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Abstract. In this paper we study the maximum number of crossing limit cycles that
can have the planar piecewise linear di�erential systems separated by a straight line Σ
and formed by two linear di�erential systems X−, X+ which singularities are symmetrical
with respect to the straight line of discontinuity Σ. More precisely, the singularities points
of the linear di�erential systems X−, X+ considered can be a center (C), a focus (F),
a diagonalizable node (N), an improper node (iN) or a saddle (S), which can be real
or virtual. Then we have fourteen cases depending of the type and the position of the
singularities of X− and X+. Here we provide lower or upper bounds for the maximum
number of crossing limit cycles for each case.

1. Introduction and statement of the main results

The qualitative theory of discontinuous piecewise di�erential systems arose in a natural
way in the study of nonlinear oscillations by Andronov, Vitt and Khaikin in [1]. Moreover
in these last years this qualitative theory is a matter of great interest for many researchers
because these systems are used to investigate nonlinear dynamics, to model several real
phenomena like cell activity and processes appearing in electronics, mechanics, economy,
etc., see for instance [3, 5, 21,24] and references quoted therein.

We recall that a crossing limit cycle is a periodic orbit isolated in the set of all peri-
odic orbits of the piecewise linear di�erential system, which only have isolated points of
intersection with the discontinuity curve.

The class of piecewise linear di�erential systems in R2 with two zones separated by a
straight line Σ is the simplest class of piecewise di�erential systems. We can consider
without loss of generality that the discontinuity straight line is Σ =

{
(x, y) ∈ R2 : x = 0

}
.

It separates the plane into two regions, namely

Σ− =
{

(x, y) ∈ R2 : x < 0
}
and Σ+ =

{
(x, y) ∈ R2 : x > 0

}
.

Therefore we obtain the piecewise linear di�erential system

(1) Ẋ =

{
X− = A−X +B−, if (x, y) ∈ Σ−,

X+ = A+X +B+, if (x, y) ∈ Σ+,

where

A± =

(
a±11 a±12
a±21 a±22

)
, B± =

(
b±1
b±2

)
and X = (x, y)T ∈ R2

In [20] Lum and Chua conjectured that a continuous piecewise linear di�erential system
(1) has at most one crossing limit cycle. In [9] Freire et al. proved this conjecture. There
are several papers tried to investigate the problem of Lum and Chua for the class of dis-
continuous piecewise linear di�erential systems in the plane. For instance in [10] Han and
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Zhang conjectured that discontinuous piecewise linear di�erential systems (1) have at most
two crossing limit cycles. Via a numerical example with three crossing limit cycles in a
discontinuous piecewise linear di�erential system, Huan and Yang gave a negative answer to
this conjecture, see [11]. Later on in [18, 8] were given analytical proofs for the existence of
these three crossing limit cycles. Nevertheless until today it is an open problem to know if
three is the upper bound for the maximum number of crossing limit cycles of discontinuous
piecewise linear di�erential systems (1).

Due to the di�culty of this problem several researchers study the upper bounds of crossing
limit cycles of system (1) under some special conditions, see [2,6�8,11�13,15�17,19,22,23]. In
[16] the authors proved that when one of linear di�erential systems of (1) has the equilibrium
point on Σ, systems (1) have at most two crossing limit cycles and this upper bound is
reached. In [7] the authors studied systems (1) such that have a maximal crossing set, and
with a focus-focus dynamics, they proved that if a−12a

+
12 > 0, then systems (1) have at most

one crossing limit cycle. In [22] it was proved that systems (1) with focus-saddle type with
b+1 = 0 have at most one crossing limit cycle. Recently in [15] it was proved that systems (1)
having a unique non-degenerated equilibrium can have at least three crossing limit cycles
depending on the con�gurations of the equilibrium points for each linear di�erential system
in (1).

The objective of this paper is to study the maximum number of crossing limit cycles that
can have the planar piecewise linear di�erential systems(PWLS) (1) when the equilibrium
points of the di�erential linear systems X− and X+ are symmetric with respect to the line
of discontinuity Σ and these singularities can be real or virtual.

We recall that the singularity P− = (x0, y0) is a real singularity (P r
−) for the linear

di�erential system X− if x0 < 0 and it is a virtual singularity (P v
−) for the linear di�erential

system X− if x0 > 0. Considering the linear di�erential system X+, we have that P+ =
(x1, y1) is a real singularity (P r

+) if x1 > 0 and it is a virtual singularity (P v
+) if x1 < 0.

We analyze the possible con�gurations that can arise when the equilibrium points of the
linear di�erential systems X− and X+ are symmetric with respect to the straight line Σ.
We denote those con�gurations like (P−, P+) depending of type and the position of the
equilibrium points, P−, P+ ∈ {Cr, Cv, F r, F v, N r, Nv, iN r, iNv, Sr, Sv}.

We observed that the equilibrium points P− and P+ can not be a saddle Sv, a diag-
onalizable node N r or an improper node iN r because the �rst return map for the linear
di�erential systems X− or X+ is not de�ned on the discontinuity straight line Σ.

We assume that the equilibrium points P− and P+ of linear di�erential systems X− and
X+, respectively are symmetric with respect to the line of discontinuity Σ. Then we obtain
two options, �rst the case when the singularities of X− and X+ are symmetric with respect
Σ and they are on the straight line y = ε, ε ∈ R, this is, the singularities are (−k, ε) or (k, ε),
with k ∈ R+. Second we have the case when the singularities of linear di�erential systems
X− and X+ are symmetric with respect Σ and they are on the straight line y = sx, with
s ∈ R, this is, the equilibrium points are (−k,−sk) and (k, sk).

In Theorem 1 we assume that the singularities P− and P+ are on the straight line y = sx,
with s ∈ R and we observe that this condition is su�cient to analyze the above two cases
because when ε = 0 the equilibrium points are (−k, 0) and (k, 0) which are on the straight
line y = sx, with s = 0 and it is possible to verify that the number of crossing limit cycles
when the equilibrium point are on the straight line y = ε independent of the epsilon.

If the linear di�erential system X− has a center (C) we have the following options of
con�gurations: (Cr, Cr), (Cr, F r), (Cr, Sr), (Cv, Cv), (Cv, F v), (Cv, Nv) and (Cv, iNv). In
the paper [16] it was proved that if the planar PWLS (1) has the con�guration (Cr, Cr) or
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(Cv, Cv), then there are no crossing limit cycles. Therefore in statement (i) of Theorem 1
we study the remaining �ve cases.

When the singularity P− of the linear di�erential system X− is a focus (F ) we have the
following options: (F r, Cr), (F r, F r), (F r, Sr), (F v, Cv), (F v, F v), (F v, Nv) and (F v, iNv),
here we observed that due to that having symmetric equilibrium points with respect the dis-
continuity straight line Σ, the con�gurations (F r, Cr) and (Cr, F r); (F v, Cv) and (Cv, F v)
are equivalent. Then we study the remaining �ve cases in statement (ii) of Theorem 1.

If P− is a saddle (S) we have the con�gurations (Sr, Cr), (Sr, F r) and (Sr, Sr), but
the con�gurations (Sr, Cr) and (Cr, Sr) are equivalent, and the con�gurations (Sr, F r)
and (F r, Sr) are equivalent, then in this case we only have one possible new con�guration
(Sr, Sr) which is analyzed in statement (iii) of Theorem 1.

When P− is a diagonalizable node (N), we have the following con�gurations: (Nv, Cv),
(Nv, F v), (Nv, Nv) and (Nv, iNv), since the previous two cases have been already studied,
we only need to study the cases (Nv, Nv) and (Nv, iNv) in statement (iv) of Theorem 1.
The con�guration (Nv, F v) is in the statement (ii) of Theorem because it is equivalent to
the con�guration (F v, Nv) due to that having symmetric equilibrium points with respect
the discontinuity straight line Σ.

When the singularity P− is an improper node (iN), we only study the con�guration
(iNv, iNv) in statement (v) of Theorem 1, because having symmetric equilibrium points with
respect to discontinuity straight line Σ, the con�gurations (iNv, Cv), (iNv, F v), (iNv, Nv)
are considered in the above cases.

We denote the maximum number of crossing limit cycles of planar PWLS (1) byN (P−, P+).

Theorem 1. Consider that the linear di�erential systems X− and X+ in (1) have sym-
metric equilibrium points with respect the discontinuity straight line Σ and they are on the
straight line y = sx, s ∈ R. Then the following statements hold.

(i) N (Cr, F r) = N (Cr, Sr) = N (Cv, F v) = N (Cv, Nv) = N (Cv, iNv) = 1. Moreover
these upper bounds are reached and the crossing limit cycles are stables.

(ii) N (F r, F r) ≥ 2, N (F r, Sr) ≥ 2, N (F v, F v) ≥ 2, N (F v, Nv) ≥ 1 and N (F v, iNv) ≥
2. See Figures 1, 2, 3, 4 and 6, respectively.

(iii) N (Sr, Sr) ≥ 1. See Figure 7.
(iv) N (Nv, Nv) ≥ 2 and N (Nv, iNv) ≥ 2. See Figures 8, 10.
(v) N (iNv, iNv) ≥ 1. See Figure 11.

Theorem 1 is proved in Section 3.

Proposition 1. The upper bound for the maximum number of crossing limit cycles provided
in statement (i) of Theorem 1 is reached and the crossing limit cycle in each con�guration
of statement (i) it is hyperbolic. See Figures 12− 16.

2. Canonical forms and basic results

We observe that piecewise linear di�erential system (1) depend on twelve parameters.
In order to reduce the number of parameters on which the PWLS (1) depends we use the
canonical forms in the Propositions 2 and 3.

Proposition 2. There exists a topological equivalence between the phase portrait of the
discontinuous PWLS (1) and the phase portrait of the discontinuous PWLS (2) for all the
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orbits not having points in common with the sliding set.

(2) Ẋ(x, y) =


X−(x, y) =

(
2l −1

l2 − α2 0

)(
x

y

)
+

(
0

a

)
, if (x, y) ∈ Σ−,

X+(x, y) =

(
2r −1

r2 − β2 0

)(
x

y

)
+

(
b

c

)
, if (x, y) ∈ Σ+,

where α, β ∈ {i, 0, 1}. If α = i, we have that the equilibrium point of a linear di�erential
system X− has eigenvalues λ−1,2 = l ± i, so it is a focus if l 6= 0 or a center if l = 0. When

α = 0, then the equilibrium point of a linear di�erential system X− has one eigenvalue
of multiplicity 2, namely λ− = l 6= 0, so it is a non-diagonalizable node. If α = 1 the
equilibrium point of a linear di�erential system X− has eigenvalues λ−1 = l−1 and λ−2 = l+1,
then we have that the equilibrium point of X− is a saddle if |l| < 1 or it is a diagonalizable
node if |l| > 1. Analogously for the linear di�erential system X+.

For a proof of Proposition 2 see [8].

Other normal form which is independent of the change of coordinates it is provide in the
following proposition.

Proposition 3. Consider the linear di�erential system

(3) Ẋ(x, y) =

(
a11 a12

a21 a22

)(
x

y

)
+

(
b1

b2

)
,

it has a singularity

(a) of type focus(F ) (resp. a center(C)) if

(4) Ẋ(x, y) =

 A B

−(A− C̃)2 − d2

B
2C̃ −A

(x
y

)
+

(
b1

b2

)
,

with B < 0 and C̃ 6= 0 (resp. C̃ = 0 and B < 0);
(b) of type diagonalizable node(N) (resp. an improper node(iN)) if

(5) Ẋ(x, y) =

 A B

−(A− C̃)2 + d2

B
2C̃ −A

(x
y

)
+

(
b1

b2

)
,

with C̃2 > d2 > 0 and B < 0 (resp. d = 0 and B < 0);
(c) of type saddle(S) if

(6) Ẋ(x, y) =

 A B

−(A− C̃)2 + d2

B
2C̃ −A

(x
y

)
+

(
b1

b2

)
,

with 0 < C̃2 < d2 and B < 0.

Where the parameters C̃, A and B in (4), (5) and (6) are such that 2C̃ = a11 +a22, A = a11
and B = a12.

Proof. We know that the eigenvalues of linear di�erential system (3) are

(7) λ1,2 =
a11 + a22 ±

√
(a11 − a22)2 + 4a12a21

2
.
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(a) If we consider a11 + a22 = 2C̃, this is a22 = 2C̃ − a11, with C̃, a11 ∈ R and (a11 −
a22)

2 + 4a12a21 = −4d2, this is a21 = (−(a11− C̃)2− d2)/a12, with d, a12 ∈ R. Then
the eigenvalues (7) are λ1,2 = C̃ ± id, therefore the singularity of linear di�erential

system (3) is a focus (F) if C̃ 6= 0, and a center (C) if C̃ 6= 0. Considering a11 = A
and a12 = B, we obtain system (4).

(b) We consider a11 + a22 = 2C̃, then analogously to the above case a22 = 2C̃ −A, and
we assume that (a11−a22)2 + 4a12a21 = 4d2, then a21 = (−(A− C̃)2 +d2)/B. Then

the eigenvalues (7) are λ1,2 = C̃ ± d, therefore the singularity of linear di�erential

system (3) is a diagonalizable node (N), if C̃2 > d2 > 0 and B < 0, because the
two eigenvalues would have the same sign, and it is a improper node (iN), if d = 0,
because the two eigenvalues would be equals. Therefore we obtain system (5).

(c) Analogously to the previous case we consider a22 = 2C̃−A and a21 = (−(A− C̃)2 +

d2)/B. Then the eigenvalues (7) are λ1,2 = C̃ ± d, therefore the singularity of linear

di�erential system (3) is a saddle(S), if 0 < C̃2 < d2 and B < 0, because with this
condition we have that λ1λ2 < 0. Therefore we obtain system (6). �

We shall use the following tools for proving our results.

The functions f0, f1, ..., fn, de�ned on an open set U ⊂ R are linearly independent
functions if

for every t ∈ U,
n∑

i=0

αifi(t) = 0 implies that α0 = α1 = ... = αn = 0.

Proposition 4. Let f0, f1, ..., fn be analytic functions de�ned on an open interval U ⊂ R.
If the functions f0, f1, ..., fn are linearly independent then there exists t̃1, ..., t̃n ∈ U and

α̃0, α̃1, ..., α̃n ∈ R such that
n∑

i=0
α̃ifi(t̃j) = 0, for every j ∈ {1, ..., n}.

For a proof of Proposition 4 see [14] or [18].

Now we recall the concept of Chebyshev systems. For more details see [14].

De�nition 1. Let F = {f0, f1, ..., fn} be an ordered set of smooth real functions de�ned on
an interval I ⊂ R. The set F is an Extended Chebyshev system (ET-system) on I if and only
if the maximum number of zeros counting multiplicities by any non-trivial linear combination
of functions in F is at most n, and this number is reached. The family F is an Extended
Complete Chebyshev system (ECT-system) on I if and only if for any k ∈ {0, 1, ..., n} the
set Fk = {f0, f1, ..., fk} is an Extended Chebyshev system.

In the proof of Lemma 1 we will use the following proposition, for a proof see [14].

Proposition 5. The ordered set of functions F is an ECT-system on I if and only if the
Wronskians Wk(f0, f1, ..., fk)(t) 6= 0, on I for each k ∈ {0, 1, ..., n}.

For a proof see [14].

The following lemma will be used later on in the proof of statement (i) of Theorem 1 to
establish a sharp upper bound for the maximum number of crossing limit cycles that system
(1) can have.

Lemma 1. We consider the functions

f0(t2) = sin (t2), f1(t2) = sinh (rt2), f2(t2) = sinh (t2), f3(t2) = t2.

The following statements hold.

(a) The set of functions F1 = {f0, f1} is an ECT-system on the intervals (0, 2π) \ {π}
for every r 6= 0;
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(b) The set of functions F2 = {f2, f1} is an ECT-system for every t2 6= 0 and r 6= 1;
(c) The set of functions F3 = {f3, f1} is an ECT-system for every t2 6= 0 and r 6= 0.

Proof.

(a) Considering the functions f0 and f1 the Wronskian is

W (t2) = r cosh (rt2) sin (t2)− cos (t2) sinh (rt2).

Since W (0) = 0 and W ′(t2) = (1 + r2) sin (t2) sinh (rt2) does not vanish for any
t2 ∈ (0, 2π) \ {π} and r 6= 0. Then W (t2) 6= 0 for t2 ∈ (0, 2π) \ {π} and r 6= 0,
therefore by Proposition 5, statement (a) is proved.

(b) The Wronskian of the functions f1 and f2 is

W (t2) = r cosh (rt2) sinh (t2)− cosh (t2) sinh (rt2),

and we observed that W (0) = 0 and W ′(t2) = (−1 + r2) sinh (t2) sinh (rt2), then
W ′(t2) does not vanish for every t2 6= 0 and r 6= 1. Therefore W (t2) 6= 0 for t2 6= 0
and r 6= 1, then by Proposition 5, statement (b) is proved.

(c) The Wronskian of the functions f1 and f3 is

W (t2) = rt2 cosh (rt2)− sinh (rt2),

and we observed that W (0) = 0 and W ′(t2) = r2t2 sinh (rt2), we have that W
′(t2)

does not vanish if t2 6= 0 and r 6= 0, then W (t2) 6= 0 for t2 6= 0 and r 6= 0. Therefore
by Proposition 5, statement (c) is proved. �

In order to analyze the existence of periodic orbits which intersect both zones Σ± and Σ
at the two points p = (0, y0) and q = (0, y1) we use the closing equations provide in the
following Proposition.

Proposition 6. Assume that the PWLS (1) has a crossing periodic orbit that transversely
intersecting the straight line Σ in the points p = (0, y0) and q = (0, y1) where y1 = y−(t1)
and y0 > y1, with �ight times t1 > 0 and t2 > 0 in the zones Σ− and Σ+, respectively. Then
(t1, t2, y0) are real solutions of the closing equations:

(8)
e1 : x−(t1) = 0,
e2 : x+(−t2) = 0,
e3 : y+(−t2)− y−(t1) = 0.

3. Proof of Theorem 1

Proof of statement (i) of Theorem 1. We have that the equilibrium point of linear
di�erential system X− is a center, then using Proposition 3, we consider that the linear
di�erential system X− is in the canonical form (4) with C̃ = 0. Then the equilibrium point
of linear di�erential system X− is

(9) P− = (x0, y0) =

(
Ab1 +Bb2

d2
,−A

2b1 +ABb2 + b1d
2

Bd2

)
.

We separate the proof of statement (i) of Theorem 1 in two cases.

Case 1: P− is a real singularity of X−. We assume that P− = (−k,−sk), for this we
must consider b1 = Ak+Bsk and b2 = −k(A2 +d2 +ABs)/B. Therefore, linear di�erential
system X− is

(10) X−(x, y) =

 A(x+ k) +B(y + sk)

−(A2 + d2)(k + x) +AB(y + sk)

B

 .
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When we have an equilibrium point of type Cr for the linear di�erential system X−, by
hypothesis, we have two possible con�gurations for the equilibrium points of the PWLS (1),
namely, we can have the con�gurations (Cr, F r) and (Cr, Sr).

We consider that linear di�erential system X+ is in the canonical form (2) which has the
equilibrium point

(11) P+ = (x1, y1) =

(
− c

r2 − β2
,
−2cr + b(r2 − β2)

r2 − β2

)
.

Therefore the equilibrium point P+ is a real singularity of X+ if

(12) b = −k(2r − s), c = −k(r2 − β2);
and P+ is a virtual singularity of X+ if

(13) b = k(2r − s), c = k(r2 − β2).
Con�guration (Cr, F r): For the linear di�erential system X+, we consider the condition
(12) with β = i and r 6= 0.

The linear di�erential system X+ in this case is

(14) X+(x, y) =

(−y + 2r(x− k) + sk

(1 + r2)(x− k)

)
.

With those conditions the solution of system (10) starting at the point (x, y) = (0, y0) ∈ Σ
is

x−(t) = k(−1 + cos (dt)) +
(Ak +B(y0 + sk)) sin dt

d
,

y−(t) = −sk + (y0 + sk) cos (dt)− ((A2 + d2 +ABs)k +ABy0) sin (dt)

Bd
,

and the solution of system (14) starting at the point (x, y) = (0, y0) ∈ Σ is

x+(t) = k − ert(k cos (t) + ((r − s)k + y0) sin (t)),
y+(t) = sk + ert((y0 − sk) cos (t)− (k + r((r − s)k + y0)) sin (t)).

Considering that there exists t1, t2 > 0 the �nite times de�ned in Proposition 6. We have
that system (8) is equivalent to system

(15)

e1 : kd(−1 + cos (dt1)) + (Ak +B(y0 + sk)) sin (dt1) = 0,
e2 : k + e−rt2(−k cos (t2) + ((r − s)k + y0) sin (t2)) = 0,

e3 : 2sk − (y0 + sk) cos (dt1) +
((A2 + d2 +ABs)k +ABy0) sin (dt1)

Bd
+e−rt2((y0 − sk) cos (t2) + (k + r((r − s)k + y0)) sin (t2)) = 0.

From the �rst equation we obtain

(16)

cos (dt1) =
(−A2 + d2)k2 − 2ABk(y0 + ks)−B2(y0 + sk)2

(A2 + d2)k2 + 2ABk(y0 + ks) +B2(y0 + ks)2
,

sin (dt1) =
2kd(Ak +B(y0 + ks))

(A2 + d2)k2 + 2ABk(y0 + ks) +B2(y0 + ks)2
,

from equation e2 we get y0 = −k(r− s− cot (t2) + ert2 csc (t2)). Substituting y0 in equation
e3 we have e3 = 2k(A/B − r + 2s − csc (t2) sinh (rt2)), and to determine the solutions for
this equation is equivalent to determine the solutions for the following equation

(17)
2k

B sin (t2)
((A− rB + 2Bs)f0(t2)−Bf1(t2)) = 0, with t2 ∈ (0, 2π) \ {π},

and we can conclude that equation (17) has at most one real solution for t2 ∈ (0, 2π) \ {π},
because by statement (a) of Lemma 1 the set of functions F1 = {f0, f1} is an extended
complete Chebyshev system for t2 ∈ (0, 2π) \ {π} for every r 6= 0 and even more the
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coe�cients A− rB+ 2Bs and B can be chosen arbitrarily. Therefore we have proved that a
PWLS (1) with the con�guration (Cr, F r) formed by the linear di�erential systems (10) and
(14) has at most one crossing limit cycle. �

Con�guration (Cr, Sr): The equilibrium point P+ of system X+ satis�es the condition
(12) with β = 1 and |r| < 1. Therefore

(18) X+(x, y) =

(−y + 2r(x− k) + sk

(−1 + r2)(x− k)

)
.

The solution of system (18) starting at the point (x, y) = (0, y0) ∈ Σ is

x+(t) =
e−t

2

(
2ket + ert((−1 + r − s)k + y0)− e(2+r)t(k(1 + r − s) + y0)

)
,

y+(t) =
e−t

2

(
2etsk + ert(1 + r)(y0 + (r − 1− s)k − e(2+r)t(r − 1)(y0 + (1 + r − s)k)

)
.

Let t1 and t2 be the �nite times de�ned in Proposition 6. In this case we have that system
(8) is equivalent to system
(19)

e1 : kd(−1 + cos (dt1)) + (Ak +B(y0 − sk)) sin (dt1) = 0,

e2 : 2ke−t2 + e−rt2((r − 1− s)k + y0)− e−(2+r)t2(k(1 + r − s) + y0)) = 0,

e3 : sk + (y0 + sk) cos (dt1) +
((A2 + d2 +ABs)k +ABy0) sin (dt1)

Bd
+
et2

2

(
2e−t2sk

+e−rt2(1 + r)(y0 + (r − 1− s)k)− e−(2+r)t2(r − 1)(y0 + (1 + r − s)k)
)

= 0.

Then the real solutions of system (19) generate crossing limit cycles of PWLS (1) formed
by the linear di�erential systems (10) and (18). Similar to Case (Cr, F r), from equation e1
we obtain equations (16), from e2 we get

y0 = −k−1 + 2et2+rt2 − r + e2t2(−1 + r − s) + s

−1 + e2t2
,

then e3 = 2k(A/B − r + 2s − csch(t2) sinh (rt2)). To determine the solutions for equation
e3 is equivalent to determine the solutions for the following equation

(20)
2k

B sinh (t2)
((A− rB + 2sB)f2(t2)−Bf1(t2)) = 0, with t2 6= 0.

By statement (b) of Lemma 1 the set of functions F2 = {f2, f1} is an extended complete
Chebyshev system for t2 6= 0 and r 6= 1 and moreover the coe�cients A − rB + 2sB and
B can be chosen arbitrarily. Then we can conclude that equation (20) has at most one real
solution for t2 6= 0 and |r| < 1. Therefore PWLS (1) with the con�guration (Cr, Sr) formed
by the linear di�erential systems (10) and (18) has at most one crossing limit cycle. �
Case 2: P− is a virtual singularity of X

−. We consider that the equilibrium point P− in
(9) is a center Cv, this is P− = (k, sk), for this we must consider b1 = −Ak−Bks and b2 =
k(A2 + d2 +ABs)/B. Therefore linear di�erential system X− is

(21) X−(x, y) =

 A(x− k) +B(y − ks)
(A2 + d2)(−x+ k) +AB(−y + sk)

B

 .

When the equilibrium point P− is a Cv for the linear di�erential system X−, then we have
three possible con�gurations for the equilibrium points (P−− , P+) of the PWLS (1), namely,
we have the con�gurations (Cv, F v), (Cv, Nv) and (Cv, iNv).

Con�guration (Cv, F v): We consider that the con�guration of the equilibrium points of
the linear di�erential systems X− and X+ in (1) is (Cv, F v), then the equilibrium point P+
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satis�es (13) with β = i and r 6= 0. Therefore

(22) X+(x, y) =

(−y + 2r(k + x)− ks
(1 + r2)(k + x)

)
.

The solutions of systems (21) and (22) starting at the point (x, y) = (0, y0) ∈ Σ are

x−(t) = k(1− cos (dt)) +
(By0 − (A+Bs)k) sin dt

d
,

y−(t) =
Bdks+Bd(y0 − ks) cos (dt) + ((A2 + d2 +ABs)k −ABy0) sin (dt)

Bd
,

x+(t) = −k − ert(k cos (t)− (k(s− r) + y0) sin (t)),

y+(t) = −ks+ ert((y0 + ks) cos (t) + (k + r2k − r(y0 + ks)) sin (t)).

Let t1 and t2 be the �nite times de�ned in Proposition 6. Here we have that system (8)
is equivalent to system

(23)

e1 : kd(1− cos (dt1)) + (−(A+ bs)k +By0) sin (dt1) = 0,
e2 : −k + e−rt2(k cos (t2) + ((−r + s)k + y0) sin (t2)) = 0,

e3 : −2ks+ (−y0 + ks) cos (dt1)−
((A2 + d2 +ABs)k −ABy0) sin (dt1)

Bd
+e−rt2((y0 + ks) cos (t2) + (−k + r(y0 + (−r + s)k)) sin (t2)) = 0.

Similar to case (Cr, F r), we obtain that e3 is equivalent to equation (17) then we can
conclude that PWLS (1) with the con�guration (Cv, F v) formed by the linear di�erential
systems (21) and (22) has at most one crossing limit cycle. �

We observe that in the previous cases the constant k does not in�uence the number of
solutions of system (8) and in the following cases the same thing happens, therefore without
loss of generality we can assume that k = 1, this is the singularities of systems X− and X+

are in (−1,−s) or (1, s) , with s ∈ R.

Con�guration (Cv, Nv): We consider that the con�guration of the equilibrium points of
the linear di�erential systems X− and X+ in (1) is (Cv, Nv), then the equilibrium point
P+ satis�es (13) with β = 1 and |r| > 1. Therefore the linear di�erential system X+ is

(24) X+(x, y) =

(−y + 2r(1 + x)− s
(−1 + r2)(1 + x)

)
.

The solution of system (24) starting at the point (x, y) = (0, y0) ∈ Σ is

x+(t) =
e−t

2

(
−2et + e(2+r)t(1 + r − s− y0) + ert(1− r + s+ y0)

)
,

y+(t) =
e−t

2

(
−2ets+ e(2+r)t(−1 + r)(1 + r − s− y0) + ert(1 + r)(1− r + s+ y0)

)
.

Considering t1 and t2 the �nite times de�ned in Proposition 6, we obtain that system (8) is
equivalent to system

(25)

e1 : d(1− cos (dt1))− (A+Bs−By0) sin (dt1) = 0,

e2 : −2e−t2 + e−(2+r)t2(1 + r − s− y0) + e−rt2(1− r + s+ y0) = 0,

e3 : −s+ (s− y0) cos (dt1)− (A2 + d2 +AB(s− y0)) sin (dt1)−
et2

2

(
−2e−t2s

+e−(2+r)t2(−1 + r)(1 + r − s− y0) + e−rt2(1 + r)(1− r + s+ y0)
)

= 0.

From equation e1 we obtain that

cos (dt1) =
−A2 + d2 + 2AB(−s+ y0)−B2(s− y0)2

A2 + d2 + 2AB(s− y0) +B2(s− y0)2
,



10 J. JIMENEZ, J. LLIBRE, J.C. MEDRADO

sin (dt1) =
2d(A+B(s− y0))

A2 + d2 + 2AB(s− y0) +B2(s− y0)2
,

and from e2 we get

y0 =
−1 + 2et2+rt2 − r + e2t2(−1 + r − s) + s

−1 + e2t2
,

then substituting in e3 we obtain that e3 is equivalent to equation (20), therefore we can
conclude that PWLS (1) with the con�guration (Cv, Nv) formed by the linear di�erential
systems (21) and (24) has at most one crossing limit cycle. �

Con�guration (Cv, iNv): We consider that the con�guration of the equilibrium points of
the linear di�erential systems X− and X+ in (1) is (Cv, iNv). We consider that equilibrium
point P+ satis�es (13) with β = 0 and r 6= 0. Then

(26) X+(x, y) =

(−y + 2r(1 + x)− s
r2(1 + x)

)
.

The solution of system (26) starting at the point (x, y) = (0, y0) ∈ Σ is
(27)
x+(t) = −1 + ert(1− t(y0 − r + s)), y+(t) = −s+ ert(y0 − rty0 + s+ r(r − s)t),

Considering t1 and t2 the �nite times de�ned in Proposition 6, we obtain that system (8) is
equivalent to system

(28)

e1 : d(1− cos (dt1)) + (By0 − (A+Bs)) sin (dt1) = 0,
e2 : −1 + e−rt2(1 + t2(y0 − r + s)) = 0,
e3 : −2s+ e−rt2(y0 + rt2y0 + (s+ r(−r + s)t2))

+
Bd(−y0 + s) cos (dt1)− (−ABy0 + (A2 + d2 +ABs)) sin (dt1)

Bd
= 0.

From equation e1 we obtain the expression (3) and from e2 we get

y0 =
−1 + ert2 + (r − s)t2

t2
,

then

e3 = 2

(
−A
B

+ r − 2s+
sinh (rt2)

t2

)
= 0,

and to determine the solutions for equation e3 is equivalent to determine the solutions for
the equation

(29)
−2

Bt2
((A− rB − 2sA)f3(t2)−Bf1(t2)) = 0, with t2 6= 0.

By statement (c) of Lemma 1 the set of functions F3 = {f3, f1} is an extended complete
Chebyshev system for t2 6= 0 and r 6= 0 and moreover the coe�cients A− rB − 2sA and B
can be chosen arbitrarily. Then we can conclude that equation (29) has at most one real
solution for t2 6= 0 and r 6= 0. Therefore the PWLS (1) with con�guration (Cv, iNv) formed
by the linear di�erential systems (21) and (26) has at most one crossing limit cycle. �

Moreover the upper bound provided in the above cases is reached, see the examples in
the proof of Proposition 1.

Proof of statement (ii) of Theorem 1. Here we analyze the number of crossing limit
cycles of PWLS (1) when the equilibrium point of linear di�erential system X− is a real or
virtual focus (F r) or (F v). We consider that system X− is in the canonical form (4) with

C̃ 6= 0. Then the equilibrium point of system X− is

P− = (x0, y0) =

(
Ab1 +Bb2 − 2b1C̃

C̃2 + d2
,−A

2b1 +ABb2 − 2Ab1C̃ + b1C̃
2 + b1d

2

BC̃2 +Bd2

)
.



11

We separate the proof of statement (ii) of Theorem 1 in two cases, �rst we study the case
when P− is a real focus and second we assume that P− is a virtual focus. We consider that
linear di�erential system X+ is in canonical form (2) then the equilibrium point is (11).

Case 1: P− is a real focus of X−. We assume that P− = (−1,−s), for this we must
consider that

(30) b1 = A+Bs, b2 = −A
2 − 2AC̃ + C̃2 + d2 +ABs− 2BC̃s

B
.

Then linear di�erential system X− is

(31) X−(x, y) =

 A(x+ 1) +B(y + s)

−(A2 + c2 + d2)(x+ 1)− 2Bc(y + s) +A(−2c(x+ 1) +B(y + s))

B

 .

The solution of linear di�erential system (31) starting at the point (x, y) = (0, y0) ∈ Σ is

x−(t) = −1 +
eC̃t(d cos (dt) + (By0 +A− C̃ +Bs) sin (dt))

d
,

y−(t) = −s+
eC̃t

Bd

(
(−(B(A− C̃)y0 + (d2 + (A− C̃)(A− C̃ +Bs)) sin (dt))

+(Bd(y0 + s) cos (dt)))) .

When P− is a real focus then we have two possible con�gurations for the equilibrium points
of the PWLS (1), namely we obtain the con�gurations (F r, F r) and (F r, Sr).

Con�guration (F r, F r): We assume that the equilibrium point P− satis�es the conditions
(30) and the equilibrium point P+ satis�es the conditions (12) with β = i, r 6= 0, then we
have the con�guration (F r, F r).

In the following example we provide a PWLS having two crossing limit cycles. We consider

Figure 1. The two crossing limit cycles Γ1 and Γ2 of the discontinuous
PWLS (32) with con�guration (F r, F r).

that A = 1/2, B = −1/2, C̃ = −67/500, d = 123/100, r = 2/5 and s = 0, then we obtain
the PWLS formed by
(32)

X−(x, y) =


1

2
−1

2
239357

62500
− 96

125

X +


1

2
239357

62500

 , X+(x, y) =


4

5
−1

29

25
0

X +

 −
4

5

−29

25

 .
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For this PWLS we have that system (8) is equivalent to system

−1 +
1

615
e−67t1/500(615 cos (123t1/100) + (317− 250y0) sin (123t1/100)) = 0,

1 + e−2t2/5(− cos (t2) +

(
2

5
+ y0

)
sin (t2)) = 0,

e−67t1/500(−76875y0 cos (123t1/100) + (−239357 + 39625y0) sin (123t1/100))

+3075e−2t2/5(25y0 cos (t2) + (29 + 10y0) sin (t2)) = 0.

Which has two real solutions with t1, t2 ∈ (0, 2π), namely (t11, t
1
2, y

1
0) = (3.586636.., 4.260216..,

6.196201..) and (t21, t
2
2, y

2
0) = (3.614645.., 4.344295.., 6.078132..). Therefore the PWLS

(32) has two crossing limit cycles Γ1 and Γ2 which intersect Σ in (0, y10) = (0, 6.196201..)
and (0, y11) = (0, y−11(t

1
1)) = (0,−1.088003..) with �ight times t11 = 3.586636.. and t12 =

4.260216.. in the regions Σ− and Σ+, respectively; and (0, y20) = (0, 6.078132..) and (0, y21) =
(0, y−11(t

2
1)) = (0,−0.974222..) with �ight times t21 = 3.614645.. and t22 = 4.344295.. in the re-

gions Σ− and Σ+, respectively. See Figure 1. �

Con�guration (F r, Sr): If the equilibrium point P− is a focus F r and the equilibrium
point P+ satis�es the conditions (12) with β = 1, |r| < 1, then we have the con�guration
(F r, Sr). In what follows we provide a PWLS having two crossing limit cycles. Considering

Figure 2. The two crossing limit cycles Γ1 and Γ2 of the discontinuous
PWLS (33) with con�guration (F r, Sr).

A = −2/5, B = −7/2, C̃ = 1/20, d = −1, r = 1/100 and s = 0, we obtain the PWLS
formed by
(33)

X−(x, y) =

 −
2

5
−7

2
449

1400

3

10

X +

 −2

5
449

1400

 , X+(x, y) =


1

50
−1

− 9999

10000
0

X +

 − 1

50
9999

10000

 .

For this PWLS we have that system (8) has two real solutions with t1, t2 ∈ (0, 2π), namely
(t11, t

1
2, y

1
0) = (3.854989.., 2.065073.., 0.759545..) and (t21, t

2
2, y

2
0) = ( 5.114523.., 0.403781..,

0.1794388..). Therefore the PWLS (33) has two crossing limit cycle Γ1 and Γ2 which intersect
Σ in (0, y10) = (0, 0.759545..) and (0, y11) = (0,−0.790192..); and(0, y20) = (0, 0.1794388..)
and (0, y21) = (0,−0.218905..), respectively. See Figure 2. �

Case 2: P− is virtual focus of X−. We consider that P− is a focus (F v), this is,
P− = (1, s), therefore

b1 = −A−Bs, b2 = −−A
2 + 2AC̃ − C̃2 − d2 −ABs+ 2BC̃s

B
.
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Then linear di�erential system X− is
(34)

X−(x, y) =

 A(x− 1) +B(y − s)
−A2x+ 2AC̃x− C̃2x− d2x−ABy + 2BC̃y + ((A− C̃)2 + d2 +B(A− 2C̃)s)

B

 .

The solution of linear di�erential system (34) starting at the point (x, y) = (0, y0) ∈ Σ is

(35)

x−(t) = 1 +
eC̃t(−d cos (dt) + (By0 − (A− C̃ +Bs) sin (dt))

d
,

y−(t) = s+
eC̃t

Bd

(
((B(−A+ C̃)y0 + (d2 + (A− C̃)(A− C̃ +Bs)) sin (dt))

+(Bd(y0 − s) cos (dt)))) .

When P− is a focus (F v) we have three possible con�gurations for the equilibrium point of
PWLS (1), namely we have the con�gurations (F v, F v), (F v, Nv) and (F v, iNv).

Con�guration (F v, F v): The equilibrium point P+ is a focus F v and the equilibrium
point P+ satis�es the condition (13) with β = i and r 6= 0, then we have the con�guration
(F v, F v). We provide a PWLS with two crossing limit cycles. Considering A = −7/10, B =

−1/2, C̃ = −2, d = −1, r = 6/10 and s = 0, we obtain the PWLS formed by

(36) X−(x, y) =

 −
7

10
−1

2
269

50
−33

10

X+

 7

10

−269

50

 , X+(x, y) =


6

5
−1

34

25
0

X+

 6

5
34

25

 .

For this PWLS we have that system (8) has two real solution with t1, t2 ∈ (0, 2π), namely
(t11, t

1
2, y

1
0) = (0.903052.., 2.593104.., 11.325957..) and (t21, t

2
2, y

2
0) = (0.276244.., 1.538684..,

3.086535..). Therefore the PWLS (36) has two crossing limit cycle Γ1 and Γ2 which intersect
Σ in (0, y10) = (0, 11.325957..) and (0, y11) = (0,−1.441285..); and (0, y20) = (0, 3.086535..)
and (0, y21) = (0, 0.234677..), respectively. See Figure 3. Therefore we have that a PWLS

Figure 3. The two crossing limit cycles Γ1 and Γ2 of the discontinuous
PWLS (36) with con�guration (F v, F v).

(1) with the con�guration (F v, F v) it has at least two crossing limit cycles. �

Con�guration (F v, Nv): The equilibrium point P− is a focus F v and the equilibrium point
P+ satis�es the conditions (13) with β = 1 and |r| > 1, then we have the con�guration
(F v, Nv). We provide a PWLS with this con�guration and with one crossing limit cycle. If

A = −3, B = −1/2, C̃ = −3/10, d = 1, r = 2 and s = 0, we obtain the PWLS formed by

(37) X−(x, y) =

 −3 −1

2
829

50

12

5

X +

 3

−829

50

 , X+(x, y) =

(
4 −1

3 0

)
X +

(
4

3

)
.
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For this PWLS we have that system (8) has one real solution with t1, t2 ∈ (0, 2π), namely
(t1, t2, y0) = (2.073656.., 1.547693.., 10.752069..). Then the PWLS (37) has one crossing
limit cycle which intersects Σ in (0, y0) = (0, 10.752069..) and (0, y1) = (0, 3.074636..). See
Figure 4. Therefore we can conclude that a PWLS (1) with the con�guration (F v, Nv) it

Figure 4. The crossing limit cycle of the discontinuous PWLS (37) with
con�guration (F v, Nv).

has at least one crossing limit cycles. �

Con�guration (F v, iNv): The equilibrium point P− is a focus F v and the equilibrium
point P+ satis�es the conditions (13) with β = 0 and r 6= 0, then we have the con�guration
(F v, iNv). Then considering t1 and t2 as in Proposition 6 and from equations (27) and (35),
system (8) is equivalent to system

(38)

e1 : d+ eC̃t1(−d cos (dt1) + (By0 −A+ C̃ −Bs) sin (dt1)) = 0,
e2 : −1 + e−rt2(1 + t2(y0 − r + s)) = 0,
e3 : Bde−rt2(y0 + rt2y0 + (s+ r(−r + s)t2))− ect1(Bd(y0 − s) cos (dt1)

+(B(−A+ C̃)y0 + (d2 + (A− C̃)(A− C̃ +Bs))) sin (dt1))− 2Bds = 0.

From equation e1 we get

y0 =
A− C̃ +Bs+ d cot (dt1)− de−C̃t1 csc (dt1)

B
,

and from e2 we get

(39) t2 = − 1

y0 − r + s
−

W

−e
−

r

y0 − r + s r

y0 − r + s


r

,

then substituting y0 and t2 in e3 we obtain that

(40) e3 =
1

B

(
(−A+ C̃ +Br − 2Bs)f̃0(t1) + df̃1(t1)− rBf̃2(t1)

)
= 0.

Here f̃0(t1) = 1, f̃1(t1) = cot (dt1)− eC̃t1 csc (dt1), and

f̃2(t1) =
1

W


Bre

C̃t1+
BreC̃t1

eC̃t1(−A+ C̃ +Br − 2Bs− d cot (dt1)) + d csc (dt1)

eC̃t1(−A+ C̃ +Br − 2Bs− d cot (dt1)) + d csc (dt1)



,
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where W is the Lambert Function, for more details see [4]. When

(41) t1 ∈ (0, π/d) and η(t1) = eC̃t1(−A+ C̃ +Br − 2Bs− d cot (dt1)) + d csc (dt1) 6= 0,

we can conclude that equation (40) has at least two real solutions by Proposition 4. Thus
system (38) has at least two real solutions, that is, a PWLS with the con�guration (F v, iNv)
has at least two crossing limit cycles.

In what follows we provide a PWLS with con�guration (F v, iNv) having two crossing

limit cycles. Considering A = −25/2, B = −13/10, C̃ = −6/5, d = 13/10, r = 5 and
s = 0, we have that condition (41) is not empty.

η(t1) =
1

10

(
e−6t1/5

(
48− 13 cot

(
13t1
10

))
+ 13 csc

(
13t1
10

))
, t1 ∈

(
0,

10π

13

)
.

It is possible verify that in the interval

(
0,

10π

13

)
the unique critical value is t∗1 = 1.501574..,

and it is a minimum value of the function η(t1) for t1 ∈
(

0,
10π

13

)
, moreover η(t∗1) =

2.278475.. > 0, therefore η(t1) > 0 for t1 ∈
(

0,
10π

13

)
. See Figure 5. With these parameters

0.5 1.0 1.5 2.02

3

4

5

6

7

8

9

Figure 5. The graphic of the function η(t1) in the interval (0, 10π/13).

Figure 6. Two crossing limit cycles of the discontinuous PWLS (42) with
con�guration (F v, iNv).

we obtain the PWLS formed by

(42) X−(x, y) =

 −
25

2
−13

10
6469

65

101

10

X +

 25

2

−6469

65

 , X+(x, y) =

(
10 −1

25 0

)
X +

(
10

25

)
.

For this PWLS we have that system (38) has two real solutions, namely (t11, t
1
2, y

1
0) =

(1.096629.., 0.143589.., 12.314051..); and (t21, t
2
2, y

2
0) = (2.043521.., 0.588292.., 35.501071..).

Then the PWLS (42) has two crossing limit cycles Γ1 and Γ2 which intersect Σ in (0, y10) =
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(0, 12.314051..) and (0, y11) = (0, 2.476508..), (0, y20) = (0, 35.501071..) and (0, y21) =
(0, 6.610102..), respectively. See Figure 6. �

Proof of statement (iii) of Theorem 1. In this case we analyze the maximum number
of crossing limit cycles of PWLS (1) when the equilibrium point of linear di�erential system
X− is a real saddle (Sr). We consider that system X− is in the canonical form (6), then

(43) P− = (x0, y0) =

(
Ab1 +Bb2 − 2b1C̃

C̃2 − d2
,−A

2b1 +ABb2 − 2Ab1C̃ + b1C̃
2 − b1d2

BC̃2 −Bd2

)
,

with 0 < C̃2 < d2 and B < 0. This equilibrium point is a Sr = (−1,−s), if b1 =

A + Bs, b2 = −(A2 − 2AC̃ + C̃2 − d2 + ABs − 2BC̃s)/B. When system X− is a Sr we
have that linear di�erential system X+ must be a saddle Sr, then we consider that system
X+ is in the canonical form (2) and the equilibrium point P+ satis�es (12) with β = 1,
|r| < 1. Therefore we obtain the con�guration (Sr, Sr). In the following example we provide
a PWLS (1) such that the equilibrium points of the linear di�erential systems X− and X+

have the con�guration (Sr, Sr) and it has one crossing limit cycle.

Figure 7. The crossing limit cycle of the discontinuous PWLS (44) with
con�guration (Sr, Sr).

Considering the parameters A = −1, B = −5, C̃ = 4/5, d = −19/10, r = 6/50 and
s = 0, we obtain the PWLS formed by

(44) X−(x, y) =

 −1 −5

− 37

500

12

5

X+

 −1

− 37

500

 , X+(x, y) =


6

25
−1

−616

625
0

X+


6

25
616

625

 .

For this PWLS we have that system (8) has one real solution, namely (t1, t2, y0) = (0.754087..,
0.406189.., −0.039307..). Then the PWLS (44) has one crossing limit cycle which intersects
Σ in (0, y0) = (0,−0.039307..) and (0, y1) = (0,−0.434309..). See Figure 7. �

Proof of statement (iv) of Theorem 1. In this case we analyze the maximum number of
crossing limit cycles of PWLS (1) when the equilibrium point P− is a virtual diagonalizable
node (Nv). We consider that system X− is in the canonical form (5), then P− is equal to

(43) with 0 > C̃2 > d2 and B < 0. This equilibrium point is a Nv if b1 = −A − Bs, b2 =

−(−A2+2AC̃−C̃2+d2−ABs+2BC̃s)/B. We consider that system X+ is in the canonical
form (2) and the equilibrium point P+ can be a diagonalizable node Nv or an improper node
iNv. Then we have two possible con�gurations (Nv, Nv) and (Nv, iNv).

Con�guration (Nv, Nv): We assume that P− is a diagonalizable node Nv and that P+

satis�es (13) with β = 1 and |r| > 1. Then we obtain the con�guration (Nv, Nv).
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Figure 8. Two crossing limit cycles of the discontinuous PWLS (45) with
con�guration (Nv, Nv).

Considering the parameters A = −23/10, B = −1/2, C̃ = −41/10, d = 7/2, r = 57/25
and s = 0, we obtain the PWLS formed by

(45) X−(x, y) =

 −
23

10
−1

2

−901

50
−59

10

X+


23

10
59

10

 , X+(x, y) =


114

25
−1

2624

625
0

X+


114

25
2624

625

 .

For this PWLS we have that system (8) has two real solutions, namely (t11, t
1
2, y

1
0) =

(0.796618.., 1.259611.., 12.011789..); and (t21, t
2
2, y

2
0) = (0.205065.., 0.425140.., 5.805536..).

Then the PWLS (45) has two crossing limit cycles which intersect Σ in (0, y10) = (0,
12.011789..) and (0, y11) = (0, 3.420218..); and (0, y20) = (0, 5.805536..) and (0, y21) = (0,
3.906249..), respectively. See Figure 8. Therefore we have that PWLS with the con�guration
(Nv, Nv) have at least two crossing limit cycles. �

Con�guration (Nv, iNv): The equilibrium point P− is a diagonalizable node Nv and P+

satis�es (13) with β = 0 and r 6= 0. Then we obtain the con�guration (Nv, iNv). The
solution of system X− starting in (0, y0) ∈ Σ is
(46)

x−(t) =
d+ eC̃t(−d cosh (dt) + (By0 − (A− C̃) +Bs)) sinh (dt)

d
,

y−(t) = s+
eC̃t

Bd
(Bd(y0 − s) cosh (dt) + (B(−A+ C̃)y0 + (−d2 + (A− C̃)

(A− C̃ +Bs))) sinh (dt)).

By (27) and (46) we obtain that system (8) is equivalent to system
(47)

e1 : d+ eC̃t1(−d cosh (dt1) + (By0 − (A− C̃ +Bs)) sinh (dt1)) = 0,
e2 : −1 + e−rt2(1 + t2(y0 − r + s)) = 0,

e3 : −2Bds+Bde−rt2(y0 + rt2y0 + (s+ r(−r + s)t2))− eC̃t1(Bd(y0 − s) cosh (dt1)

+(B(−A+ C̃)y0 + (−d2 + (A− C̃)(A− C̃ +Bs))) sinh (dt1)) = 0.

From equation e1 we get y0 = (A− C̃ + Bs + d coth (dt1)− de−C̃t1csch(dt1))/B, and from
e2 we get the expression (39) for t2, then substituting y0 and t2 in e3 we obtain that

e3 =
1

B

(
(−A+ C̃ +Br − 2Bs)f̃0(t1) + df̃3(t1)− rBf̃4(t1)

)
= 0,

where f̃0(t1) = 1, f̃3(t1) = coth (dt1)− eC̃t1csch(dt1) and
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f̃4(t1) =
1

W


Bre

C̃t1+
BreC̃t1

eC̃t1(−A+ C̃ +Br − 2Bs− d coth (dt1)) + dcsch(dt1)

eC̃t1(−A+ C̃ +Br − 2Bs− d coth (dt1)) + dcsch(dt1)



.

If

(48) t1 ∈ (0,∞) and η̃(t1) = eC̃t1(−A+ C̃ +Br − 2Bs− d coth (dt1)) + dcsch(dt1) 6= 0,

by Proposition 4 we can conclude that a system (47) has at least two real solutions therefore
a PWLS with the con�guration (Nv, iNv) has at least two crossing limit cycles. In what
follows we provide a PWLS with con�guration (Nv, iNv) and having two crossing limit
cycles.

Considering A = −23/10, B = −8/5, C̃ = −24/5, d = 37/10, r = 3/5 and s = 0, we
have that

η̃(t1) = e−24t1/5
(
−173

50
− 37

10
coth

(
37t1
10

))
+

37

10
csch

(
37t1
10

)
.

Substituting

coth (x) =
ex + e−x

ex − e−x
, and csch(x) =

2

ex − e−x
,

in the equation η̃(t1) we obtain that

η̃(t1) =
e37t1/10(−370 + 12e−17t1/2 + 358e−11t1/10)

50(1− e37t1/5)
> 0, for t1 > 0.

Therefore the condition (48) is satis�ed. See the graphic of this function in Figure 9.
Moreover we obtain the PWLS formed by

2 4 6 8 10

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Figure 9. The graphic of the function (48) for t1 > 0.

(49) X−(x, y) =

 −
23

10
−8

5

−93

20
−73

10

X +

23

10
93

20

 , X+(x, y) =


6

5
−1

9

25
0

X +

 6

5
9

25

 .

For this PWLS we have that system (47) has two real solutions, namely (t11, t
1
2, y

1
0) =

(0.564675.., 5.217342.., 4.794330..); and (t21, t
2
2, y

2
0) = (0.763740.., 6.119198.., 6.860880..).

Then the PWLS (49) has two crossing limit cycles which intersect Σ in (0, y10) = (0, 4.794330..)
and (0, y11) = (0, 0.783292..) and (0, y20) = (0, 6.860880..) and (0, y21) = (0, 0.759263..), re-
spectively. See Figure 10. �

Proof of statement (v) of Theorem 1. In this case we analyze the maximum number of
crossing limit cycles of PWLS (1) when the equilibrium point of linear di�erential system
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Figure 10. Two crossing limit cycles of the discontinuous PWLS (49) with
con�guration (Nv, iNv).

X− is a virtual improper node (iNv). We consider that system X− is in the canonical form
(5) with d = 0 and B < 0, then equilibrium point P− is

P− = (x0, y0) =

(
Ab1 +Bb2 − 2b1C̃

C̃2
,−A

2b1 +ABb2 − 2Ab1C̃ + b1C̃
2

BC̃2

)
.

This equilibrium point is a virtual improper node iNv if P− = (1, s), then b1 = −A −
Bs, b2 = −(−A2 + 2AC̃ − C̃2 − ABs + 2BC̃s)/B. With these condition the solution of
system X− starting in (0, y0) ∈ Σ is

(50)
x−(t) = 1 + eC̃t(Bty0 − (1 + (A− C̃ +Bs)t)),

y−(t) =
Bs+ (A− C̃)2eC̃tt+BeC̃t(1−At+ C̃t)(y0 − s)

B
.

We consider that linear di�erential system X+ is an improper node iNv, then we consider
that system X+ is in the canonical form (2) and the equilibrium point P+ satis�es (13) with
β = 0 and r 6= 0. Therefore we obtain the con�guration (iNv, iNv).

Now considering t1 and t2 as in Proposition 6 and by equations (50) and (27), system (8)
is equivalent to

(51)

e1 : 1 + eC̃t1(Bt1y0 − (1 + (A− C̃ +Bs)t1)) = 0,
e2 : −1 + e−rt2(1 + t2(y0 − r + s)) = 0,

e3 : 2Bs+ (A− C̃)2eC̃t1t1 +BeC̃t1(1−At1 + C̃t1)(y0 − s)
−Be−rt2(y0 + rt2y0 + (s+ r(−r + s)t2)) = 0.

By the equation e1, we get y0 = (1− e−C̃t1 + (A− C̃ +Bs)t1)/Bt1, and from e2 we obtain
the expression (39) for t2. Substituting these expressions in e3, we get

e3 =
1

B

(
(−A+ C̃ +Br − 2Bs)f̃0(t1) + f̃5(t1)−Brf̃6(t1)

)
= 0,

where f̃0(t1) = 1, f̃5(t1) =
1− eC̃t1

t1
and
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f̃6(t1) =
1

W


Brt1e

t1

C̃+
BreC̃t1

1 + eC̃t1(−1 + (−A+ C̃ +Br − 2Bs)t1)


1 + eC̃t1(−1 + (−A+ C̃ +Br − 2Bs)t1)



.

Therefore by Proposition 4 we can conclude that system (51) has at least two real solutions
for

(52) t1 ∈ (0,∞) and η̄(t1) = 1 + eC̃t1(−1 + (−A+ C̃ +Br − 2Bs)t1) 6= 0.

Due to symmetry we have that if (t1, t2, y0) is a real solution of system (51) then (−t1,−t2, y1)
also it is a real solution of system (51), where y1 = y−(t1) = y+(−t2), we observed that the
real solutions (t1, t2, y0) and (−t1,−t2, y1) of system (51) provide the same crossing limit
cycle of PWLS with the con�guration (iNv, iNv). Therefore a PWLS with the con�guration
(iNv, iNv) has at least one crossing limit cycle.

In what follows we provide a example of a PWLS with the con�guration (iNv, iNv) having
one crossing limit cycle.

Figure 11. One crossing limit cycle of the discontinuous PWLS (53) with
con�guration (iNv, iNv).

Considering A = −6, B = −14/5, C̃ = −6/5, r = 11/10 and s = 0, we have that

η̄(t1) = 1 + e−6t1/5
(
−1 +

43

25
t1

)
> 0, for t1 > 0.

Therefore the condition (52) is satis�ed.

Moreover we obtain the PWLS formed by

(53) X−(x, y) =

 −6 −14

5
288

35

126

35

X +

 6

−288

35

 , X+(x, y) =


11

5
−1

121

100
0

X +

 11

5
121

100

 .

For this PWLS we have that system (47) has two real solutions, namely (t1, t2, y0) =
(0.964798.., 0.448780.., 2.522296..) and (−t1,−t2, y1) = (−0.964798..,−0.448780.., 1.968154..),
which provide one crossing limit cycle such that intersects Σ in (0, y0) = (0, 2.522296..) and
(0, y1) = (0, 1.968154..). See Figure 11. �
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The proof of Proposition 1 is provide by the following examples, where we prove that the
upper bound provided in statement (i) of Theorem 1 is reached in each case.

Example 1. We consider PWLS (1) with the con�guration (Cr, F r) formed by the linear
di�erential systems (10) and (14), with A = −2, B = −8/10, d = 7/10, r = −2/10, k = 1
and s = 0 then we obtain that

(54) X−(x, y) =

 −2 −4

5
449

80
2

X +

−2

449

80

 , X+(x, y) =

 −
2

5
−1

26

25
0

X +

 2

5

−26

25

 .

For this PWLS we have that closing equations (15) are

(55)

−1 + cos

(
7t1
10

)
− 4

7
(5 + 2y0) sin

(
7t1
10

)
= 0,

1 + et2/5(− cos (t2) +

(
−1

5
+ y0

)
sin (t2)) = 0,

−y0 cos

(
7t1
10

)
− 1

56
(449 + 160y0) sin

(
7t1
10

)
+

1

25
et2/5(25y0 cos (t2) + (26− 5y0) sin (t2)) = 0.

Taking into account that t1t2 > 0 and that t1, t2 ∈ (0, 2π) it is possible verify compu-
tationally that the system (55) has two real solutions, namely (t11, t

1
2, y

1
0) = (4.796799..,

3.418539.., 5.564042..) and (t21, t
2
2, y

2
0) = (5.859455.., 5.731792.., −0.819335..). Neverthe-

less the orbit of linear di�erential system X+ starting at the point (x, y) = (0, y20) =
(0,−0.819335..) and with �ight time t22 = 5.731792.. it is such that intersects the region
Σ− which cannot happen to obtain a crossing limit cycle of PWLS (54), therefore we have
the unique real solution that generates one crossing limit cycle Γ1 of the PWLS (54) is
(t11, t

1
2, y

1
0) = (4.796799.., 3.418539.., 5.564042..), and that crossing limit cycle starts at the

point (0, y10) = (0, 5.564042..), enters in the half-plane Σ− and after a time t11 = 4.796799..
reaches the discontinuity line Σ at the point (0, y11) = (0,−10.564042..), enters in the half-
plane Σ+ and after a time t12 = 3.418539.. reaches the point (0, y10). See Figure 12.

Now we analyze the stability of the crossing limit cycle Γ1. We consider the PWLS (54)
and we analyze the �ow of PWLS around of the crossing limit cycle Γ1 which intersects the
discontinuity straight line Σ at the points y0 = 5.564042.. and y1 = −10.564042...

We consider a point W0 ∈ Σ and within the region limited by the crossing limit cycle
Γ1, this is, W0 = (0, w0) with −10.564042.. < w0 < 5.564042... For example we consider
that w0 = 5, then the solution of linear di�erential system X− in (54) starting at the point
W0 = (0, 5) ∈ Σ is

x−(t) = −1 + cos

(
7t

10

)
− 60

7
sin

(
7t

10

)
, y−(t) = 5 cos

(
7t

10

)
+

1249

56
sin

(
7t

10

)
,

and the �ight time in the region Σ− is

t− =
10

7

(
−π + arctan

(
840

3551

)
+ 2π

)
,

then the intersection point with Σ is W1 = (0, w1) = (0, y−(t−)), where y−(t−) = −10. Now
the solution of linear di�erential system X+ in (54) starting at the point W1 = (0,−10) is

x+(t) = 1 +
e−t/5

5
(−5 cos (t) + 51 sin (t)) , y+(t) = − 2

25
e−t/5(125 cos (t) + 38 sin (t)),

the �ight time in the region Σ+ is t+ = 3.434483.. and the intersection point of this orbit
with the discontinuity straight line is the point W2 = (0, w2) = (0, y+(t+)) = (0, 5.258689..),
then 5 = w0 < w2 = 5.258689. Therefore we obtain that the �ow of PWLS (54) spirals in
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Figure 12. The crossing limit cycle of the discontinuous PWLS (54) with
con�guration (Cr, F r).

the counterclockwise outward for points W0 = (0, w0) with −10.564042.. < w0 < 5.564042...
Now we consider a point on Σ and outside the region limited by Γ1, namely Z0 = (0, z0)
with z0 > y0. We consider Z0 = (0, 6) and similarly to above case we determine the solution
(x−(t), y−(t)) of linear di�erential system X− in (54) starting at the point Z0 = (0, 6) ∈ Σ
and we get the �ight time in the region Σ−, namely T− = 10/7(−π+arctan (952/4575)+2π),
and the intersection point of this orbit with Σ is Z1 = (0, z1) = (0, y−(T−)) = (0,−11). We
determine the solution (x+(t), y+(t)) of linear di�erential system X+ in (54) starting at the
point Z1 = (0,−11) ∈ Σ and we get the �ight time in the region Σ+, T+ = 3.407359.. and
�nally we obtain the intersection point of this orbit with Σ, Z2 = (0, z2) = (0, y+(T+)) =
(0, 5.799713..), then 6 = z0 > z2 = 5.799713... Therefore obtain that the �ow of PWLS (54)
spirals in the counterclockwise inward for points Z0 = (0, z0)with z0 > y0. Therefore we can
conclude that the crossing limit cycle Γ1 is a crossing limit cycle stable. �

Example 2. We consider PWLS (1) with the con�guration (Cr, Sr) formed by the linear
di�erential systems (10) and (18), with A = −7/2, B = −8/3, r = 79/100, d = −28/10,
k = 1 and s = 0, then we obtain the piecewise linear di�erential system formed by
(56)

X−(x, y) =

 −
7

2
−8

3
6027

800

7

2

X +

 −7

2
6027

800

 , X+(x, y) =


79

50
−1

− 3759

10000
0

X +

 −79

50
3759

10000

 .

For this PWLS it is possible verify computationally that the closing equations (19) have two
real solutions for t1, t2 ∈ (0, 2π), namely (t11, t

1
2, y

1
0) = (1.941361.., 3.063722.., −0.838949..)

and (t21, t
2
2, y

2
0) = (4.185356.., 3.063722.., −0.838949..). Nevertheless we have that the orbit

of linear di�erential system X− started at point (0, y20) = (0,−0.838949..) and with �ight
time t21 = 4.185356.. it intersects the region Σ− which cannot happen to obtain a crossing
limit cycle of PWLS (56), therefore we have that the unique real solution that generates one
crossing limit cycle of the PWLS (56) is (t11, t

1
2, y

1
0)=(1.941361.., 3.063722.., −0.838949..),

and that crossing limit cycle Γ starts at the point (0, y10) = (0,−0.838949..), enters in the
half-plane Σ− and after a time t11 = 1.941361.. reaches the discontinuity line Σ at the point
(0, y11) = (0,−1.786050..), enters in the half-plane Σ+ and after a time t12 = 3.063722..
reaches the point (0, y10).

Now we analyze the stability of the crossing limit cycle Γ. We consider the PWLS (56)
and we analyze the �ow of PWLS around of the crossing limit cycle Γ which intersects the
discontinuity straight line Σ at the points y0 = −0.838949.. and y1 = −1.786050...

We consider a point W0 ∈ Σ and within the region limited by the crossing limit cycle Γ,
this is, W0 = (0, w0) with −1.786050.. < w0 < −0.838949... For example we consider that
w0 = −9/10, then the solution of linear di�erential system X− in (56) starting at the point
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W0 = (0,−9/10) ∈ Σ is

x−(t) = −1 + cos

(
14t

5

)
− 11

28
sin

(
14t

5

)
,

y−(t) =
3

320

(
−96 cos

(
14t

5

)
+ 167 sin

(
14t

5

))
,

and the �ight time in the region Σ− is

t− =
5

14

(
− arctan

(
616

663

)
+ 2π

)
,

then the intersection point with Σ is W1 = (0, w1) = (0, y−(t−)), where y−(t−) = −69/40.
Now the solution of linear di�erential system X+ in (56) starting at the point W1 =
(0,−69/40) is

x+(t) = 1 +
e−21t/100

400

(
−387− 13e2t

)
, y+(t) =

3e−21t/100(−23091 + 91e2t)

40000
,

the �ight time in the region Σ+ is t+ = 1.097023.. and the intersection point of this orbit with
the discontinuity straight line is the point W2 = (0, w2) = (0, y+(t+)) = (0,−1.326846..),
then −9/10 = w0 > w2 = −1.326846... Therefore we obtain that the �ow of PWLS (56)
spirals in the counterclockwise inward for points W0 = (0, w0) with −1.786050.. < w0 <
−0.838949... Now we consider a point on Σ and outside the region limited by Γ, namely
Z0 = (0, z0) with z0 > y0. We consider Z0 = (0,−209/250) and similarly to above case we
determine the solution (x−(t), y−(t)) of linear di�erential system X− in (56) starting at the
point Z0 = (0,−209/250) ∈ Σ and we get the �ight time in the region Σ−, namely T− =
−1.939696.., and the intersection point of this orbit with Σ is Z1 = (0, z1) = (0, y−(T−)) =
(0,−1789/1000). We determine the solution (x+(t), y+(t)) of linear di�erential system X+

in (54) starting at the point Z1 = (0,−1789/1000) ∈ Σ and we get the �ight time in the
region Σ+, T+ = 3.923945.. and �nally we obtain the intersection point of this orbit with
Σ, Z2 = (0, z2) = (0, y+(T+)) = (0,−0.666883), then −209/250 = z0 > z2 = −0.666883..
Therefore obtain that the �ow of PWLS (54) spirals in the counterclockwise outward for
points Z0 = (0, z0)with z0 > y0. Therefore we can conclude that the crossing limit cycle Γ
is an unstable crossing limit cycle. See Figure 13. �

Figure 13. The crossing limit cycle of the discontinuous PWLS (56) system
with con�guration (Cr, Sr).

Example 3. We consider PWLS (1) with the con�guration (Cv, F v) formed by the linear
di�erential systems (21) and (22), with A = −3, B = −1, r = 4/5, d = −4, k = 1 and
s = 0, then we obtain the PWLS formed by

(57) X−(x, y) =

(
−3 −1

25 3

)
X +

(
3

−25

)
, X+(x, y) =


8

5
−1

41

25
0

X +

 8

5
41

25

 .
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For this PWLS it is possible verify computationally that closing equations (23) have four
real solution for t1, t2 ∈ (0, 2π), namely (t11,t

1
2,y

1
0)=(0.299957.., 1.862980.., 5.736049..), (t21,

t22, y
2
0) = (1.870753.., 1.862980.., 5.736049..), (t31,t

3
2,y

3
0)=(3.441550.., 1.862980.., 5.736049..),

(t41,t
4
2,y

4
0)=(5.012346.., 1.862980.., 5.736049..). Nevertheless the orbit of the linear di�eren-

tial system X− started at the point yi0 and with �ight time ti1 is such that intersects the
region Σ+ for i = 2, 3, 4 which cannot happen to obtain a crossing limit cycle of PWLS
(56), therefore we have that the unique real solution that generates one crossing limit cycle
Γ of the PWLS (57) is (t11, t

1
2, y

1
0) = (0.299957.., 1.862980.., 5.736049..) which intersects Σ

in (0, y10) = (0, 5.736049..) and (0, y11) = (0, 0.263950..). Analogously to above case (Cr, Sr),
it is possible verify numerically that Γ is an unstable crossing limit cycle. See Figure 14.

Figure 14. The crossing limit cycle of the discontinuous PWLS (57) with
con�guration (Cv, F v).

Example 4. We consider PWLS (1) with the con�guration (Cv, Nv) formed by the linear
di�erential systems (21) and (24), with A = −5, B = −18/10, r = 13/10, d = −3/2 and
s = 0, we obtain the PWLS formed by

(58) X−(x, y) =

 −5 −9

5
545

36
5

X +

 5

−545

36

 , X+(x, y) =


13

5
−1

69

100
0

X +


13

5
69

100

 .

For this PWLS it is possible verify computationally that closing equations (25) have two
real solutions with t1, t2 ∈ (0, 2π), namely (t11, t

1
2, y

1
0) = (0.608026.., 1.109920.., 3.186528..),

(t21, t
2
2, y

2
0) = (4.796816.., 1.109920.., 3.186528..). But the orbit of the linear di�erential sys-

tem X− intersect the region Σ+ when started at the point (0, y20) = (0, 3.186528..) with
�ight time t21 = 4.796816.. therefore this real solution cannot generates a crossing limit
cycle of PWLS (58) and we only have one crossing limit cycle Γ which intersects Σ in
(0, y10) = (0, 3.186528..) and (0, y11) = (0, 2.369026..) with �ight times t11 = 0.608026.. and
t12 = 1.109920.. in the regions Σ− and Σ+, respectively. Analogously to above cases, it is
possible verify numerically that Γ is an unstable crossing limit cycle. See Figure 15.

Example 5. We consider PWLS (1) formed by the linear di�erential systems (21) and
(26), with A = −1/2, B = −1/10, r = 17/10, d = −4/10 and s = 0, we obtain the PWLS
formed by

(59) X−(x, y) =

 −
1

2
− 1

10
41

10

1

2

X +

 1

2

−41

10

 , X+(x, y) =


17

5
−1

289

100
0

X +

 17

5
289

100

 .

For this PWLS it is possible verify computationally that closing equations (28) have one real
solution, namely (t1, t2, y0) = (2.877804.., 1.249557.., 7.595368..), then the PWLS (59) has
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Figure 15. The crossing limit cycle of the discontinuous PWLS (58) with
con�guration (Cv, Nv).

Figure 16. The crossing limit cycle of the discontinuous PWLS (59) with
con�guration (Cv, iNv).

one crossing limit cycle Γ which intersects Σ in (0, 7.595368..) and (0, 2.404631..). Analo-
gously to above cases, it is possible verify numerically that Γ is an unstable crossing limit
cycle. See Figure 16.
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