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Abstract We characterize the Hamiltonian flows in the plane which are structurally stable
(in a global sense) among Hamiltonian flows. This notion is closely related to, but distinct
from, the topological stability of the generating function as a map from the plane to the
line.

1. Introduction and statement of results
In this paper we give a dynamic characterization of the Hamiltonian flows whose phase
space is the plar&? which possess a certain global kind of structural stability.

The essentially unique topology for the space of continuous functions on a compact
space leads to a natural notion of structural stability for dynamical systems on a closed
manifold. However, the continuous functions on a non-compact space have a number
of natural topologies. As a result, several distinct versions of structural stability can be
formulated for dynamical systems on an open manifold, such as the plane. The comparative
discussion of these notions iIKKN ] gives a rationale for the version we shall adopt here.

For r a non-negative integefs” denotes the set @ functionsf : R> — R. Given
f e Frandx € R?, let| f(x)|lc- be the maximum among the absolute valueg 6f)
and its partial derivatives up to and including ordegll evaluated ak. A basis for the
neighborhoods of € F” in thestrongC” topologyof Whitney is given by the sets

Ne(f) ={g € F | lgtx) = f@)ller < e(x) Vx € R?)

wheree : R2 - Rt = (0, o0) ranges over positive functions &?. The spacet” of C"
vectorfields is topologized by applying these estimates componentwise.

A dynamical equivalenceetween two flowsb and¥ onR? is a homeomorphisrh :
R2 — R? taking directedd-trajectories to directet-trajectories. Giverk ¢ U C R?

§ Work done while on a postdoctoral year at Boston University, supported by the Ministerio de Bdugaci”
Cultura of Spain.
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with K compact and/ open, we say: € Nco(K, U) (acompact-open neighborhood of
the identity if #(K) C U. Note that, giverk andU, a subset of\o(K, U) is specified
by an estimate of the form

lh(x) — x| <6, VxeKkK

wheres is less than the distance frokn to the exterior ofU.
The notion of structural stability in{KN ] is given by the following.

Definition 1. A C" flow ® with velocity vectorfieldX is globally C" structurally stable
if given a compact-open neighborhoddo(K, U) of the identity, there exists a basic
neighborhoodV; (X) of X such that every flowd with velocity vectorfield inV; (X) is
dynamically equivalent t@®, with 4 € Ngo(K, U).

Globally C" structurally stable flows in the plane & 1) were characterized irKKN ],
giving a kind of extension of Peixoto’s classic structural stability theorem for flows on
closed surfaces. A functiof : R? — R generates dlamiltonian vectorfieldX
(respectivelyHamiltonian flowd ) via the Hamiltonian system of o.d.e.’s

dx df dy af
dt 9y’ dt ox

Observe that the generating functigiis determined up to an additive constantby, and

the passage froryi to X ; drops one degree of differentiability.

In [JL1, JL2], the Hamiltonian flows which are globally” structurally stable were
characterized. These results address a strong kind of stability, which requires the
Hamiltonian flow to be equivalent to all nearby flows, Hamiltonian or not. A natural
weakening of this notion considers only perturbations within the subsféce X" of
Hamiltonian vectorfields#" inherits the stron@” topology fromX™”, but this can also be

formulated in terms of the stror@f 1 topology on the generating functions.

Definition 2. A function f e F’*1 (respectively, Hamiltonian flowb, € H" with
velocity vectorfieldX ) is HamiltonianC" stableif given a compact-open neighborhood
Neo(K, U) of the identity, there exists a strofig neighborhoodV; (X f)NH" of X y in 1"
(equivalently, a strong” ™! neighborhoodV, (f) in F7*1) such that every Hamiltonian
flow @, with X, € N:(Xs) (equivalentlyg € N./(f)) is dynamically equivalent t& ¢,
with & € Neo(K, U).

In [JL1], related notions of stability for Hamiltonian flows generated by polynomial
functions were considered, using the strafgtopology and the coefficient topology,
respectively, to define neighborhoods/bivithin the subspace of polynomial functions.

In this paper, we characterize the Hamiltonian stable flows (or functions) in the plane.
We shall see that Hamiltonia®' stability is equivalent, for & flow (respectivelyC’+1
function), to Hamiltoniar®” stability for all» > 1 (the latter isa priori weaker), and so our
results are formulated without explicit reference tavhich is assumed positive. Examples
of Hamiltonian stable flows which are not globally structurally stable abound (see below).

The generating functiorf of a Hamiltonian flow® ; is automatically constant along
trajectories, so that the dynamic structure of the flow is closely related to the structure of
thelevel sets

Le=Le(f)=1{peR?| f(p)=c)
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of the function. A level set corresponding to a regular value is a disjoint union of simple
curves, and when all critical points are non-degenerate (see §2), a critical level is also
a union of curves, which may cross themselves at critical points. We will refer to any
component of a level set gf as alevel curvefor f.

By the invariance off, every trajectory ofb ; is contained in a level curve of; in
fact, such a trajectory is either equal to the level curve containing it, or else its boundary
points in this level curve are critical points ¢f From this we can formulate the following
correspondence between the dynamic®efand the level curve structure ¢t

Remark 1.If the critical points off € F form a totally disconnected set, ahd R? — R?

is a homeomorphism, théntakes the level curves gfto the level curves of some function
g € F if and only if & is a dynamical equivalence betwe@n and one of the two flows
®,, _, (which differ by time reversal).

This means that Hamiltoniad” stability of f e F't1 is closely related to the
topological stability of f as aC”*! mapping, for which there exists an elegant theory
[dPW]. However, there is a subtle but substantive difference between the notions of
equivalence in these two theories. Two mappingg : R> — R are topologically
equivalent in the sense oflPW] if there exist homeomorphismis : RZ2 — R? and
¢ : R — R such that

goh=¢of

Again assuming some non-degeneracy (as in Remark 1) the existeq#ds gfiaranteed
provided we haveé : R? — R? taking levelsetsof f to levelsetsof g, and this property

is required ofh. However, in Remark 1, distinct levelrvesof f inside the same level
setare allowed to map to level curves gfwhich are contained in distinct level sets. We
shall explore this distinction further in 85, and in particular will in Proposition 5 produce a
non-empty open set of functions which are Hamiltonian stable (in our sense) but fail to be
topologically stable as maps (in the sensedf\[V]).

Nonetheless, the close connection between these notions of stability allows us to adapt
to our purposes several ideas frodPW]. We are indebted to James Montaldi for
making us aware offPW], and to Andrew du Plessis for directing our attentiondB\V,
Theorem 3.6.1], which greatly influenced our proof of the sufficiency of our conditions.

To formulate our result, we recall some dynamical notions. fFix 72, and the related
C! Hamiltonian vectorfield (respectively, flow§ ; (respectively,®r). An equilibrium
point p of & is a zero ofX ¢, or equivalently a critical point of . This point is called
hyperbolic if the eigenvalues of the linearization matripaif X ¢

8X1( ) 8X1( )
dax P ay P

—(p) W (p)

have non-zero real parts. Whehis Hamiltonian, the characteristic polynomial of this
matrix is A — D f, whereDf is the discriminant off, so the cases of sink and source
(where both eigenvalues are on the same side of the imaginary axis) cannot occur. The only
hyperbolic possibility is dyperbolic saddlewhere the eigenvalues are real and satisfy
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As < 0 < Ay. This corresponds in the Hamiltonian case to a non-degenerate critical point
of f which is not a local extremum. The well-known local phase portrait near a saddle
involves two pairs of ‘separatrix trajectories’: one pairstéble separatricestending
toward the equilibrium (and asymptotically tangent to the eigenspage) @s: — oo,

the othemunstable separatricesending to equilibrium along, ast — —oo.

For a dense open subset &f every equilibrium is hyperbolic. However, another
kind of equilibrium, corresponding to a local extremum faf is not removable within
H. Generically in?{, this is anon-degenerate centewhere the eigenvalues are a pair
of complex-conjugate, non-zero, pure, imaginary numbers, and the local phase portrait
consists of nested periodic orbits surrounding the equilibrium point.

The relevant behavior at infinity is formulated as KKN ] (following Nemytskii—
Stepanov IS]). A point p € R? escapes to infinityn positive (respectively, negative)
time if for every compact sek c R? there exists a tim@ = T(K, p) € R such that
®'(p) is notinkK forr > T (respectively; < T). A pointg € R? belongs to the positive
prolongational limit setof p if there existp; — p in R? ands; — +oo in R such that
®'i(p;) — q; we writeqg € J.(p), or equivalentlyp € J_(g), in this case. Itis easy to
see that this is invariant under the flow: for eachR,

(T (p)) = Tx(p) = T« (' (p)).

The local phase portrait near a hyperbolic saddle yields the following, which we formalize
for later reference.

Remark 2.Suppose is a hyperbolic saddle of the flod.

(1) If p; = pwith p; ondistinct orbits, angh belongs to a stable (respectively, unstable)
separatrix of, then there exisg; — ¢ with g; on the orbit ofp; andq belonging to
an unstable (respectively, stable) separatrix. of

(2) If g € J+(p), whereq belongs to a stable or unstable separatrix,dhen 7. (p)
includes at least one stable and one unstable separatrix of

(3) If p belongs to a stable separatrixsondg belongs to an unstable separatrixsof
theng € J4(p).

We say that ssaddle at infinityoccurs wheneveg € J1(p) andp (respectivelyg)
escapes to infinity in forward (respectively, backward) time; the orbjt ¢fespectively,
q) is then thestable separatriXrespectivelyunstable separatrixof this (infinite) saddle.
We refer to hyperbolic saddle points as ‘finite saddles’.sa&ldle connectiobetween
two saddles (finite or infinite, and not necessarily distinct) is a trajectory which is
simultaneously a stable separatrix of one saddle and an unstable separatrix of the other.
Special cases are: lromoclinic contour a saddle connection between a finite saddle
and itself, and éhomoclinic contour at infinit-an orbit escaping to infinity in both
time directions which belongs to its own prolongational limit set (in other words, a non-
wandering orbit with empty- andw-limit sets).

Examples of vectorfields exhibiting these phenomena are giveKKIN]. Here we
note some Hamiltonian examples.

Consider first the function (Figure 1)
¥2

— 2
flx,y)=y ]

’
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FIGURE 1. Finite-to-infinite saddle connection.

which has an absolute minimum valud./2, achieved at the pair of points:1, 0), and a
saddle critical point at the origin, with value zero. FgRl< ¢ < 0, the level seL.(f)
consists of a pair of ovals, one around each of the minimum points. The levéh&et
consists of the four separatrices of the origin, two asymptotic to each of the positive and
negativex-axis. Each such pair forms a saddle at infinity (the ovals contain the ggints
gi in the definition). Fore > 0, the level se’.(f) consists of the two nearly horizontal
curvesy = +[c + x2/(x* + 1)]1¥/2. Thus, we have a saddle connection between the finite
saddle at the origin and the two saddles at infinity.

Second, consider the polynomial function (Figure 2)

[, y) =x+x%.

This has no critical points, but theaxis forms a saddle at infinity with each branch of

the hyperbolaxy = —1, and hence we have a saddle connection between two saddles at
infinity.
Third, consider the function (Figure 3)
fx,y) = >

(x2+ (241D’
This has an absolute maximum @, 1) (with value /2) and an absolute minimum at
(0, —1) (with value—1/2). The level seLo(f) is thex-axis, and for O< |c| < 1/2 the
level setl.(f) is an oval surrounding one of the two extrema noted above. Clearly, each
point p on thex-axis satisfiep € J4(p), and so thec-axis is a homoclinic contour at
infinity.
Fourth, consider the function
flx,y)= y2 + 4x% — 3x2.

This has a relative minimum &1,/2, 0) (with value—1/4) and a saddle point at the origin
with value zero. The level selg(f) is a curve crossing itself at the origin, and forming
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W

-2 -1 ] 1 2 3

FIGURE 2. Connection between saddles at infinity.

-5 -4 -3 -2 -1 0 1 2 3 4 5

FIGURE 3. Homoclinic contour at infinity.

a loop around—1/2, 0), and with two branches escaping to infinity (with— oo,
respectively) in the left half-plane. The loop is a homoclinic contour for the saddle at the
origin. There are no saddles at infinity (Figure 4).

Finally, we sketch a way to use this last example to construct accumulating separatrices
as in [KKN ]; note that this phenomenon cannot occur for polynomial functionsyd.be
the branch ofp(f) in the lower (left) half-plane

Yo: y= xv/4x —3, x <0
andys the part ofC1(f) in the lower half-plane:
Y1 yz—m, x <1l
The regionr of the lower half-plane between these curves is diffeomorphic to the strip
So = [0, 1] x (—o0, 00)
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FIGURE 4. Homoclinic contour.

with y, (¢ = 0, 1) mapping to{a} x (—oo, 00). This transfersf to a functionFp on Sp.
By adjusting the diffeomorphism, we can assume that:
(1) FoisC®, and its value and all partial derivatives at each point of the boundary agree

with those of the functiorix, y) — x;
(2) fory <0, Fo(x, y) = x.
Note that the diffeomorphism maps the two level curve&dns) N R to a saddle at infinity
for @£, in So, with one separatrix along the-axis and the other contained in the upper
half-plane; this gives us a template similar KKN , Figure 2.8(a)]. Now, we can create
a similar template functiow,, n = 1, ..., defined onS, = [0, 1/2"] x (—o0, 00), by
scaling and translation:

F,(x,y) =2"Fy(2'x,y — n).

Note thatF, also satisfies the first property above, as well as the second, but£or,
and the left edge forms a saddle at infinity with a curve lying above theyliaen. Now,
we can define a new functiafi onR? by

X, x<0andx >1
For.y)=11 1 1 1
§+Fn(x—§,y), ESXSanl-

Then it is easy to check from the conditions Bpabove that ' (x, y) is a well defined’>
function onR2. Each linex = 1/2" forms a saddle at infinity with a curve in the region
1/2" < x < 1/2"-1 y > n; in particular, they-axis is an accumulation of separatrices

of saddles at infinity fordr. By Theorems 1 and 3 below, this phenomenon does not
prevent structural or Hamiltonian stability. We can, however, use the same procedure
to create more complicated examples of accumulation of separatrices by replacing any
‘parallelizable’ region of a Hamiltonian flow with a copy #fon [0, 1] x (—o0, 00); for
example, we can create examples in which separatrices (of saddles at infinity) accumulate
at a separatrix of a finite saddle or one in which both stable and unstable separatrices (of
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saddles at infinity) accumulate on a non-separatrix orbit. Theorem 3 below tells us that
the former kind of example is not even Hamiltonian stable, while the latter is Hamiltonian
stable, but (by Theorem 1) not structurally stable.

The globally structurally stable flows ik? are characterized by the following.

THEOREM1. [KKN] A flow in the plane is globallg” structurally stable (for > 1) if

and only if all the following hold:

(1) every equilibrium is hyperbolic,

(2) every periodic orbit is a non-degenerate limit cycle,

(3) every unbounded semi-orbit escapes to infinity, and

(4) the closure of the set of all stable separatrices (of finite or infinite saddles) intersects
the closure of the set of all unstable separatrices precisely in the set of (finite)
hyperbolic saddle points.

These conditions can be simplified when the flow is Hamiltonian.

THEOREM2. [JL2] A Hamiltonian flowd ; in the plane is globallg” structurally stable

(r = 1) ifand only if

(1) every equilibrium is a hyperbolic saddle, and

(2) the closure of the set of all stable separatrices (of finite or infinite saddles) intersects
the closure of the set of all unstable separatrices precisely in the set of equilibria.

To see this, observe the following.

. A Hamiltonian flow has no sinks or sources, so a hyperbolic equilibrium is
automatically a saddle. Note that the first condition in Theorem 2 thus rules out
relative extrema forf.

e  Since a periodic orbit ofb ; must enclose a relative extremum @f the first
condition in Theorem 2 already rules out periodic orbits.

. While it is possible to construct a Hamiltonian flowltf with an unbounded semi-
orbit that does not escape to infinity, such an example requires a curve of critical
points, and this can be avoided generically.

Our result on Hamiltonian stability can be formulated in terms of either the dynamics of
® ; or the level curve structure gf. The following captures, in terms of the level curves
of f, the notion of a ‘saddle at infinity’ fo® ;.

Definition 3. p € R? s virtually critical for f € F if there exists a sequence of embedded
intervalsC; with endpointsp;, y;, on each of whichf has a constant value distinct from
f(p), with p; — p, y; convergent, but some sequenrg& C; has no accumulation points
in R2.

If p andg belong, respectively, to the stable and unstable separatrix of some saddle at
infinity, then the sequence of segmentsiof-trajectoriesC; gives the above condition for
p (and forg). Conversely, we shall prove in 82, Lemma 3 that for a Morse function, the
above situation implies the existence of a saddle at infinity whose separatrices intersect the
level curves througlp andg. Note that if p is virtually critical (and all critical points are
non-degenerate), then so is every point on the level curve thrpugh
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Definition 4. By a critical curvefor f € F we mean a level curve containing a critical
point. A critical curveC is proper if there is a neighborhootf of C (which we call an
isolating neighborhoodor C) such that:

(1) V contains a unique critical point (which must belongtp

(2) V contains no virtually critical points;

(3) C isthe only critical curve intersecting.

Our main result can then be formulated as follows (the equivalence of the dynamic and
functional formulations of the second condition will follow from Lemma 3).

THEOREM3. For r > 1, supposef € F"+1. Thenf (respectively, the Hamiltonian flow

® ; generated byf) is HamiltonianC” stable if and only if:

(1) every critical point off is non-degenerate (equivalently, every equilibriuntof is
either a hyperbolic saddle or a non-degenerate center);

(2) every critical curve is proper (equivalently, a separatrix of a finite saddle is isolated
from the separatrices of all other finite or infinite saddles doy).

Observe the following phenomena which are prohibited in Theorem 2, but allowed in
Theorem 3:

. (non-degenerate) relative extremayof

. homoclinic contours;

. periodic orbits (hence compact level curves);

. regular points, not lying on any separatrix of a finite saddle, which are limits of a
pair of sequences, one sequence contained in stable separatrices of (finite or infinite)
saddles, the other in unstable separatrices.

We will prove this theorem in the next three sections, as follows. In 82, we sketch
the necessary modifications to adapt to the plane the standard proofs of density of Morse
functions on compact manifolds, and as a consequence prove the necessity of the first
condition, and those parts of the second dealing only with critical curves, for Hamiltonian
stability. In 83 we complete the proof of necessity of the second condition via a study of
saddles at infinity for Hamiltonian flows. In 84 we prove sufficiency of these conditions
for Hamiltonian stability.

Finally, in 85 we clarify the distinction between Hamiltonian stability and topological
stability for a planar function by constructing a non-empty open set of Hamiltonian stable
functions which fail to be topologically stable.

2. Morse functions
In this section, we use well known generic properties of functions to prove the necessity of
the first condition, and part of the second, in Theorem 3.

The generic structure of a real-valued function on a compact manifold is well known.
Denote by cri¢f) the set of critical points of . At any p e crit(f), the hessiarH, f is
a symmetric bilinear form given in local coordinates by the matrix of second-order partial
derivatives off at p. The critical point isnon-degeneraté this matrix is non-singular:
p is a local extremum off if H, f is positive (or negative) definite, and otherwise is a
non-degenerate saddle. A functigris aMorse functiorif
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(1) every critical point off is non-degenerate, and
(2) distinct critical points belong to distinct level sets fof

A standard application of transversality arguments (eld]) [shows that Morse
functions form a dense open set in the spacé’diunctions on a compact manifold (for
r > 2). These arguments are a combination of local estimates and applications of the Baire
category theorem, and can be adapted to show density in the case of open manifolds. In
the plane, the delicate constructions found in most transversality theorems are not needed,
so we sketch the argument directly in this case.

LEMMA 1. The functionsf : R?2 — R, for which every critical point is non-degenerate,
form a dense open subset®f for r > 2.

Proof. (Sketch) Note first that ip is a critical point off € F", we have, using subscript
notation for derivatives fi = af/dx, fo = daf/dy) that fi(p) = 0 = fa(p), and the
critical point is non-degenerate if the discriminant

Df(p) = f11(p) f22(p) — fr2(p)?

is non-zero ap. Note that this expression makes sense at any point in the plane, not just
at critical points.

OpennessA non-degenerate critical point is isolated in ¢fi}, so we can cover ciif)
with a finite or countable family of open dis®3, i € N, such that the unique critical point
in B; is its centerp;. By shrinking these discs, we can assumehat p) is bounded away
from zero on eaclB;. Now, cover the complement bf B; with open setd/;, j € N, such
that f1 and f> are bounded away from zero on ed¢fy and so that thé;’s andU;’s form
alocally finite cover ofR2. For eachB;, we can fince; > 0 such that any functiopmwhose
values and first and second derivatives differ from thosg, giointwise onB;, by less than
&, has a unique critical poinf; in B;, andDg # 0 on B;. Note for later reference that by
reducinge;, we can also ensure, givép> 0, that| f (p;) — g(¢;)| < §;. For each/;, we
can finde; > 0 such that a function with first derviatives differing from thosefdiy less
thane; (pointwise onU;) has no critical points it/ ;. Now, the conditions G< e(p) < &;
on B; and 0 < &(p) < ¢; onU; are locally finite, so we easily find : R2 — (0, c0)
continuous satisfying all these conditions. Clearly, each N, (f) has only the critical
pointsg;, and they are non-degenerate.

Density: If the origin inR? is a degenerate critical point ¢f then for any(e, §) € RxR
the function

€ 2, 05
g, y) = flx,y)+5x°+ 5y
2 2
has a critical point at the origin, with the same critical valug abut with

211(0,0) = f11(0,0) + ¢
822(0,0) = f2,2(0,0) + 4
81,2(0,0) = f1,2(0, 0).
Using a bump function, we can create a function which agrees githa neighborhood

of the origin and with f outside a slightly larger neighborhood, and given these
neighborhoods, we can adjustands so that this new function is inside any specified
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basic neighborhood of in 7. Clearly, a similar operation can be carried out at any
critical point of f. A Baire category argument (which we omit) then completes the proof
of density. m|

Since non-degenerate critical points are isolated andforis closed, a function on
a compact manifold with no degenerate critical points hag frifinite. If two critical
points of such a function have the same critical value, we can add a small bump function
near one of them to separate these values. The openness of Morse functions on a compact
space follows immediately. In the plane, we can only conclude that a function without
degenerate points has ¢iif) discrete, and the set of critical valugsgcrit( 1)) is finite or
countable. In fact, the critical values can form a dense set (see Remark 6 in §5).

Since we can, by a local perturbation, change the value of a function at any specified
critical point to any nearby value, it follows that the second condition for Morse functions
cannot hold on a dense open subsef6f However, given any pair of (non-degenerate)
critical points for f, we can make a local perturbation at one of them that ensures these
two belong to different level sets, and certainly every function near this new one also
assigns them different values. Givgnwith no degenerate critical points, we can cover
its critical set with disjoint discs centered at the critical poiptsand find\; (f) so that
eachg € NV, (f) has a unigue (non-degenerate) critical pginin B;, and no others. The
argument above shows that for each pair of distinct indicgshe subset of € N (f)
for which ¢; andg; belong to different level sets is open and dens#&/itif). It follows
from the Baire category theorem that the intersection of these sets (for ali pairg is
residual (and dense). We have shown the following.

LEMMA 2. The set of Morse functions in the plane is a residual subsgt dor r > 2.

Now, the necessity of condition (i) and part of (i) in Theorem 3 is a consequence of the
following.

Remark 3.If f € F is a Morse function, then its Hamiltonian flo®/; satisfies
(1) every equilibrium point is a hyperbolic saddle or a non-degenerate center;
(2) there are no saddle connections between distinct finite saddles.

The first statement follows from the local structure of the level sets of a function near a
non-degenerate critical point (since the level curveg afe the trajectories ab ¢), while
for the second we observe that since a saddle connectioh fas contained in a level
curve of f, two finite saddles which are connected must belong to the same level set.

We close this section with some further dynamical properties of Hamiltonian flows in
R2. Note that a transversal to the flavy (an embedded intervdl nowhere tangent to the
velocity X ) has the further property that is strictly monotone alon@’. Thus, a given
transversal intersects any orbit in at most one point, so that an orbit intersecting the same
transversal twice is periodic.

Recall that thew-limit set (respectivelya-limit sef) of p € R2 under the flow® is
the setw(p) (respectivelyx(p)) of accumulation points of sequences of the fabi(p)
wherer; — oo (respectivelyy; — —o0). In the Hamiltonian case, sincgis invariant
under the flowd ¢, w (p) anda(p) lie in the same level set of asp, and so a regular point
liesinw(p) ora(p) only if it lies on the orbit ofp, and that orbit is periodic. On the other
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hand, a non-degenerate critical pagntying in w(p) (respectivelyw(p)), if p # ¢, is
necessarily a saddle point wighon one of its stable (respectively, unstable) separatrices.
Note, finally, that a semi-orbit escapes to infinity if and only if the appropriate limitset (
or «) is empty. Thus we have the following.

Remark 4.Supposed ; is a Hamiltonian flow satisfying both conditions of Remark 3.
Then for eactp € R?, exactly one of the following holds:

(1) p escapes to infinity as— oo, andw(p) = ¥;

(2) the orbit ofp is periodic, and equals(p);

(3) pisan equilibrium point, ane (p) = {p};

(4) p belongs to a stable separatrix of a saddle pgjndw (p) = {¢}.

Also, exactly one of the analogous statements with oo (respectivelyw(p)) replaced
byt — —oo (respectivelyx(p)) and ‘stable’ with ‘unstable’ holds fop.

The following result relates the notion of virtual critical points jore F to saddles at
infinity for the associated Hamiltonian flod .

LEMMA 3. Supposep is a virtually critical point for the Morse functiory. Then the
level curve througly intersects a separatrix for some saddle at infinity of the associated
Hamiltonian flowd ;.

Proof. Suppose, as in Definition &; is a sequence of simple curves, with endpojmts
gi, such thatf takes the constantvalug# f(p) onC;, pi = p,qi — q,andr; € Cjisa
sequence with no accumulation points. We can assumethatlg are regular points and
that p; (respectivelyg;) form a monotone sequence in some transvefsdtespectively,
T,) throughp (respectivelyg).

We claim thaC; can be replaced by orbit segmentstof. To this end it suffices to show
that for each, the quadrilatera; bounded byC;_1, C;+1 and the transversal segments
[pi-1, pi+1l: [gi—1, gi+1] contains an orbit segment &, which meets both transversals.
Note that all points on the same transversal edge;anterQ; in the same time direction.
If some such point subsequently leaw@s it does so via the other transversal edge. If a
point x fails to leaveQ;, then by Remark 4 it lies on a separatrix of a saddie Q;, and
the whole segment of this separatrix franto s is contained inQ;. SinceQ; is compact,
there are only finitely many possibilities ferand, for each, at most four points can fit the
preceding description for. It follows that all but finitely many points enterin@; via one
transversal leave it via the other, proving our claim.

Now, it follows that there exist > 0 such that

Ci ={®%(p) 0=t =1}.

If a subsequence df;} converges, say tg theng = Cbtf(p), and any sequengg € C;

has a subsequence converging to a point on the orbit segmentyfriany. Hence we

must have; — +o00, andg € J.(p). Observe thap (respectivelyg) is not periodic,

because otherwise every point on a transversal would be periodic with nearby period, and

in particular the; would be bounded by the period pf, contradicting our last conclusion.
Finally, by Remark 4, ifp (respectively,q) fails to escape to infinity in forward

(respectively, backward) time, then it belongs to a stable (respectively, unstable) separatrix
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of some finite saddle, and for some paint(respectivelyg’) on an unstable (respectively,
stable) separatrix of the same saddle point—which does escape to infinity—we still have
q' € J+(p), by Remark 2. Since’ belongs to the same level curve asthe lemma
follows. m|

3. Behavior at infinity
In this section, we consider structures associated to saddles at infinity for a planar
Hamiltonian flow ® s, and complete the proof that the conditions of Theorem 3 are
necessary for Hamiltonian stability.

Fix afunctionf € F" with its associated Hamiltonian flow ; and velocity vectorfield
X . Observe that whenever € J4(p) under® s, we must havef(g) = f(p). In
particular, it makes sense to talk about the valug at a saddle at infinity: any such value
is avirtual critical valueof f (equivalently, a virtual critical value is any value occuring
at some virtually critical point); collectively, the critical and virtual critical values are the
extended critical valuesf f. While the (ordinary) critical values can be dens&ifor an
open set of functions, we have seen that generically there are countably many. We wish to
establish this also for the extended critical values. The argument is based on the following
observations.

Remark 5.A homoclinic contour (finite or at infinity) for a Hamiltonian flow is a limit of
closed orbits.

This follows immediately from the observation that, if a sequepnce> p andy; — oo
satisfyg; = ®(p;) — g = p with p a regular point, then the trajectories of themust
cross a transversal throughwice, and hence must be closed orbits.

LEMMA 4. Supposd is a transversal tody and p;, i = 1, 2, 3 are distinct points at
which T intersects the stable separatrices of some saddles at infinity. Then the unstable
separatrices of these saddles cannot all intersect a single transvEtsal

Proof. We will prove the lemma by contradiction. Number thgs so that f(p1) <
f(p2) < f(p3), and suppose; € T', i = 1,2,3, are the intersections of the
corresponding unstable separatrices with a transv@fsalVe can assume thdt and 7’
are disjoint. We have far=1, 2, 3

w(pi) = a(p) =0
pi € T+ (pi).

The latter says we can pigk € T, q] € T',i = 1,2,3, withg] = ®'i(¢;), t; > 0,¢;
arbitrarily nearp;, andg; arbitrarily nearp;. We can assume tha’(¢;) ¢ T U T’ for
O<t<t.

We claim also thap, andp5, lie on different orbits. For otherwise, by Remarkb can
be taken to lie on a closed orbit, which must sepapatérom p3, and hence one of these
two orbits must be bounded (in both time directions), a contradiction to the hypothesis that
each escapes to infinity in some time direction. As a consequence, the opbitafinot
crossT’.
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Let C; denote the orbit segment fragnto ¢;, and for two points;, 8 € T (respectively,
a',B € T, [, B] (respectively[a’, B']) the segment of” (respectively,T’) between
them.

By the Jordan curve theorem, the unign, g3] U C3U [qé, qi] U C1 separates the plane
into two components, one a topological disc and the other unbounded. Every point on
the transversdly, ¢3] leaves one of these components, #ay and enters the otheRs.
SinceC; andC3 are orbit segments, the only other possible passage betixeand D;
is acrosdq; . 51, where points pass fro; to D;. Sincep; € [q1, ¢3] has an unbounded
forward semi-orbit which does not crofgg, ¢31, D> must be unbounded (arfdh a disc).
Sinceps andpz also have unbounded forward semi-orbits, they must ligzerngz]. Now,
g2, Which is neamp2, must lie betweep; andps. By an argument similar to that givingy
and Dy, the union[gz, g3] U C3 U [g3, q5] U C2 separates the plane into two components,
D} and D5, with

D1 C D}, DjC Dy,

and passage betwed and D/, can occur only along the transversal segmeémisgz]
and[g3, ¢5]. By looking at the values of, we see that the forward semi-orbit pf is
contained inD7, while that of p3 is contained inD, U D1. Since one of these two sets is
bounded, the semi-orbits gf and p3 cannot both escape to infinity, a contradictiond

As a corollary of Lemma 4 we obtain our desired counting result.

PROPOSITIONL. A planar functionf : R? — R has at most countably many virtual
critical values.

Proof. We can cover the set of regular pointsffvith countably manylowboxessets of

the form{®’(x) | x € T,0 <t < t} whereT is a transversal and @ t < oo. For each
saddle at infinity, we pick a disjoint pair of these flow boxes such that the first (respectively,
second) intersects the stable (respectively, unstable) separatrix of the saddle. By Lemma 4,
a particular pair of choices can be associated to at most two different saddles at infinity;
since there are countably many possible pairs, this proves the proposition. a

Using this result, we can show that the rest of the conditions in Theorem 3 are necessary
for Hamiltonian stability.

PrROPOSITIONZ2. If f is HamiltonianC" stable ¢ > 1) then every critical curve foy is
isolated.

Proof. Since the Morse functions are dense, we can assfimseMorse, so thay is the

only critical point of f with value equal te = f(¢) = f(p). Since non-degenerate local
extrema are automatically isolated from other critical and virtually critical points, we can
assumey is a saddle point.

Let U be a neighborhood af containing no other critical points of, bounded by
transversals to the four separatricesqofind orbit segments joining their ends. We
can assume that one of these transverdalgoes througtp. Let V andW be closed
neighborhoods of such that

V Ccint(W), W cCint(U).
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Consider perturbationgof f of the form

glx,y) = flx,y) +8(x,y)

wheres : R? — R is a ‘bump function’ satisfying, for some constapt> 0,

§=0 off w
0<éd<éy onW
§=36p onV.

Given aC" neighborhoodV; (f) of f, it is possible to findvg > 0 such that, for every
value ofé§g satisfying 0< 8¢ < ap, there exist$ as above such that € N.(f). Every
such perturbation haga hyperbolic saddle fob,, with g(¢) = ¢ + o, and by narrowing
N:(f) we can ensure that has no other critical point i/. The stable and unstable
separatrices af leaveU at the points on the four transversals whé¢re- ¢ + §g, and the
vectorfieldsX » and X agree offU.

It follows that if ¢ + 8o is not an extended critical value of, then ®, has no
saddle connection betwegnand another finite or infinite saddle. By Proposition 1, the
complement of the extended critical valuesjofs dense inR. A dynamical equivalence
betweend ; and ®, in an appropriate compact-open neighborhood of the identity must
takegq to itself, and soP ; cannot be Hamiltonian stable unlegsalso has no connection
betweery and any other saddle.

Thus, if p is not isolated from stable and unstable separatrices of other saddles, then
there existc; — ¢ such that thed ;-orbit crossingT where f = ¢; is a stable or
unstable separatrix of some saddle. Suppgse ¢ (otherwise we defing as f — §).

By condition (i) in Remark 2, we can, without loss of generality, assumeyilias on an
unstable separatrix and all the orbits with= ¢; are stable separatrices. A perturbation

g as above witlr + 8o = ¢; then has a saddle connection betwgeand another saddle.
Thus® ; and®, cannot be dynamically equivalent (at least by a homeomorphismin some
compact-open neighborhood of the identity), again preventing structural stabifity of

H. |

Combining Proposition 2 with Lemma 2 and Remark 3, we have shown necessity in
Theorem 3. We summarize.

ProPOSITIONS. If f (respectivelyd ) is HamiltonianC" stable for some > 1, then

(1) every critical point of f is non-degenerate (i.e. every equilibrium dfy is a
hyperbolic saddle or non-degenerate center);

(2) each critical curve forf is proper (i.e. the separarices of each finite saddle are
isolated from the separatrices of all other finite or infinite saddlesifg).

4. Stability results
In this section, we will show that the conditions of Theorem 3 are sufficient for Hamiltonian
stability.
Fix f e F? satisfying
(1) every critical point off is non-degenerate, and
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(2) each critical curve is proper.

Also, fix K ¢ R? compact and > 0. We shall provef is HamiltonianC?! stable by

defining a strong’? neighborhoodV; (f) and, for eacty € N.(f), a homeomorphism

h : R? — R? mapping level curves of to level curves of, with |h(x) — x| < § for all

x € K. Our construction of: is greatly influenced by the proof odPW, Theorem 3.6.1].

We will make extensive use of the gradient lines f Recall that the gradient

vectorfieldV f = (df/dx, df/dy) vanishes precisely at the critical points ffand is

orthogonal at each regular point to the Hamiltonian vectorfiejd The gradient flow,

I'r, generated by f (whose trajectory through a poipt denotedy,, will be called the

gradient lineof f throughp) satisfies:

(1) Ty hasanode wherevér, has a center: a local maximum (respectively, minimum)
for f is a sink (respectively, source) fOry;

(2) Ty has a hyperbolic saddle wherewer; does (i.e. at every non-degenerate non-
extremum critical point off);

(3) the gradient lines foliate the set of regular pointg'dfansversally to the flow lines
of @ (i.e. the level curves of).

By condition (3), the functiory is strictly monotone along each gradient line, and so for

each regular point € R?\ crit( f), the set of values achieved fyalong the gradient line

throughx forms an open interval

1(x) = {f(T7(x) | 1 € R} = (m—(x), m4(x))

where
my(x) = ,jggoo f(F}-(x))-

Definely (x) by
mt(x) = f(x) £l (x)

so that/1 (x) is strictly positive, possibly infinite. Givene I(x), we can find € R with

s = f(F’f(x)), and ifx; — x, thens; = f(I‘}(xi)) — s, With s; € I(x;). It follows
that each of the two functioris (x) is lower semicontinuous. Thus we can find arbitrarily
smooth functiong.s (x) defined on the regular points such that

0 < px(x) <lx(x)

for everyx e R? \ crit(f). Given a pair of such functions and a subset R? \ crit(f)
whose intersection with each level curve is relatively open, we can form a neighborhood
of A via

UA, pe) ={y=Thx |x e Aandf(x) — p-(x) < f(y) < fx) + p ().

The gradientlines foliat&/ (A, p+) in such a way that for eache A, the functionf takes

each value in the intervalf (x) — u—(x), f(x) + n+(x)) at a unique point on the le&f,

throughx.

We shall combine a structure of this sort with a system of open$&is) C V(p),

p € crit(f), where theV (p)’s are disjoint, such that for eaghe crit(f):

(1) V(p) is the component of the preimage® {(c_, c4)} containingp, wherec. =
c+(p) satisfyc— < f(p) < c4, and the critical curve through is the only critical
or virtually critical curve intersecting/ (p);
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closed arm

Vip)

FIGURES. V(p) andV’(p) for a saddle point.

(2) V/(p) is a neighborhood ofp with diameter at mos8/2, and for eachx ¢

Vi(p\{p}
LxNV(ip)=TxN V/(P)

is an interval with
fTCxNV(p) =Jx) = (a,b),

wherea, b € {c_, c4+, f(p)} (the possibilities depend on whethgis a maximum,
minimum or saddle forf).

Whenp is a local maximum (respectively, minimum) fgrandc = f(p), we can find
c—(p) < c (respectivelyc(p) > ¢) sufficiently close tac that the level curve where
f = c_ (respectively¢c) bounds a topological disc of diameter at m&& containingp
and filled by simple closed level curves surroundmwiith f = s for eachs € (c—, ¢)
(respectively,(c, c1)). Pickingc— < c¢ (respectivelyc. > c¢) arbitrarily, we obtain
V/(p) = V(p) satisfying both conditions.

When p is a saddle point, we can still invoke the second conditionfoto pick
c_ < f(p) < c4 sothatthe componemt(p) of f~1{(c_, ¢, )} containingp intersects no
other critical or virtually critical curves of', and so that each s-separatrix ap reaches
one of the level setg.. (f). By takingc+ sufficiently close to each other, we can make
each of thesd" s-separatrix segments arbitrarily short, and then defifig) to be the
union of the gradient line segmerits N V (p) which intersect some small neighborhood
of p: this can be made to have arbitrarily small diameter, as well (see Figure 5).

Observe that the relative boundaryf(p) in V(p) consists of four gradient linds;,

i =1,...,4, each crossing the critical curve gfthroughp in a unique point. We will
refer to the components &f(p) \ U?:l I'; other thanV’(p) asarmsof V(p). Each arm
intersects a unique separatrix orbit fpunder the Hamiltonian flowb . If this separatrix
is a homoclinic contour, the arm is a relatively compact rectangle bounded by two gradient
linesT;,, I';, and a finite segment of each of the level cunggs(f) boundingV (p); we
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will call this aclosed arm By contrast, a separatrix which escapes to infinity is trapped in
anopen armof V (p), bounded by one gradient lifg¢ and an unbounded segmeit of
each of the level curveS., (f). A priori, the boundary of an open arm may also contain
additional components of either of the level séts (f), but the second condition ofi
prevents this, as follows easily from the next lemma.

LEMMA 5. Supposé& is an open interval with endpoings., ¢+, transverse ta@. Suppose

a saddlep has an unstable (respectively, stable) separatrix which escapes to infinity,
crossingl’, andclosI' intersects no stable (respectively, unstable) separatrices of other
finite or infinite saddles. Then the forward (respectively, backward) saturatidh of

St ={®'(¢) g €T, £t >0}

is an open set whose boundaryRf is the union ofl" with the forward (respectively,
backward) orbitsCy = {®'(q+) | t > O} (respectivelyLy = {®'(g+) | t < 0}) of the
endpoints ofl".

Proof. We prove the case of an unstable separatrixfothe stable case follows by time
reversal. Note that, by Remark 4, our hypotheses amply thatw(g) = @ for each
q € closr.

Suppose is a boundary point of which does not lie o U £, U £L_. Pickr; — r
with r; € S4, sor; = ®'i(g;) for someq; € ' andy; > 0. Going to a subsequence,
qi — q € closT'. If some subsequence gfconverges, say to, thenr = ®’(¢), and
re S Ur'U Ly UL_. Butthis contradicts the hypothesis that a boundary point of
S+ notinlCU L4 UL_, sot; — +oo. However, thery belongs to the stable separatrix of
some saddle at infinity, contradicting our assumptiori’on |

We now wish to foliate the set of regular points by curferansverse t r so that,
whenever € V(p) \ {p} for some critical poini, the curveT, throughx intersects the
boundary ofV (p) in at least one point+ (x) € L., (f), and if not at two, then the other
end of T, is p. A first candidate for this foliation is the gradient lines: indeed, the choice
T, = T, satisfies this condition it € V'(p) \ {p} (and thus forx € V(p) \ {p} when
p is a local extremum for). Similarly, if x belongs to a closed arm of a saddle pgint
then the gradient flow enters this arm alofig (), has naw-limit inside the arm (since
there are no equilibria), and hence must leave the arm—which is only possitig, \i#).

It follows that we can takd’, tangent toV f in V/(p) for eachp e crit(f), and in every
closed arm o (p) for each saddle.

However, we have no guarantee that this condition holds in an open arm, since we
cannot exclude the possibility of saddles at infinity for gradientflow. We will need,
therefore, to defin& as a modification of the gradient foliation inside (some) open arms
of saddles. To make sure our construction yields a global foliation (particularly at points of
accumulation of arms for different saddles), we need to control it using th&/§atg..)
described earlier.

Denote byV the union of all open arms of saddles; the complem#&ris a closed set
containing all the set¥’(p) (for all critical points) as well as the bounding level curves
L, (f) forall setsV (p). We would like to pick smooth functions,. onV° so that the set

U = UVC\ Crit(f), us) U crit(f)
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is an open set containingf. This is not automatic, becau¥€ need not intersect each level
curve in arelatively open set. However, the only points which are not automatically interior
to U (for everypositive choice ofx+) are those along the gradient linEsbounding the
open arms in/. Clearly, we can pickut so that near the ends of the gradient line
segments defining join £_ to £, and this ensures th&t is interior tol{.

A boundary point; of &/ must belong to an open arm &f(p) for some saddle, and
so the intersection wittV (p) of some gradient line must contain an open interval with
one endpoint at and the other at a boundary pot(z) € L., (f) of V(p). If both
possibilities 61 (z) ando_(z)) occur, then the gradient line throughntersectsV (p) in
an open interval joining._ (f) to L., (f), with z the only point of this interval not ity.

It will prove useful to introduce a certain coordinate system on each opeWwagmnm

LEMMA 6. For each open arn¥;(p), there is a diffeomorphism aflosV;(p) with the
subset ofR?2
Vi(p) = [c—, c4+] x [0, 00)

under whichrl'; corresponds td@c_, c¢4) x {0} and, for eachs € [c_, c+], Ls(f) N Vi (p)
corresponds tds} x [0, co), and which carriesX ¢ to the unit vertical vectorfield.

Proof. The transports undeqb’f of the bounding transversdl; of V;(p) foliate its
saturationSy, which by Lemma 5 equal¥;(p), but then the inverse of the desired
diffeomorphism is given by(s, ) — CD’f(qs), whereg;y is the unique point on clds;
with f(gs) = s. O

Since the gradient lines ii; (p) are transverse t& ¢, they correspond to the graphs
y = y(x) of functions defined on subintervalsfef_, c;.]. We would also like to have the
boundary ot/ in V;(p) described by a functiop = u(x).

Note that if a gradient line ir¥;(p) joins both sides (i.e. it corresponds ¥(p) to
the graph of a functionp = y(x) defined on all ofic_, ¢+]), then the same holds for
the gradient line passing through any point y) with y < y(x). Thus, if a gradient
line joining the sides oV;(p) meets the boundary éf in V;(p) at a unique point, then
we can ‘thickenl/ to engulf all points below this gradient line. In this way, we ensure
that a gradient line itV; (p) above some unique pointintersects the complement&fin
an open subinterval. Finally, by making the functions(x) on £._ andu_(x) on L,
strictly decreasing(+(®';(x)) < p+(x) for x € L., ands > 0), we can ensure that
the boundary of/ in V;(p) corresponds to a graph= u(x) in Vi(p), whereu is defined
on some open intervah_,a;+) C (c—, cy+), With a unique minimum at and strictly
monotone on either side, and lim,, u(x) = +oo. Letz = (xo, yo).

With this picture, we see that for each- yo, there are precisely two points_, ) and
(x4, r) with

c_<a_<X_<xp<Xy<ay=<cy

and
uxy)=r.

By definition, there is a gradient line # joining a point of ., to (x4, r), and so we
can form a foliation ofV;(p) by piecewise-smooth curves transverse to the level sets of
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f which agree with the gradient linesdhand correspond to horizontal line segments in
Vi(p) \U. The possible ‘corners’ along= u(x) are easily smoothed out locally to obtain
a smooth foliatior” of V;(p) such that

(1) T.istangenttdv f if x € U, and transverse t& ; everywhere;

(2) eachleaf crosses both_(f) andL., (f).

We would also like to ensure that the leaved/iintersecting our compact s&t have
length at mos8/2. This is guaranteed insidé’(p), and can be guaranteed inside any
closed arm by controllingr+ — c_|. Similarly, we can uniformly estimate the derivatives
on K of the diffeomorphism taking the ari¥j (p) to the stripV;(p), and thus (reducing
lc+ — c—| if necessary) ensure that our construction creates no long leaves thkough

Since the gradient lines already foli@te crit( /) (and the critical points form a discrete
set), we have the following.

LEMMA 7. Givenf e F? satisfying

(1) every critical point is non-degenerate,

(2) each critical curve is proper,

as well as a compact s&& c R? ands > 0, there exist open setg&’(p) C V(p),

p € crit(f), pairs of numbersy = c+(p), c— < f(p) < c4, afoliationT of R2\ crit( )

by curves transverse t&6 ; and an open coveli/, V} of R? such that:

(1) V(p) is the component of 1 {(c_, c;)} containing p, and contains no other
critical or virtually critical points of f;

(2) V/(p)is aneighborhood op contained in/ \ V of diameter at most/2; V'(p) =
V(p) if p is alocal extremum, and otherwise is cut outiqfp) by gradient lined";
crossing eachb -separatrix forp;

(3) Ty istangenttoV f forx € U;

(4) ifx e V(p)\ {p}, thenT; (the leaf throughx) crosses at least one of the bounding
level setsC., (f), and if it does not cross both, thgnis an endpoint off; for
x € KNV(p)\{p}, the setl, N V(p) has diameter at most/2.

With this structure, we can prove sufficiency.

PROPOSITION4. Supposef € F? satisfies

(1) every critical point is non-degenerate,

(2) each critical curve is proper.

Given K c R? compact ands > 0, there exists : R? — R* such that, for every
g € N:(f), we can find a homeomorphigm R? — R? taking level curves of to level
curves ofg, with |2 (x) — x| < § whenever € K.

Proof. We construct the seté’(p) C V(p) and the foliatioril” as in Lemma 7. Now, pick
for eachp e crit(f) a pair of numbers & ro < r1 so that the closed dis#; (p) of radius
r; is interior toV’(p), and let

wi= U wim. i=o1
pecrit(f)

Letr : R? — [0, 1] be a smooth function such that= 1 onW, andx = 0 off Wj.
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Giveng € F?, we will ‘localize’ g by defining
g1(x) = f(x) + 7 (x)[g(x) — f(x)].

Clearly, we have

g1(x) = g(x) onWp
g1(x) = f(x) off Wi

As a notational convenience, set

go(x) = f(x), ga(x) = g(x).

Note that the value and derivatives mfand f at a point determine a ‘local Lipschitz
constant’A(x) > 0 such that

lgj(x) = gj-1(llcz < Ax)llg(x) = f(xX)lc2

so that by picking an appropriate functien: R2 — R* we can guarantee any set of
a priori pointwise estimates ofg; (x) —g;—1(x)|l¢c2 for j = 1 andj = 2 via the condition
g € N.(f). We will therefore concentrate on our pointwise estimates, definimglicitly.
We will require the following.
(1) For eachp € crit(f), g1 has a unique critical point in W1(p), and it belongs to
Wo(p) (and is of the same type 28.
(2) Forx e R\ Wy, g;(x) € I(x), and forx € W1(p),

lgj(x) = f)] < gmax(f(x) —c_.cq — f(x)}.

(3) Let Ko be a compact set containirig \ W in its interior and disjoint from the
critical points of f; we want|g;(x) — gy (x)| < &’/2 forallx € Ko, wheres’ > 0
is determined so that for € Ko, x within distances’ of y andz on the same ledf,
asx, the estimatéf (x) — f(z)| < ¢ implies|x — z| < §/2.

The first of these is guaranteed 8¢ estimates oV (sincegg = f off Wy) and the
second ar€?! estimates. To see thatin the third condition exists, note thaf(y) > 0
depending on the regular poinexists by the transversality df to the level sets of . On
Ko, this can be bounded away from zero, and hence replaced by a constant.

Giveng € F2 satisfying these conditions, we will construct our homeomorphism in two
stages#; (j = 0, 1) will take level curves og; to level curves og 41, andh = hy o ho.
Note that the triangle inequality givése Nco(K, U) provided|hj(x) — x| < §/2 for all
x e Kandj =0,1.

To constructhg, we first define, for eaclp € crit(f), a strictly increasing function
¢p : R — R which differs from the identity only orf (W1(p)) and takes: = f(p) to
¢’ = gi(g). We also form a new foliatior’, analogous to the foliatio® of Lemma 7,
but using the gradient flow qf in place of that forf. Note that by hypothesis, the two
foliations agree (i.e. local leaves agree) Wff. We need, however, to take care with the
exceptional leaves formed by the separatrices of the gradient flows at saddles. Suppose
is a saddle point foif, andg the unique critical point of1 in W1(p). Even though the
two foliations have the sanecal leaves near the boundary 6f(p), aV f-separatrix for
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p and the correspondinggi-separatrix foiy may meet this boundary at different points.
However, with a non-linear shear near each of the bounding level curve segfhent®
can modify the foliatior?”’ for g; slightly inside the boundarie$. of V'(p) so that the
leaf of T’ which becomes & g1-separatrix foiy inside Wo(p) meetsC.. at the same point
as the corresponding f-separatrix forp. With a little care, we can also ensure thaTl’jf

is a non-separatrix leaf (of the foliatidhfor f), with endpointsri (x), then the modified
foliation 7" for g satisfies

Ty =To oy
Now defineh, (x), forx € V(p) \ {p} (p € crit(f)) to be the unique point o’m";i(x)
where

g1(hp(x)) = @p(f (X)),

andh,(p) = ¢. This defines a homeomorphisim : V(p) — V(p) which takes level
curves off in V(p) to level curves of1 in V(p), and which equals the identity near the
bounding level curves df (p). Define

hp(x), x e V(p), somep € crit(f)
X, otherwise

ho(x) = :

Sinceh, = id near the boundary df (p), the only possible problem with this definition
is continuity at limit pointst = lim x;, wherex; € V(p;) with p; distinct critical points.
Since crif f) is a discrete set, this mearnss a regular point

xeu\ |J vm=u.
pecrit(f)

so eventually; € U’. Now, ini/’ the leaves of”’ agree with those df', and so for each,
h(x;) € T)gl_. These leaves convergeT® = lim 7y, = lim T)g’,. Furthermore, sinc& (p;)
intersectd, in the set wherg takes values itic_(p;), c+(pi)), and these are disjoint, we
must have

fx) =lime_(p;) =limci(pi) =lim ey, (f(x:)).

It follows thatho(x;) — x = ho(x), so that the homeomorphishg is well defined. It
is also clearly a homeomorphism taking level curvegpf f to level curves ofj, and
lho(x) — x| < 8/2forx € K.

Now definer; off Wy to be the unique point ofi, where

g(h1(x)) = g1(x).

This is well defined by the second condition on the perturbation, and giMas = x
on the boundary of eacWy(p). However, insidé¥o(p), g1 andg agree, so this extends
inside as the identity. Since th&y(p)’s do not accumulate anywherg, is a well defined
homeomorphism takingi-level curves togo-level curves. Finally, the third condition
guarantees thaif (h1(x)) — f(x)| < €, hencdhi(x) — x| < §/2forx € K \ Wy C Ko.

In view of our earlier observations, this proves the proposition. |
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5. Hamiltonian stability versus topological stability for planar functions

In this section, we explore the distinction between our notion of Hamiltonian stability,
based on the dynamics of the flowls;, and topological stability, as indPW]. To
distinguish these, we calf, g : R?> — R dynamically equivalenif there exists a
homeomorphisnk : R?2 — R? taking level curves off to level curves ofg, and
functionally equivalentf there exist homeomorphisnis: R? — R? and¢ : R — R
such that

goh=¢of,

i.e. h takes levelsetsof f to level setsof g. A function f € F" is Hamiltonian
(respectively, topologically” stable if for some strong” neighborhoodV; (f), every
g € N.(f) is dynamically (respectively, functionally) equivalent fo with # in some
pre-assigned compact-open neighborhood of the identity.

Clearly, functional equivalence implies dynamic equivalence, so that topological
stability implies Hamiltonian stability. We shall show the converse fails on a non-empty
open subset of” (r > 1). As a preliminary, we prove the following, which justifies a
parenthetic assertion in 82.

LEMMA 8. Supposef € F? has a discrete closed sét c crit(f) of non-degenerate
critical points whose valueg'(C) are dense in some non-degenerate interialb]
(a < b). Then the same is true of every function in some st@ngeighborhood off .

Proof. Pick a countable family of open sets;, i € N, containing a basis for the
neighborhoods of every numberflia, b]. Note thatf (C) must be countably infinite, and
so we can pick a sequenpeof distinct elements of” with f(p;) € A;,i=1,....

SinceC is discrete, we can find disjoint neighborhodgsof p; with f(U;) C A;, and
pi the only critical point inU;. For eachl;, picke; > 0 such that, whenever

lg(x) = f(O)llcz <&, VYxeU
¢ has a unique critical poin; in U;, andg(g;) € A;. Now, takes : RZ2 — Rt with
e(x) <g, forxeUl;.
Theng € N:(f) impliesg(g;) is a critical value in4;, and hence

la, b] C clos{g(gi)}
as required. m|

Using this, one can prove easily that there exists a non-empty open sub&étiof
which every element has critical values dens&infor example, adding a small bump
function around eaclp;; = (i, j) to the functionfo(x, y) = x/2” we can construct a
function f with C = Z x Z and f(C) = {i/2/}. We shall use Lemma 8 in a slightly
different way.

Remark 6.If f € F has a critical value which is a limit of other critical values, then it is
not topologicallyC” stable for any-.
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To see this, note that we can assume all critical points are non-degenerate, hérige crit
is discrete. Ifp;,i = 0, ... are critical points withf (p;) = ¢; distinct andc; — ¢o, then
via a small bump function we can changenly very nearpg so as to achievg(qo) = ¢;
for some large, and alternatively so as to hayeg the only critical point in its level set.
However, then the number of critical points in the level set thrapglwhich is an invariant
of functional equivalence, is not constant in a stré¥igneighborhood off, preventing
topological stability.

Using these observations, we can construct our example.

PROPOSITIONS. There exists a non-empty open subsef#of r > 1, in which every
function is Hamiltonian stable, but not topologically stable.

Proof. Consider first the function
uo(x) = e* cosx
with
up(x) = e*(cosx — sinx)
and hence a relative maximum (respectively, minimumyoat(respectivelyxo;41) for
each integek, where

_ dn +1
Xp = 7 .
Note that (— 1y
uo(xy) = — 2 e
0( n) \/E

ande* grows monotonically with increasing
Now, the function
fo(x, y) = uo(x) + y?

has a saddle point (respectively, local minimumpat= (x,, 0) for n even (respectively,
odd). The level curve throughy, consists of a homoclinic contour through = (x5, 0),
where

Xoh41 < X < X2kg2,  uo(xoy) = uo(x2k)

and two separatrices escaping to infinity, witlttoordinate going te-co andy-coordinate
going to +oo (respectively,—oo). The inside of the homoclinic contour is filled with
closed level curves surroundinpgy1, While the level curves crossing theaxis between
q2r and po,42 march off to infinity in parallelizable fashion. It is easy to verify that there
are no saddles at infinity.

Now, we consider a modificatian of ug. Note that fom > 0, |ug(x,)| > 1. For each
k=0,...,leta; (respectivelyb;) be the unique point between, andxz;41 at which

uo(ar) = 1 (respectivelyuo(by) = 0)

and modifyug on[ax, by] so that there are 2 3¥ non-degenerate critical pointsay, by),
with (distinct) critical values
] 2

1 i 2
¥ gL

i
Cik = 3 + 1 Cik =
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Note that the numbeks x, c;,k are all distinct, and their union is denseh 1].
Now consider
fy) =ux)+y%

We see that the new maxima (respectively, minimajofield saddles (respectively,
minima) of f, and that the critical curves corresponding to the new sadd|eg,ih;] x {0}

are pairs of homoclinic contours, contained inside the homoclinic contour thrpggh

This, together with the distinctness of the critical values, shows thattisfies the
hypotheses of Theorem 3, and hence an open st€éngeighborhood off consists of
Hamiltonian stable functions. However, each of these, by Lemma 8, also satisfies the
hypotheses of Remark 6, and hence fails to be topologically stable in the sedB&\{f [0
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