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i Pere Mumbrú Rodŕıguez
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Introduction

This memoir deals with one-dimensional discrete dynamical systems, from
both a topological and a combinatorial point of view. More precisely, we
are interested in the periodic orbits and topological entropy of continuous
self-maps defined on trees and graphs.

The central problem of our work is the characterization of the possible set
of periods of all periodic orbits exhibited by a tree map (any continuous map
from a tree into itself). The widely known Sharkovskii’s Theorem (1964)
concerning interval maps was the first remarkable result in this setting. This
beautiful theorem states that the set of periods of any interval map is an
initial segment of the following linear ordering D in the set N ∪ {2∞} (the
so-called Sharkovskii ordering):

3 D 5 D 7 D . . . D 2 · 3 D 2 · 5 D 2 · 7 D . . . D 4 · 3 D 4 · 5 D 4 · 7 D . . . D . . . D
2n · 3 D 2n · 5 D 2n · 7 D . . . D 2∞ D . . . D 2n D . . . D 16 D 8 D 4 D 2 D 1.

Conversely, given any initial segment I of the ordering D there exists an
interval map whose set of periods coincides with I.

During the last three decades there have been several attempts to find
results similar to that of Sharkovskii for one-dimensional spaces other than
the interval (the 3-star and the circle, among them). More recently, the case
of maps defined on more general trees has been specially treated. Baldwin’s
Theorem (1991), which solves the problem in the case of n-stars for any n ≥ 1,
has been one of the most significant advances in this direction. This result
states that the set of periods of any n-star map is a finite union of initial
segments of n-many partial orderings (Baldwin orderings). Conversely, given
such a union I there exists an n-star map whose set of periods is I.

A more detailed chronology of related works, as well as citations to other
partial results on this matter, can be found in the Introductions to Chapters
1 and 2.

The main purpose of our research is to describe the generic structure of the
set of periods of any tree map g : S −→ S in terms of the combinatorial and
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topological properties of the tree S: amount and arrangement of endpoints,
vertices and edges. In Chapter 1 we make a detailed discussion about which
is the more natural approach to this problem, and we propose a strategy
consisting on three consecutive stages which can be summarized as follows:

1. For each periodic orbit P of g, calculate the set ΛP of periods of the
corresponding canonical (or P -minimal) model fP : TP −→ TP .

2. Prove that ΛP is contained in the set of periods of each tree map
exhibiting an orbit with the pattern of P . In particular, ΛP ⊂ Per(g).

3. Consider each orbit P of g and its associated ΛP , and then obtain (by
purely number-theoretical arguments) a finite structure of the set of
periods of g by arranging adequately the (perhaps uncountable) union
of all sets ΛP .

Observe that this approach depends strongly on the notions of pattern (of
a finite invariant set) and minimal model associated to it. These notions
were developed in the context of interval maps and widely used in a number
of papers during the last two decades. However, equivalent operative defi-
nitions for tree maps were not available until 1997, when Alsedà, Guaschi,
Los, Mañosas and Mumbrú proposed to define the pattern of a finite invari-
ant set P essentially as a homotopy class of maps relative to the points of
P , and proved (constructively) that there always exists a P -minimal model
fP : TP −→ TP , that is, a representative of the class displaying several dy-
namic minimality properties. It is important to remark that the trees S and
TP are not necessarily homeomorphic. This complicates considerably the
implementation of the second stage of the above programme, since the only
features which are preserved when one compares the maps g : S −→ S and
fP : TP −→ TP are the relative positions of the points of P and the way g
and fP act on these points.

In Chapter 1 we carry out the first stage of the above programme. That
is, given a periodic orbit P and a P -minimal tree map f : T −→ T , we calcu-
late (as large as possible) subsets of the set of periods of f . This task, which
has been done by studying the loops of the Markov P -graph of f , is rela-
tively simple when P does not exhibit a certain rotational (or twist) behavior
around a fixed point of f . When P is twist, we perform a reduction process
consisting of what we have called a sequence of partial reductions leading up
to a periodic orbit P ′ and a P ′-minimal tree map f ′ : T ′ −→ T ′ such that
T ′ ⊂ T , |P | = k|P ′| for some k > 1, the set of periods of f is essentially the
set of periods of f ′ multiplied by k, and P ′ is non-twist. By means of this
strategy we prove Theorem A, which states that the set of periods of f is, up
to an explicitly bounded finite set, the initial segment of a Baldwin ordering
starting at |P |. We also prove a converse result (Theorem B) which states
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that, given any set I of that form, there exists a piecewise monotone tree
map whose set of periods coincides with I.

The goal of Chapter 2 is to implement in full the above programme by
completing stages 2 and 3. In June 2001 we submitted the work of Chap-
ter 1 to be considered for publication as a paper in International Journal
of Bifurcation and Chaos ([5]). Later on, while writing a part of Chapter 2
of this memoir, we realized that using a new simple and powerful argument
would allow us to shorten considerably the proofs and improve the obtained
results. In particular, with this new approach all the lengthy technical work
associated to the construction of a sequence of partial reductions is unneces-
sary. This gave rise to a revised version of the above strategy (with a slightly
modified stage 1) which we perform completely in Chapter 2. Despite this
new approach overcomes a part of the material of Chapter 1, we have chosen
to leave intact the published work.

The main result of Chapter 2 is Theorem C, which tells us that for each
tree map g : S −→ S there exists a finite set of sequences s = (p1, p2, . . . , pm)
of positive integers such that the set of periods of g is (up to an explicitly
bounded finite set) a finite union of sets of the form

{p1, p1p2, . . . , p1p2 · · · pm−1} ∪ (Is \ p1p2 · · · pm{2, 3, . . . , λs}),
where λs is a nonnegative integer and Is is an initial segment of the Baldwin
ordering p1p2···pm≥. The finite set of sequences which characterizes the set of
periods of g depends entirely on the combinatorial properties of the tree S.
We also prove a converse result (Theorem D) which asserts that given any
finite union I of sets of the above form there exists a tree map whose set of
periods is I.

In Chapter 3 we report some computer experiments on the minimality of
the dynamics of canonical models. Chronologically, this work is contempora-
neous to Chapter 1. While researching about the set of periods of canonical
models, we constructed some computer software to explore how the dynamic
minimality translates into some forcing properties of patterns and periods. In
a spirit of modular programming, we designed lots of self-contained functions
which can be used to implement a wide variety of several-purpose software.
Among other, we have functions that:

1. Compute the canonical model of a pattern provided by the user.

2. Calculate the Markov transition matrix associated to a piecewise mono-
tone tree map.

3. Extract all the simple loops of a given length from a Markov transition
matrix.

4. Calculate the pattern of a periodic orbit associated to a Markov loop.
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The efficient programming of a part of this machinery needs an important
theoretical background. In Chapter 3 we list and explain the source code
(written in language C) of the most important functions. When required, we
also state and prove some results which have been used either to construct
the algorithms or to optimize the execution time. The code of other minor
routines, which are not interesting from a mathematical point of view, has
been listed in the Appendix.

Finally, in Chapter 4 we generalize some results of Block & Coven, Misi-
urewicz & Nitecki and Takahashi, where the topological entropy of an interval
map was approximated by the entropies of its periodic orbits (the entropy of
a periodic orbit P , denoted by h(P ), is the entropy of a P -minimal model). In
Theorem E we show that if f : G −→ G is a graph map then the entropy of f
equals sup{h(P ) : P periodic orbit of f and |P | > m}, for each non-negative
integer m. This chapter has been published as a paper in Proceedings of the
American Mathematical Society ([4]).
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