/2. This is guaranteed insideV ′(p), and can be guaranteed inside any
closed arm by controlling|c+ − c−|. Similarly, we can uniformly estimate the derivatives
on K of the diffeomorphism taking the armVi(p) to the stripṼi(p), and thus (reducing
|c+ − c−| if necessary) ensure that our construction creates no long leaves throughK.

Since the gradient lines already foliateU \crit(f ) (and the critical points form a discrete
set), we have the following.

LEMMA 7. Givenf ∈ F2 satisfying
(1) every critical point is non-degenerate,
(2) each critical curve is proper,
as well as a compact setK ⊂ R

2 and δ > 0, there exist open setsV ′(p) ⊂ V (p),
p ∈ crit(f ), pairs of numbersc± = c±(p), c− < f (p) < c+, a foliationT of R

2 \crit(f )

by curves transverse toXf and an open cover{U,V} of R
2 such that:

(1) V (p) is the component off −1 {(c−, c+)} containingp, and contains no other
critical or virtually critical points off ;

(2) V ′(p) is a neighborhood ofp contained inU \ V of diameter at mostδ/2; V ′(p) =
V (p) if p is a local extremum, and otherwise is cut out ofV (p) by gradient lines0i

crossing each8f -separatrix forp;
(3) Tx is tangent to∇f for x ∈ U ;
(4) if x ∈ V (p) \ {p}, thenTx (the leaf throughx) crosses at least one of the bounding

level setsLc±(f ), and if it does not cross both, thenp is an endpoint ofTx ; for
x ∈ K ∩ V (p) \ {p}, the setTx ∩ V (p) has diameter at mostδ/2.

With this structure, we can prove sufficiency.

PROPOSITION4. Supposef ∈ F2 satisfies
(1) every critical point is non-degenerate,
(2) each critical curve is proper.
Given K ⊂ R

2 compact andδ > 0, there existsε : R
2 → R

+ such that, for every
g ∈ Nε(f ), we can find a homeomorphismh : R

2 → R
2 taking level curves off to level

curves ofg, with |h(x) − x| < δ wheneverx ∈ K.

Proof. We construct the setsV ′(p) ⊂ V (p) and the foliationT as in Lemma 7. Now, pick
for eachp ∈ crit(f ) a pair of numbers 0< r0 < r1 so that the closed discWi(p) of radius
ri is interior toV ′(p), and let

Wi =
⋃

p∈crit(f )

Wi(p), i = 0, 1.

Let π : R
2 → [0, 1] be a smooth function such thatπ = 1 onW0 andπ = 0 offW1.



Hamiltonian stability in the plane 795

Giveng ∈ F2, we will ‘localize’ g by defining

g1(x) = f (x) + π(x)[g(x) − f (x)].
Clearly, we have

g1(x) = g(x) onW0

g1(x) = f (x) off W1.

As a notational convenience, set

g0(x) = f (x), g2(x) = g(x).

Note that the value and derivatives ofπ and f at a point determine a ‘local Lipschitz
constant’λ(x) > 0 such that

‖gj (x) − gj−1(x)‖C2 < λ(x)‖g(x) − f (x)‖C2

so that by picking an appropriate functionε : R
2 → R

+ we can guarantee any set of
a priori pointwise estimates on‖gj (x)−gj−1(x)‖C2 for j = 1 andj = 2 via the condition
g ∈ Nε(f ). We will therefore concentrate on our pointwise estimates, definingε implicitly.

We will require the following.
(1) For eachp ∈ crit(f ), g1 has a unique critical pointq in W1(p), and it belongs to

W0(p) (and is of the same type asp).
(2) Forx ∈ R

2 \W0, gj (x) ∈ I (x), and forx ∈ W1(p),

|gj (x) − f (x)| < 1
3 max{f (x) − c−, c+ − f (x)}.

(3) Let K0 be a compact set containingK \ W0 in its interior and disjoint from the
critical points off ; we want|gj (x) − gj ′(x)| < ε′/2 for all x ∈ K0, whereε′ > 0
is determined so that fory ∈ K0, x within distanceε′ of y andz on the same leafTx

asx, the estimate|f (x) − f (z)| < ε′ implies|x − z| < δ/2.
The first of these is guaranteed byC2 estimates onW1 (sinceg0 = f off W1) and the

second areC1 estimates. To see thatε′ in the third condition exists, note thatε′(y) > 0
depending on the regular pointy exists by the transversality ofT to the level sets off . On
K0, this can be bounded away from zero, and hence replaced by a constant.

Giveng ∈ F2 satisfying these conditions, we will construct our homeomorphism in two
stages:hj (j = 0, 1) will take level curves ofgj to level curves ofgj+1, andh = h1 ◦ h0.
Note that the triangle inequality givesh ∈ Nco(K,U) provided|hj (x) − x| < δ/2 for all
x ∈ K andj = 0, 1.

To constructh0, we first define, for eachp ∈ crit(f ), a strictly increasing function
ϕp : R → R which differs from the identity only onf (W1(p)) and takesc = f (p) to
c′ = g1(q). We also form a new foliation,T ′, analogous to the foliationT of Lemma 7,
but using the gradient flow ofg1 in place of that forf . Note that by hypothesis, the two
foliations agree (i.e. local leaves agree) offW1. We need, however, to take care with the
exceptional leaves formed by the separatrices of the gradient flows at saddles. Supposep

is a saddle point forf , andq the unique critical point ofg1 in W1(p). Even though the
two foliations have the samelocal leaves near the boundary ofV ′(p), a∇f -separatrix for
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p and the corresponding∇g1-separatrix forq may meet this boundary at different points.
However, with a non-linear shear near each of the bounding level curve segmentsL±, we
can modify the foliationT ′ for g1 slightly inside the boundariesL± of V ′(p) so that the
leaf ofT ′ which becomes a∇g1-separatrix forq insideW0(p) meetsL± at the same point
as the corresponding∇f -separatrix forp. With a little care, we can also ensure that ifTx

is a non-separatrix leaf (of the foliationT for f ), with endpointsσ±(x), then the modified
foliation T ′ for g satisfies

T ′
σ+(x) = T ′

σ−(x).

Now definehp(x), for x ∈ V (p) \ {p} (p ∈ crit(f )) to be the unique point onT ′
σ±(x)

where

g1(hp(x)) = ϕp(f (x)),

andhp(p) = q. This defines a homeomorphismhp : V (p) → V (p) which takes level
curves off in V (p) to level curves ofg1 in V (p), and which equals the identity near the
bounding level curves ofV (p). Define

h0(x) =
{

hp(x), x ∈ V (p), somep ∈ crit(f )

x, otherwise.

Sincehp = id near the boundary ofV (p), the only possible problem with this definition
is continuity at limit pointsx = lim xi , wherexi ∈ V (pi) with pi distinct critical points.
Since crit(f ) is a discrete set, this meansx is a regular point

x ∈ U \
⋃

p∈crit(f )

V ′(p) = U ′,

so eventuallyxi ∈ U ′. Now, inU ′ the leaves ofT ′ agree with those ofT , and so for eachxi ,
h(xi) ∈ T ′

xi
. These leaves converge toTx = lim Txi = lim T ′

xi
. Furthermore, sinceV (pi)

intersectsTx in the set wheref takes values in(c−(pi), c+(pi)), and these are disjoint, we
must have

f (x) = lim c−(pi) = lim c+(pi) = lim ϕpi (f (xi)).

It follows that h0(xi) → x = h0(x), so that the homeomorphismh0 is well defined. It
is also clearly a homeomorphism taking level curves ofg0 = f to level curves ofg1, and
|h0(x) − x| < δ/2 for x ∈ K.

Now defineh1 off W0 to be the unique point onT ′
x where

g(h1(x)) = g1(x).

This is well defined by the second condition on the perturbation, and givesh1(x) = x

on the boundary of eachW0(p). However, insideW0(p), g1 andg agree, so this extends
inside as the identity. Since theW0(p)’s do not accumulate anywhere,h1 is a well defined
homeomorphism takingg1-level curves tog2-level curves. Finally, the third condition
guarantees that|f (h1(x)) − f (x)| < ε′, hence|h1(x) − x| < δ/2 for x ∈ K \W0 ⊂ K0.

In view of our earlier observations, this proves the proposition. 2
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5. Hamiltonian stability versus topological stability for planar functions
In this section, we explore the distinction between our notion of Hamiltonian stability,
based on the dynamics of the flows8f , and topological stability, as in [dPW]. To
distinguish these, we callf, g : R

2 → R dynamically equivalentif there exists a
homeomorphismh : R

2 → R
2 taking level curves off to level curves ofg, and

functionally equivalentif there exist homeomorphismsh : R
2 → R

2 andφ : R → R

such that

g ◦ h = φ ◦ f,

i.e. h takes levelsetsof f to level setsof g. A function f ∈ F r is Hamiltonian
(respectively, topologically)Cr stable if for some strongCr neighborhoodNε(f ), every
g ∈ Nε(f ) is dynamically (respectively, functionally) equivalent tof , with h in some
pre-assigned compact-open neighborhood of the identity.

Clearly, functional equivalence implies dynamic equivalence, so that topological
stability implies Hamiltonian stability. We shall show the converse fails on a non-empty
open subset ofF r (r ≥ 1). As a preliminary, we prove the following, which justifies a
parenthetic assertion in §2.

LEMMA 8. Supposef ∈ F2 has a discrete closed setC ⊂ crit(f ) of non-degenerate
critical points whose valuesf (C) are dense in some non-degenerate interval[a, b]
(a < b). Then the same is true of every function in some strongC2 neighborhood off .

Proof. Pick a countable family of open setsAi , i ∈ N, containing a basis for the
neighborhoods of every number in[a, b]. Note thatf (C) must be countably infinite, and
so we can pick a sequencepi of distinct elements ofC with f (pi) ∈ Ai , i = 1, . . . .

SinceC is discrete, we can find disjoint neighborhoodsUi of pi with f (Ui) ⊂ Ai , and
pi the only critical point inUi . For eachUi , pick εi > 0 such that, whenever

‖g(x) − f (x)‖C2 < εi, ∀x ∈ Ui

g has a unique critical pointqi in Ui , andg(qi) ∈ Ai . Now, takeε : R
2 → R

+ with

ε(x) < εi, for x ∈ Ui.

Theng ∈ Nε(f ) impliesg(qi) is a critical value inAi , and hence

[a, b] ⊂ clos{g(qi)}
as required. 2

Using this, one can prove easily that there exists a non-empty open subset ofF2 in
which every element has critical values dense inR: for example, adding a small bump
function around eachpij = (i, j) to the functionf0(x, y) = x/2y we can construct a
functionf with C = Z × Z andf (C) = {i/2j }. We shall use Lemma 8 in a slightly
different way.

Remark 6.If f ∈ F has a critical value which is a limit of other critical values, then it is
not topologicallyCr stable for anyr.
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To see this, note that we can assume all critical points are non-degenerate, hence crit(f )

is discrete. Ifpi , i = 0, . . . are critical points withf (pi) = ci distinct andci → c0, then
via a small bump function we can changef only very nearp0 so as to achieveg(q0) = ci

for some largei, and alternatively so as to haveq0 the only critical point in its level set.
However, then the number of critical points in the level set throughq0, which is an invariant
of functional equivalence, is not constant in a strongCr neighborhood off , preventing
topological stability.

Using these observations, we can construct our example.

PROPOSITION5. There exists a non-empty open subset ofF r , r ≥ 1, in which every
function is Hamiltonian stable, but not topologically stable.

Proof. Consider first the function

u0(x) = ex cosx

with
u′

0(x) = ex(cosx − sinx)

and hence a relative maximum (respectively, minimum) atx2k (respectively,x2k+1) for
each integerk, where

xn = 4n + 1

4
π.

Note that

u0(xn) = (−1)n√
2

exn

andexn grows monotonically with increasingn.
Now, the function

f0(x, y) = u0(x) + y2

has a saddle point (respectively, local minimum) atpn = (xn, 0) for n even (respectively,
odd). The level curve throughp2k consists of a homoclinic contour throughq2k = (x ′

2k, 0),
where

x2k+1 < x ′
2k < x2k+2, u0(x

′
2k) = u0(x2k)

and two separatrices escaping to infinity, withx-coordinate going to−∞ andy-coordinate
going to +∞ (respectively,−∞). The inside of the homoclinic contour is filled with
closed level curves surroundingp2k+1, while the level curves crossing thex-axis between
q2k andp2k+2 march off to infinity in parallelizable fashion. It is easy to verify that there
are no saddles at infinity.

Now, we consider a modificationu of u0. Note that forn ≥ 0, |u0(xn)| > 1. For each
k = 0, . . . , let ak (respectively,bk) be the unique point betweenx2k andx2k+1 at which

u0(ak) = 1 (respectively,u0(bk) = 0)

and modifyu0 on[ak, bk] so that there are 2×3k non-degenerate critical points in(ak, bk),
with (distinct) critical values

ci,k = i

3k
+ 1

3k+1
, c′

i,k = i

3k
+ 2

3k+1
.
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Note that the numbersci,k, c
′
i,k are all distinct, and their union is dense in[0, 1].

Now consider
f (x, y) = u(x) + y2.

We see that the new maxima (respectively, minima) ofu yield saddles (respectively,
minima) off , and that the critical curves corresponding to the new saddles in[ak, bk]×{0}
are pairs of homoclinic contours, contained inside the homoclinic contour throughp2k.
This, together with the distinctness of the critical values, shows thatf satisfies the
hypotheses of Theorem 3, and hence an open strongCr neighborhood off consists of
Hamiltonian stable functions. However, each of these, by Lemma 8, also satisfies the
hypotheses of Remark 6, and hence fails to be topologically stable in the sense of [dPW].2

REFERENCES

[H] M. W. Hirsch.Differential Topology (Graduate Texts in Mathematics, 33).Springer, New York, 1976.
[JL1] X. Jarque and J. Llibre. Global structural stability of planar Hamiltonian vector fields.Hamiltonian

Dynamical Systems (IMA Volume in Mathematics and its Applications). University of Cincinnati,
1994, pp. 171–180.

[JL2] X. Jarque and J. Llibre. Structural stability of planar hamiltonian polynomial vector fields.Proc.
London Math. Soc.68(3) (1994), 617–640.

[KKN] J. Kotus, M. Krych and Z. Nitecki. Global structural stability of flows on open surfaces.Mem. Amer.
Math. Soc.261(1982).

[NS] V. V. Nemytskii and V. V. Stepanov.Qualitative Theory of Differential Equations (Princeton
Mathematical Series, 22). Princeton University Press, Princeton, 1960.

[dPW] A. du Plessis and C. T. C. Wall.The Geometry of Topological Stability (London Math. Soc.
Monographs (NS), 9).Clarendon, Oxford, 1995.


