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Abstract

The existence of a die-out threshold (different from the classic disease-invasion one) defining
a region of slow extinction of an epidemic has been proved elsewhere for susceptible-aware-
infectious-susceptible models without awareness decay, through bifurcation analysis. By means
of an equivalent mean-field model defined on regular random networks, we interpret the dynam-
ics of the system in this region and prove that the existence of bifurcation for of this second
epidemic threshold crucially depends on the absence of awareness decay. We show that the
continuum of equilibria that characterizes the slow die-out dynamics collapses into a unique
equilibrium when a constant rate of awareness decay is assumed, no matter how small, and
that the resulting bifurcation from the disease-free equilibrium is equivalent to that of standard
epidemic models. We illustrate these findings with continuous-time stochastic simulations on
regular random networks with different degrees. Finally, the behaviour of solutions with and
without decay in awareness is compared around the second epidemic threshold for a small rate
of awareness decay.

Keywords: network epidemic models, preventive behavioural responses, epidemic thresholds.

1. Introduction

The study of the impact of behavioural responses on the progression of infectious diseases in
human populations has received a lot of interest during the last years. An important challenge
is how to capture features of human behaviour in epidemic modelling [5]. In a broad sense,
when dealing with sexually transmitted diseases, a high heterogeneity in the number of contacts
reflects the high variability of individuals’ behaviour [1]. But, in addition to this important
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aspect, individual responses adopted to reduce perceived risk constitute another aspect of human
behaviour that greatly impacts the dynamics of an epidemic. Social avoidance behaviours, for
instance, were prevalent in Hong Kong during the SARS pandemic and, also, at the initial stage
of the H1N1 epidemic [14].

Avoidance of contacts with infectious individuals is another example of behavioural plasticity.
This social distancing leads to the idea of link rewiring and is one of the basis of adaptive networks
in which the structure of the contact pattern evolves with the progression of the epidemic [11, 15].
Disease-avoiding rewiring implicitly assumes the local knowledge and transmission of information
which allows individuals to assess the status of their nearest neighbours. Another way to capture
information transmission is by conserving the connectivity pattern but account for the difference
in how information about the disease is processed and acted upon. For example, it is reasonable
to assume that risk perception is heterogeneous meaning that those who are more risk averse
are more likely to adopt preventive measures against contagion. Such individuals have been
labelled as alert or aware in the specialist literature. Some models consider that both susceptible
and infectious individuals can be in either of two states: aware/responsive and unaware/non-
responsive [6, 7, 10, 13]. If information dissemination is explicitly taken into account, new layers
are added to the basic contact network. This extension results in dealing with overlapping
or multiplex networks where the disease and information dissemination networks overlap to
different levels [10, 17, 20].

Predictions from these approaches vary and depend on the particular modelling assumptions.
For instance, in [6] the authors assume a decreasing quality of the information and fading of
awareness and claim that, below a critical infection rate, awareness and a lower susceptibility
of aware individuals lead to a reduction in the basic reproduction number R0 of a susceptible-
infectious-recovered (SIR) model. Interestingly, this claim follows under an individual-based
approach but not from a mean-field analysis. A similar conclusion is obtained in [13] from a
mean-field model which assumes that both susceptible and infectious individuals can be either
responsive or non-responsive against the disease. In this setting, a contact-based transmission
of information can change, under suitable conditions, the epidemic threshold and prevent the
spread of the disease.

The approach that motivates our study is the one introduced in [18, 19]. In these papers, the
authors assume a new class of individuals, the aware or alerted ones, which are non-infectious
individuals with a reduced susceptibility. Awareness arises in susceptible individuals when they
have infectious neighbours, that is, from a contact-based transmission of information. Aware
individuals can get infected at a lower infection rate compared to fully susceptible ones, due
to the adoption of preventive measures. Formulating the network epidemic model in terms of
an approximation of the exact Markov processes, the authors prove the existence of a second
threshold (different from the classic disease-invasion one) for the preventive response to suppress
epidemic spreading. Certainly, this is a result that has not been observed in previous modelling
approaches and seems to give an important role to aware people at the beginning of the epidemic.

The aim of this paper is to give a simple but full interpretation of the existence of such
an epidemic threshold using a mean-field approach to the original equations. In contrast to
previous results (see, for instance, [6]), in Sections 2 and 3 we show that the mean-field model
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captures the dynamics of the whole system and leads to the same epidemic thresholds as the
network model for fully connected and regular random networks. Therefore, it offers a simple
and complete description of the epidemic dynamics (Section 4). In particular, this mean-field
formulation allows us to prove by means of Peixoto’s theorem (see [16]) that the original model
introduced in [18, 19] defined on regular random networks is structurally unstable because it
has a continuum of equilibria and, so, the qualitative behaviour of its solutions can change
with a small and smooth perturbation of its equations. In Section 5, we show that including
an awareness decay leads to the disappearance of the second epidemic threshold, and to the
appearance of oscillations around an endemic equilibrium instead of the occurrence of minor
outbreaks associated to an slow die-out of the epidemic [18]. The analysis of many real outbreak
episodes, such as the SARS epidemic in Hong-Kong in 2003 and HIV/AIDS, provide clear
evidence of awareness decay over time. Namely, for the former, fewer people are wearing face
masks when they have a cold/flu and washing their hands regularly. While for the latter, there
are still a large number of individuals adopting risky behaviours despite the heightened level of
awareness and prevention campaigns [2]. Thus, the inclusion of awareness decay is an important
model ingredient and needs to be accounted for.

2. The SAIS model

We consider a population of size N for which an individual i can be in one of the following
states: Si, Ii, or Ai, where capital letters denote the susceptible, infectious, or aware/alert states,
respectively. We also consider the following parameters

• per-contact infection rate for susceptible individuals, β0 > 0,

• per-contact infection rate for aware individuals, β0a > 0,

• per-contact awareness rate for susceptible individuals, κ0 > 0,

• recovery rate for infectious individuals, δ > 0,

• rate of awareness decay for aware individuals, δa ≥ 0,

together with the following rules for the epidemic/awareness evolution:

Ii
δ−→ Si, Ai

δa−→ Si, Ii + Sj
β0−→ Ii + Ij , Ii +Aj

β0
a−→ Ii + Ij , Ii + Sj

κ0−→ Ii +Aj . (1)

Finally, to reflect the fact that aware individuals get infected at a lower rate than unaware
(susceptible) ones, we will assume β0a < β0 when necessary. From a mathematical point of view,
this hypothesis restricts the possible behaviours of the solutions of the model and will prevent us
from results which do not make biological sense. An example of these results happens for δa > 0
if βa > δ because, then, it is possible to have a stable endemic equilibrium which is sustained
thanks to a higher susceptibility (β0a > β0) of aware individuals.
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If pSi , pIi , pAi are the probabilities for node i to be susceptible, infectious, and aware,
respectively, pSiIj is the joint probability for node i being susceptible and for a neighbour j
being infectious (and similarly for pAiIj ), and (aij)i,j=1,...,N is the adjacency matrix of the contact
network, the exact model for the setup above in a continuous-time setting is given by:

dpSi(t)

dt
= −

N∑
j=1

βij aijpSiIj (t)−
N∑
j=1

κij aijpSiIj (t) + δi pIi(t) + δai pAi(t) ,

dpIi(t)

dt
=

N∑
j=1

βij aijpSiIj (t) +

N∑
j=1

βaij aijpAiIj (t)− δipIi(t) ,

dpAi(t)

dt
=

N∑
j=1

κij aijpSiIj (t)−
N∑
j=1

βaij aijpAiIj (t)− δai pAi(t) ,

where, for sake of generality in the presentation, the transmission rates β, βa, and κ are assumed
to be dependent on the involved pair (i, j) of individuals. In what follows, we ignore pSi(t), since
(pSi +pIi +pAi)(t) = 1 for i = 1, 2, . . . , N . This is not a closed or self-consistent system as further
equations for the pairs are needed. To avoid this dependence on higher order moments, let us
assume that the joint probability can be written as pSiIj = pSi · pIj (or pAiIj = pAi · pIj ), that
is, it is independent of the neighbourhood configuration of node i and node j.

Assuming the same rates β0, κ0, and β0a of transmission across a contact and the same
recovery and awareness decay rates, δ and δa, for all the nodes, denoting pIi = pi and pAi = qi,
and dropping the time dependence for simplicity, the model reads:

dpi
dt

= β0(1− pi − qi)
∑

j aijpj + β0aqi
∑

j aijpj − δpi ,

dqi
dt

= κ0(1− pi − qi)
∑

j aijpj − β0aqi
∑

j aijpj − δaqi .
(2)

for i = 1, . . . , N . For δa = 0, these equations define the so-called SAIS epidemic model considered
in [18, 19].

3. The SAIS model on regular random networks

In order to give a simple interpretation of the the epidemic thresholds obtained in [18, 19],
from now on we will restrict ourselves to regular random networks, that is, networks where all
the nodes have the same number of neighbours (degree), k, which are randomly chosen among
the nodes in the network. Our approach will also embrace fully connected networks (k = N−1).
In this paper, we will not focus on the goodness of the mean-field approximation pSiIj = pSi ·pIj
and pAiIj = pAi ·pIj , i.e. we will not investigate or quantify the error introduced by this closure.
It is well know that such closures for particular dynamics and network topologies give a good
approximation meaning that the exact model, via a Gillespie simulation, is well approximated
by the closed model [9].
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Since the degree is the only feature that characterizes a node, in this type of networks there
is no reason to assume that some nodes have higher vulnerabilities than others. This means
that it is reasonable to assume that any node of the network can get infected with the same
initial probability p0, and that the probability of being initially aware is also the same for all
the nodes, namely, q0. Under this uniform initial condition for pi and qi, the following lemma
states that these probabilities vary with time but are the same for any node in the network.

Lemma 3.1. Consider the initial value problem (IVP) given by system (2) defined on regular
random networks and endowed with the initial condition pi(0) = p0 ≥ 0 and qi(0) = q0 ≥ 0 for
i = 1, 2, . . . , N , and such that p0 + q0 ≤ 1. The solution of this IVP is given by (pi(t), qi(t)) =
(p(t), q(t)) ∀ i with (p(t), q(t)) being the solution of the system

dp

dt
= kβ0(1− p− q)p+ kβ0ap q − δp ,

dq

dt
= kκ0(1− p− q)p− kβ0ap q − δaq ,

(3)

endowed with the initial condition (p(0), q(0)) = (p0, q0).

Proof. It is clear that if (pi(t), qi(t)) = (p(t), q(t)) ∀ i then
∑

j aijpj(t) = kp(t) ∀ i because
each node has exactly k neighbours, each one of them being infectious with probability p(t).
After introducing the value of this sum into system (2), it follows that (p(t), q(t)) must satisfy
(3) with (p(0), q(0)) = (p0, q0) to be a solution to the IVP.

On the other hand, the standard theory of ODEs guarantees the existence and uniqueness of
a local solution of the IVP defined by system (2), endowed with a non-negative initial condition
(pi(0), qi(0)) = (p0, q0) ∀i, since the right-hand side (rhs) of system (2) is quadratic in pi and
qi and, hence, it is locally Lipschitz. Moreover, for i = 1, . . . , N and (pi, qi) ∈ [0, 1] × [0, 1],
it immediately follows that (dpi/dt)|pi=0 ≥ 0, (dqi/dt)|qi=0 ≥ 0. Finally, adding the equations
of system (2) for each i, we get (d(pi + qi)/dt)|pi+qi=1 < 0. The region Ω := {(p1, q1) × · · · ×
(pN , qN ) ∈ [0, 1]2n| 0 ≤ pi + qi ≤ 1 ∀i} is then positively invariant, which guarantees that
the local solution can be extended to any t > 0 for any initial condition in Ω. Therefore,
(pi(t), qi(t)) = (p(t), q(t)) ∀ i with (p(t), q(t)) satisfying (3) with (p(0), q(0)) = (p0, q0) turns out
to be the unique global solution of the IVP. �

From this lemma it follows that, under a uniform initial condition, the average number of
infectious and aware individuals at time t is given by I(t) =

∑
i pi(t) = Np(t) and A(t) =∑

i qi(t) = Nq(t). Then, we can consider the (expected) fractions of susceptible and aware
individuals, s = (N − I − A)/N and a = A/N , as state variables instead of working with the
nodal probabilities of being infectious and aware. Indeed, s(t) = 1− p(t)− q(t) and a(t) = q(t).
In terms of s(t) and a(t), system (3) can be rewritten as:

ds

dt
= (1− s− a)(δ − (κ+ β)s) + δaa

da

dt
= (1− s− a)(κs− βaa)− δaa,

(4)
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where, as usual in mean-field models, β = kβ0, κ = kκ0, and βa = kβ0a are transmission rates
per node and not per contact.

System (4) constitutes an extension of the SIS model on regular networks [12]. Remarkably,
system (4) has been derived without summing the equations for pi(t) and qi(t) in (2) with respect
to i, which allow us to prove that both formulations have equivalent solutions under uniformly
random initial infections, even for networks that are not fully connected (k < N − 1). Note
that, even for fully connected networks, the assumption of uniformly random initial conditions
is required for a complete equivalence of the formulations, as it was observed in [22] for the SIS
model. In other words, we have shown that mean-field epidemic models on regular networks
do not underestimate the rate of infection obtained from the full system (2) when we restrict
ourselves to uniformly random initial conditions, as it was claimed for the SIS model on regular
networks with k < N − 1 when it was compared to the corresponding full (intertwined) system
(cf. Sect. VII in [22]). In Figure 1 we compare the solutions of both models under uniformly
random and clustered initial conditions on networks of size N = 1000 and degree 5. As proved
in the previous lemma, the time evolution of the fraction of infectious individuals predicted by
both models is exactly the same when (pi(0), qi(0)) = (p0, q0) ∀i. In contrast, this figure also
shows that, when we initially infect the neighbours of 20 randomly selected nodes (clustered
infections), and aware individuals are not present, system (3) overestimates the early epidemic
growth. In both models, however, the solutions tend to the same equilibrium point.

Following these findings, we now turn our attention to the analysis of two mean-field models.
Namely, the mean-field model corresponding to the information transmission model proposed in
[18, 19], and an extended version of it, which accounts for the decay of awareness. In the following
two sections, we will give a detailed bifurcation analysis of both, and we will show that the two-
threshold feature (i.e. the classic invasion threshold not involving information and the die-out
threshold delimiting the persistence from the eventual die-out following a minor outbreak) of the
first model disappears via a degenerate transition upon including awareness decay. Moreover,
our analysis will show that the qualitative bifurcation picture from the mean-field model maps
exactly to the behaviour obtained from the full model (2), as detailed in [18, 19].

4. Analysis of the mean-field SAIS without awareness decay

Let us begin with the mean-field equations obtained from (4) with δa = 0, namely,
ds

dt
= (1− s− a)(δ − (κ+ β)s)

da

dt
= (1− s− a)(κs− βaa),

(5)

where β = kβ0, κ = kκ0, and βa = kβ0a are transmission rates per node.

Some basic features of the model are given by the following

Lemma 4.1. Assume β, βa, κ, δ > 0. Then
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(a) The region R =
{

(s, a) ∈ R2 | 0 ≤ a+ s ≤ 1, s ∈ [0, 1]
}

is positively invariant under the
flow induced by system (5).

(b) Any point on the segment L =
{

(s, a) ∈ R2 | a+ s = 1, s ∈ [0, 1]
}

is a disease-free equilib-
rium.

(c) If κ + β − βa 6= 0, the trajectories passing through points (s, a) ∈ R with s + a < 1 are
given by

a(s) = C0 (δ − (κ+ β)s)βa/(κ+β) +
κ(δ − βas)

βa(κ+ β − βa)
(6)

where C0 is determined by the initial condition (s(0), a(0)) of the trajectory.

Proof. Statements (a) and (b) directly follow from the analysis of the vector field defined
by (5). In particular, evaluating it on the left and bottom boundaries of R we obtain that
ds
dt

∣∣
s=0

= δ(1 − a) > 0 ∀a ∈ [0, 1) and da
dt

∣∣
a=0

= κs(1 − s) > 0 ∀s ∈ (0, 1), respectively, which
means that trajectories cannot leave R through these boundaries.

Statement (c) follows from the fact that, for those points (s, a) such that s + a < 1, we
can divide the second equation of (5) by the first one to obtain a non-homogeneous first order
linear equation for a(s), namely, dads = κs−βaa

δ−(κ+β)s . This equation can be integrated and its general

solution is given by (6). �

The dynamics of system (5) is summarized in the next theorem which, for simplicity, is
proven by analysing da/ds instead of using the expression of a(s).

Theorem 4.2. Assuming βa, β, κ, δ > 0 with βa < β, the global behaviour of the solutions of
system (5) is given by one of the following cases:

(a) For β ≤ δ, any trajectory inside R ends up at a point of L. Along each trajectory, the sum
s+ a increases monotonously towards 1.

(b) For βa < δ < β, the value s∗0 = δ−βa
β−βa defines a point (s∗0, 1 − s∗0) on the segment L that

splits it into two regions, L1 and L2, such that

L1 := {(s, a) ∈ L | s∗0 ≤ s ≤ 1}

defines a continuum of unstable equilibria whereas L2 := L \ L1 defines a continuum of
locally stable equilibria. Then,

(i) if κ ≥ κ∗ := βa(β−δ)
δ−βa , there are no interior equilibria and every trajectory inside R

tends to an equilibrium in L2,

(ii) if κ < κ∗, there exists an equilibrium (s∗, a∗) :=
(

δ
κ+β ,

κδ
βa(κ+β)

)
∈ R, which bifurcates

from (s∗0, a
∗
0) at κ = κ∗. This equilibrium is asymptotically stable and attracts any

trajectory inside R with an initial a < a∗0. Those trajectories inside R not tending to
(s∗, a∗) approach an equilibrium in L2.
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(c) For δ < βa < β, the equilibrium (s∗, a∗) is globally asymptotically stable, i.e., it attracts
all the trajectories inside R.

Proof. In the proof of (a) and (b), we will neglect the factor 1−s−a affecting both equations
because, although it becomes 0 on L, it does not affect the slope of the vector field inside R (it
cancels out when we divide the equations of (5) to obtain da/ds).

To prove statement (a), two different situations must be considered. First, we can have
δ ≥ k+ β. In this case, trajectories inside R move to the right and their slope is always greater
than −1. More precisely, dads = κs−βaa

δ−(κ+β)s > −1 if, and only if, δ > βs+βaa because s ∈ [0, 1]. But,

βs+βaa < (β−βa)s+βa ≤ β ≤ δ because a ∈ [0, 1− s) and β > βa. Therefore, the trajectories
cross the straight lines s + a = c, c ∈ (0, 1), only once. In the second case, β < δ < β + k. For
s < s∗ := δ/(β + k) < 1, the same result as before follows: trajectories move to the right and
da/ds > −1. For s > s∗, trajectories move to the left and it can be shown along the same lines
that the slope of the trajectories da/ds < −1. So, also in this second case, trajectories cross the
lines s+ a = c, c ∈ (0, 1), only once. Note that s = s∗ is a vertical straight line and corresponds
to the nullcline ds

dt = 0 and, hence, trajectories cannot cross it. Therefore, in both cases the
sum s + a tends to 1 monotonously along trajectories because of the invariance of R (Lemma
4.1). That is, trajectories tend monotonously to L, which means that no minor outbreaks are
possible.

In statement (b), the existence of the value s∗0 for s follows from the analysis of the slope of
the trajectories when they approach L, and from the direction of the vector field. In particular,
we are interested in those points on L where the vector field is parallel to L, that is, where
da
ds

∣∣
a=1−s = −1. From this expression, we obtain that s∗0 := δ−βa

β−βa is the only value of s for which
da
ds = −1 on L. This point separates the region L2, where trajectories approach L, from the
region L1 where trajectories depart from the immediate vicinity of L. For κ ≥ κ∗, trajectories
move to the right and da

ds

∣∣
L
> −1 for all s ∈ [0, s∗), whereas trajectories move to the left and

da
ds

∣∣
L
< −1 for all s ∈ (s∗, s∗0), with s∗ being the location of the vertical nullcline. Therefore,

L2 = {(s, 1− s) | s ∈ [0, s∗0)} and, hence, L1 = L \L2 = {(s, 1− s) | s ∈ (s∗0, 1)}, with trajectories
moving to the left and da

ds

∣∣
L1

> −1. At (s, a) = (s∗, 1 − s∗), the nullcline ds
dt = 0 and L

intersect each other and, hence, the vector field is vertical and upwards on this nullcline. So,
those trajectories departing from the vicinity of L1 end up at L2 within the region defined by
s∗ < s < s∗0 (see left panel in Figure 2). These trajectories cross the lines s + a = c with c ≈ 1
twice.

For κ < κ∗, there exists a unique interior equilibrium (s∗, a∗), with a∗ = a(s∗). Moreover,
trajectories move to the right and da

ds

∣∣
L
> −1 for all s ∈ [0, s∗0), i.e., L2 = {(s, 1−s) | s ∈ [0, s∗0)}.

Trajectories leaving the vicinity of L1 = {(s, 1−s) | s ∈ (s∗0, 1)} move to the right with da
ds

∣∣
L
< −1

for all s ∈ (s∗0, s
∗), and move to the left with da

ds

∣∣
L
> −1 for all s ∈ (s∗, 1). From Poincaré-

Bendixson theorem, it follows that all of them approach the endemic equilibrium because periodic
orbits are not possible since the vertical nullcline ds

dt = 0 is a vertical straight line (see right panel
in Figure 2).

Statement (c) also follows from Poincaré-Bendixson theorem because, as before, there exists a
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unique interior equilibrium (s∗, a∗), no periodic orbits are possible within R, and now trajectories
depart from the immediate vicinity of the whole segment L (because s∗0 < 0). �

Note that, in case (b) with κ ≥ κ∗, those trajectories departing from the vicinity of L1

correspond to the ocurrence of minor outbreaks that eventually disappear as these trajectories
approach L2. In Table 1 we present a summary of the possible dynamical behaviours of the
model.

βa < β < δ
βa < δ < β

δ < βa < β
κ > κ∗ κ < κ∗

Trajectories inside R
tend to different
disease-free states
(s∞, 1− s∞).

Minor outbreaks
followed by die
out. No endemic
equilibrium.

The endemic
equilibrium
is locally
stable.

The endemic
equilibrium
is globally
stable.

Table 1: Summary of model behaviours, with the richest dynamical features in the βa < δ < β regime where there
exists a continuum of stable disease-free equilibria. The die-out threshold is defined by κ = κ∗ := βa(β−δ)/(δ−βa).
The points of the form

{
(s, a) ∈ R2 | a+ s = 1, s ∈ [0, 1]

}
are always equilibria.

From this analysis of the dynamics of system (5), the nature of the die-out epidemic threshold
κ = κ∗ found by Scoglio et al. in [18, 19] becomes clearer. Its occurrence is based on the
existence of a continuum of equilibria, part of which (the one nearest to a purely susceptible
population) turns out to be unstable. This happens when the recovery rate δ becomes lower
than the infection rate β of a susceptible individual, but it is still higher than the infection rate
βa of an aware individual. In such circumstances, there can be minor outbreaks if most of the
population is susceptible but, if the awareness rate is high enough (κ > κ∗), the creation of aware
individuals does not allow for infectious individuals to be present at equilibrium. Eventually,
the population will be composed only of susceptible and aware individuals, defining a new kind
of disease-free state. In Figure 3 (left column) we compare the time evolution of susceptible,
infectious and aware individuals for different parameters values to illustrate the nature of these
minor outbreaks.

We also show in Figure 3 (right column) solutions of system (4) for a very small rate of
awareness decay (δa = 0.01) and the same values for the rest of parameters and the same initial
conditions as in the left panels. We can see that, for very small values of δa, minor outbreaks
occurring in system (5) when βa < δ < β and κ > κ∗ (see also left panel of Figure 2) are replaced
by damped oscillations towards an interior equilibrium with a very low prevalence of the disease
(compare curves marked by squares (�) in both columns). One can also see a trajectory with a
high initial fraction of aware individuals tending to a disease-free equilibrium on the boundary
s+ a = 1 if δa = 0, whereas, for the same intial condition and δa > 0, the trajectory tends to an
endemic equilibrium with a significant prevalence of the disease after a long period of time with
a extremely low prevalence (compare solutions marked with diamonds (♦) in Figure 3). Such
different qualitative behaviours of the solutions is a consequence of the structural instability
of the (continuously differentiable) flow induced by system (5). In the last case (♦), system
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(5) has an endemic equilibrium which is not globally stable because of the existence of stable
equilibria on the boundary, whereas system (4) has a globally stable endemic equilibrium. Note
that system (5) is a two-dimensional system defined on the region R, which is a compact subset
of R2, and has a continuum of equilibria, the boundary L. Therefore, the structural instability
of the flow associated to system (5) is guaranteed by Peixoto’s theorem [16].

Finally, in Figure 4 we check the accuracy of the model when a minor outbreak is predicted
by comparing its solutions with the output of continuous-time stochastic simulations of an
epidemic on regular random networks of size 1000. In each panel, the time evolution of the
proportion of susceptible, aware, and infectious corresponds to the average over 100 realizations.
In each realization, the initially infectious cases are determined by choosing 100 individuals
uniformly at random. Such a uniform initial condition is required for the equivalence among
model formulations (2) and (3). As expected, the figure shows an overestimation of the fraction
of aware and infectious individuals, which decreases with the network degree and vanishes in
fully connected networks. The homogeneous mixing assumed in mean-field epidemic models is
violated in networks, especially in those with a low nodal degree, due to the development of
spatial correlations between disease status of individuals which reduce infection transmission.

5. Analysis of the mean-field SAIS with awareness decay

Now we will analyze the behaviour of the solutions of (4) in R. In contrast to the previ-
ous model, note that (s, a) = (1, 0) is an isolated equilibrium of (4) and corresponds to the unique
disease-free equilibrium (DFE) of this system. As before, letR =

{
(s, a) ∈ R2 | 0 ≤ a+ s ≤ 1, s ∈ [0, 1]

}
and L =

{
(s, a) ∈ R2 | a+ s = 1, s ∈ [0, 1]

}
. The next result establishes basic facts about this

system.

Lemma 5.1. Assume βa, β, κ, δ, δa > 0. Then,

(a) The segment L is positively invariant under the flow induced by system (4) and the trajec-
tory of every point (a, s) ∈ L tends to the DFE as t→∞.

(b) The region R is positively invariant under the same flow.

Proof. To prove the invariance of L, note that ds
dt

∣∣
L

= − da
dt

∣∣
L

= δaa. This means that
da
ds

∣∣
L

= −1, that is, any trajectory of (4) with an initial condition on L tends to (1, 0) along L.

On the other hand, we have that ds
dt

∣∣
s=0

> 0, while da
dt

∣∣
a=0

> 0 for s 6= 0, 1. In consequence,
the vector field induced by (4) on the lines {(0, a) ∈ R} and {(s, 0) ∈ R} points inside R.
Together with Lemma 5.1 and the invariance of L, this implies that R is a positively invariant
region. �

The first claim of Lemma 5.1 has an obvious interpretation: if a + s = 1, then i = 0. In
such a case, it is clear from the evolution rules (1) that no new aware/infectious individuals will
arise, while every aware individual will become susceptible after a large enough time (δa > 0).
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Now we give a simple lemma that will help us to guarantee the uniqueness of an endemic
equilibrium.

Lemma 5.2. Every equilibrium point of the system (4) different from DFE belongs to the
straight line given by

a0(s) :=
δ − βs
βa

.

Proof. Setting ds/dt = da/dt = 0 yields

δaa = (1− s− a)((κ+ β)s− δ)

δaa = (1− s− a)(κs− βaa).

By Lemma 5.1, an equilibrium point (s, a) 6= (1, 0) does not belong to the straight line L. Hence,
1− s− a 6= 0 and the previous equations amount to (κ+ β)s− δ = κs− βaa, which defines a as
a function of s, that is, a0(s). �

The asymptotic behaviour of the trajectories of system (4) is specially simple in the case
δ ≥ β:

Theorem 5.3. Assume βa, β, κ, δ > 0 with βa < β and δ ≥ β. Then, the region R contains no
equilibrium points of (4) different from DFE which is globally asymptotically stable.

Proof. Since βa < β by hypothesis, the slope −β/βa of the line a0(s) is less than −1. Note
also that a0(δ/β) = 0. In consequence, if δ/β ≥ 1 the line a0(s) does not intersect the region R.
Then, by Lemma 5.2, there cannot be other equilibrium points in R different from DFE.

Linearizing system (4) about an arbitrary point (s, a) it follows that the Jacobian matrix of
system (4) is

J(s, a) =

 −(δ − (κ+ β)s)− (κ+ β)(1− s− a) −δ + δa + (κ+ β)s

−(κs− βaa) + κ(1− s− a) −(κs− βaa)− βa(1− s− a)− δa

 .

At the DFE, (s, a) = (1, 0) and we get

J(1, 0) =

(
κ+ β − δ κ+ β − δ + δa
−κ −κ− δa

)
.

The eigenvalues of J(1, 0) are λ1 = −δa < 0 and λ2 = β − δ, with associated eigenvectors
v1 = (1,−1) and v2 = (δ − δa − (κ + β), κ), respectively. So, DFE is asymptotically stable (a
stable node) for δ > β.

Finally, the non-existence of endemic equilibria implies that no periodic orbit lies in R and,
hence, the global stability of the DFE follows by the invariance of R and Poincaré-Bendixson
theorem. �
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Theorem 5.3 fully specifies the behavior of system (4) when δ ≥ β. Therefore, from now on
we will focus on the (more interesting) case δ < β. Before that, we give some properties of the
nullclines that will help us to establish the uniqueness of an endemic equilibrium and the global
behaviour of solutions.

The vertical nullcline ds/dt = 0 of system (4) is given by the curve

a1(s) :=
(1− s)(δ − (κ+ β)s)

δ − δa − (κ+ β)s
, (7)

well defined for s 6= (δ − δa)/(κ+ β). The next result summarizes some properties of the curve
a1(s).

Lemma 5.4. Assume β, κ, δ, δa > 0. Then

1. a1(s) = 0 only when s = 1 or s =
δ

κ+ β
.

2. If δ > δa, then a1(s) > 1 − s ∀s ∈
[
0,
δ − δa
κ+ β

)
. So, the graphic of a1(s) lies above R for

s ∈ [0, 1] if δ − δa > κ+ β.

3. a1(s) < 0 ∀s ∈
(

max

{
0,
δ − δa
κ+ β

}
,

δ

κ+ β

)
.

4. 0 ≤ a1(s) ≤ 1− s ∀s ∈
[

δ

κ+ β
, 1

]
. That is, the graphic of a1(s) lies partially inside R for

δ < κ+ β.

5. If δ < κ+ β, then a′1

(
δ

κ+ β

)
> 0 and −1 < a′1(1) < 0

6. If δ < κ+β, then a1(s) has a unique extremum in

(
δ

κ+ β
, 1

)
, which is the global maximum

of a1(s) inside R.

Proof. All the statements (1)–(5) follow from straightforward computations. Let us prove
(6). For δ < κ + β, the equation a′1(s) = 0 has only one solution M ∈ (δ/(κ + β), 1) which is
given by

M =
(δ − δa) +

√
δ2a + δa(κ+ β − δ)
κ+ β

.

Observe that M > δ/(κ+ β) if and only if
√
δ2a + δa(κ+ β − δ) > δa, which is satisfied because

we are assuming κ+ β > δ. Similarly, it can be seen that M < 1 if κ+ β > δ. From (1)–(5) it
follows that a1(s) has a global maximum in (δ/(κ+ β), 1) at s = M . �

In Figure 5 we can see a sketch of the curve a1(s) and the straight line a0(s) for δa < δ < β.
From Lemmas 5.2 and 5.4, it immediately follows that a0(s) and a1(s) intersect each other
exactly at one point inside R when δ < β, which would correspond to the unique endemic
equilibrium of system (4) if it exists. So, by Lemma 5.2, we have:
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Corollary 5.5. Assume β, βa, κ, δ, δa > 0 with β > δ. Then the region R contains at most one
equilibrium point (s∗, a∗) of (4) different from DFE. If this equilibrium exists, its coordinates
are given by

(s∗, a∗) =

(
s∗,

δ − βs∗
βa

)
with s∗ being the only solution of the equation a0(s) = a1(s) with s∗ ∈ (δ/(κ+ β), 1).

To determine the existence of an endemic equilibrium we need to study the horizontal null-
cline of system (4). The equation da/dt = 0 leads to two possible curves:

a±2 (s) :=
κs+ δa + βa(1− s)±

√
(κs− βa(1− s))2 + 2δa(κs+ βa(1− s)) + δ2a

2βa
. (8)

It is not difficult to see that a+2 (s) > 1− s ∀s ∈ [0, 1]. Hence, (s, a+2 (s)) /∈ R ∀s ∈ [0, 1]. So, from
now on we will only consider the nullcline a2(s) := a−2 (s).

Lemma 5.6. Assume βa, β, κ, δa, δ > 0 with β > δ. Then,

1. 0 ≤ a2(s) < 1− s ∀s ∈ [0, 1] with a2(0) = a2(1) = 0.

2. a′2(0) > 0 and −1 < a′2(1) < 0.

3. a′2(1) > a′1(1).

4. a2(s) has a unique extremum in (0, 1), which is a maximum.

Proof. Statement 1 follows from direct computations. Let us prove statement 2. By implicit
differentiation of Eq. (8) we get that

a′2(s) =
(κ− βa)a2 − κ(1− 2s)

2βaa2 − (κs+ δa + βa(1− s))
, (9)

where the dependence of a2 on s has been omitted for simplicity of notation. From statement
1, we get that a′2(0) = κ/(δa + βa) > 0 and a′2(1) = −κ/(κ+ δa), which lies between −1 and 0.

Let us prove statement 3. From Eq. (7) we have that

a′1(1) =
κ+ β − δ

δ − δa − (κ+ β)
.

Then, a′2(1) > a′1(1) if and only if (κ+ δa + (β − δ))κ < (κ+ δa)(κ+ β − δ), which is equivalent
to (β − δ)κ < (κ+ δa)(β − δ). This inequality is obviously satisfied, since δ < β by hypothesis.

Finally, let us prove statement 4. It is enough to show that there is a unique value s0 ∈ (0, 1)
such that a′2(s0) = 0 since, in this case, from statements 1 and 2 it follows that s0 is a maximum
of a2(s). From Eq. (9), the equation a′2(s) = 0 has as many solutions as

a2(s) =
κ(1− 2s)

κ− βa
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with a2(s) given by Eq. (8). We can rewrite this equation as(
κ− βa +

4βaκ

κ− βa

)
s + δa + βa −

2βaκ

κ− βa
=

√
(κs− βa(1− s))2 + 2δa(κs+ βa(1− s)) + δ2a . (10)

The left-hand side of (10) is linear in s, whereas the right-hand side is non-linear with at most
one critical point for s ∈ [0, 1]. Evaluating this equation at s = 0 and s = 1 we obtain:

δ + βa −
2βaκ

κ− βa
< (>) δa + βa if κ > (<)βa at s = 0,

κ+ δa +
2βaκ

κ− βa
> (<) δa + κ if κ > (<)βa at s = 1.

Therefore, comparing the relative position of the end points of the curves defined by both sides
of (10) at s = 0 and s = 1, and taking into account their behaviour as functions of s, it follows
the existence a unique intersection point s0 between them in (0, 1). �

We can summarise the results of this section in the following theorem:

Theorem 5.7. Assume βa, β, κ, δa, δ > 0 with βa < β. If δ < β then there exists a unique
equilibrium of system (4) in the interior of the region R, which is globally asymptotically stable.
Otherwise (δ > β), the DFE is the only equilibrium of (4) and is globally asymptotically stable.

Proof. From Lemmas 5.4 and 5.6 it follows that, if β > δ, a1(s) and a2(s) can intersect each
other, at least, at one point in s ∈ (0, 1). Corollary 5.5 tells us that they must intersect at
exactly one point (s∗, a∗) and characterizes its coordinates.

The global asymptotic stability of the interior equilibrium follows from the unstability of the
DFE (the second eigenvalue of the Jacobian matrix J(1, 0) is λ2 = β−δ > 0), the invariance of the
region R\L, and Dulac’s criterion for the nonexistence of closed orbits lying entirely in a simply
connected region of R2 [16]. In particular, if we consider the function ϕ(s, a) = 1/(1 − s − a),
which is continuously differentiable in R \ L, and denote by f1 and f2 the first and second
component of the vector field defined by the rhs of (4), it follows that ∂s(ϕf1) + ∂a(ϕf2) =
−(κ+ β+ βa)− δa/(1− s− a) < 0 for all (s, a) in the interior of R. Therefore, Dulac’s criterion
guarantees the nonexistence of periodic orbits in the interior of R, and Poincaré-Bendixson
theorem gives the global asymptotic stability of the interior equilibrium. The global asymptotic
stability of the DFE when δ > β is given by Theorem 5.3. �

To finish the sketch of the phase portrait of system (4), we compare the slopes of the null-
clines at (s, a) = (1, 0) and that of the eigenvector v2 = (v12, v

2
2) of the Jacobian matrix J(1, 0)

associated to λ2 = β − δ (see Theorem 5.3). When δ < β we have that

v22
v12

=
κ

δ − δa − (κ+ β)
>

κ

−κ− δa
= a′2(1) >

κ+ β − δ
δ − δa − (κ+ β)

= a′1(1),

where the last inequality has been stated in the proof Lemma 5.6. Conversely, when δ > β the
previous inequalities are fulfilled in the opposite direction. When δ = β, the endemic equilibrium
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E bifurcates from the DFE because, at this point, λ2 = 0 and the slopes of the nullclines at
s = 1 are equal to each other (and equal to the one of the eigenvector v2). The left panel of
Figure 6 depicts a sketch of the vector field associated to system (4) for δ < β. The right panel
shows the phase portrait of this system for a particular choice of the parameters values that
leads to a similar relative position of the nullclines.

The previous inequalities also show that, for κ+β > δ, the slopes of both nullclines at s = 1
tend to −1 as δa → 0 and, hence, the two curves tend to be very close to each other and to

the boundary s + a = 1 for values of s close to 1. Moreover, as a′1

(
δ

κ+β

)
→ ∞ when δa → 0

(the location of the vertical asymptote of the graph of a1(s) tends to δ/(κ + β) when δa → 0,
see Figure 5), and the nullclines intersect each other at a point (s∗, a∗) on the graph of a0(s),
which does not depend on δa, it follows that (s∗, a∗) moves along the straight line (s, a0(s))
towards the boundary s + a = 1 as δa decreases. When βa < δ < β, the intersection of a0(s)

with the boundary s + a = 1 occurs at
(
δ−βa
β−βa ,

β−δ
β−βa

)
, i.e., at the point (s∗0, 1 − s∗0) that splits

this boundary into two regions when δa = 0 (cf. Theorem 4.2). If, in addition, κ > κ∗ then
(s∗, a∗) approaches (s∗0, 1− s∗0) as δa → 0 because this condition is equivalent to s∗0 > δ/(κ+ β).
Therefore, the fraction of infectious nodes at equilibrium i∗ = 1− s∗ − a∗ tends to 0 as δa → 0
whenever βa < δ < β and κ > κ∗. On the other hand, using again the dependence of a′1(1) and
a′2(1) on δa and the fact that (s∗, a∗) belongs to the graph of a0(s), it follows that i∗ → 1−δ/β as
δa →∞, the endemic equilibrium of an SIS model when β > δ. Figure 7 shows the dependence
of the fraction i∗ of infected nodes at equilibrium on β for different values of δa.

We have already observed in Figures 2 and 3 that the way trajectories approach an equilib-
rium can be sensitive to parameters values and to initial conditions when δa = 0. Figure 8 shows
the phase portaits of system (4) for the same parameters values as in Figure 2 and δa = 0.05.
They clearly show that the solutions tend to an endemic equilibrium and, so, that the two epi-
demic models have different qualitative behaviours, as expected from the structural instability
of system (5) (see Peixoto’s theorem in [16]). For instance, trajectories corresponding to minor
outbreaks in Figure 2 are now replaced by damped oscillations converging to an endemic equi-
librium which is close to the boundary s+ a = 1 and attracts every trajectory inside the region
R (left panel). Similarly, trajectories with a high initial fraction of aware nodes that ended up
at a disease-free equilibrium when δa = 0, now tend to an endemic equilibrium with i∗ = 0.165
which is globally stable (right panel).

In Figure 9 we check the accuracy of the model when an endemic equilibrium is predicted.
As in Figure 4, we show the time evolution of the fraction of infectious, aware and susceptible
individuals, averaged over 100 realizations of continuous-time stochastic simulations of an epi-
demic performed on regular random networks of size 1000. In each realization, 100 susceptible
individuals are initially infected uniformly at random. The parameter values are the same as in
that figure except for δa that now is positive and equal to 0.5. This value implies an average
duration of the awareness period eight times longer than the infectious period. Remarkably,
the endemic equilibrium is not observed in networks of very low degree (k = 5 in the top-left
panel) because of the low force of infection during the early stage of an epidemic. Note that
the presence of infectious individuals around those initially infected reduces significantly the
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potential transmission of the infection when the nodal degree is low. This saturation in the
transmission is clearly less marked for k = 10 and disappears in fully connected networks, for
which the agreement between simulations and the model is almost perfect. For degree values
about 20 the qualitative behaviour observed in the simulations is quite in agreement with the
model.

6. Discussion and conclusions

In this paper we have considered the susceptible-aware-infectious model proposed in [19, 18]
on regular random networks. For this type of networks, we derived a simple mean-field model and
proved that it has the same solutions than the original node-based model when initial infections
of susceptible individuals occur uniformly at random. This exact correspondence refutes previous
claims about the underestimation of the rate of infection by mean-field versions of node-based
SIS models defined on regular networks [22]. In fact, numerical simulations showed that, when
initial conditions are given by clustered infections, i.e., infections are not uniformly at random,
the mean-field SAIS model overestimates the initial epidemic growth predicted by its node-based
counterpart (see Figure 1). On the other hand, the agreement of model predictions with the
stochastic simulations on regular random networks increases with the degree of the network, and
it becomes almost perfect in fully connected networks, as expected. It is well-known that mean-
field models assume homogeneous mixing of individuals and, hence, overestimate the number
of susceptible nodes around the infectious ones when networks are not fully connected. In the
SAIS model, such an overestimation affects the predicted number of both infectious and aware
individuals.

In this mean-field model, the segment L = {(s, a) ∈ R2 | s + a = 1, 0 ≤ s ≤ 1} defines a
continuum of (disease-free) equilibria. When β < δ, any initial number of infectious individuals
will tend monotonously to zero and, so, no minor outbreaks are possible. This is the typical
situation of an epidemic extinction and corresponds to what has been called “quick die out”
in [18]. For β > δ > βa, the equilibria on the segment L close to (1, 0) become unstable.
Interestingly, this happens before the appearance of an endemic equilibrium which bifurcates
from the point (s∗0, 1 − s∗0) ∈ L such that s∗0 = (δ − βa)/(β − βa). Taking the awareness rate
κ as a tuning parameter, the condition for the bifurcation to occur defines a second epidemic
threshold given by κ∗ = βa(β − δ)/(δ − βa). This threshold is the same that the one given by
the expression (6) in [18] for system (2) with δa = 0 if one realizes that the dominant eigenvalue
λ1 of the adjacency matrix equals the nodal degree k for regular random networks. So, for
β > δ > βa, κ ≥ κ∗, and assuming a small fraction of initially infectious and aware individuals,
any trajectory tends to an equilibrium on L after an initial increase in the number of infectious
individuals (see left panel in Figure 2). This scenario has been defined as ”slow die-out” of the
epidemic in [18] and leads to a final population with a significant number of aware individuals.
For β > δ > βa and κ < κ∗, the awareness rate is not high enough and the system has an
endemic equilibrium attracting all trajectories nearby. However, this equilibrium is not globally
stable because the infection rate of aware individuals βa is low enough to prevent the occurrence
of an endemic equilibrium in a population mostly consisting of aware individuals (see right panel
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of Figure 2). Finally, for β > βa > δ, the susceptibility of aware individuals is high enough to
allow for an endemic equilibrium attracting all trajectories with a positive initial fraction of
infectious individuals.

This information about the behaviour of the mean-field model (5) is, in fact, encapsulated
in the expression (6) of their trajectories. From it one can obtain a description of their transient
behaviour. For instance, from this expression it is clear that trajectories in the phase plane never
oscillate, in contrast to what happens to the solutions of system (4) for some combinations
of the parameters. It also offers an analytical expression of the minor outbreaks occurring
between the first and second epidemic threshold. Moreover, when the system is above the
second threshold and the endemic equilibrium only attracts nearby trajectories, we can also
have a precise determination of its the basin of attraction.

On the other hand, it is reasonable to expect that people forget their awareness (δa > 0),
especially with a low prevalence of the disease [24]. So, we extended the mean-field model (5) to
include awareness decay at a constant rate δa. From a mathematical point of view, the resulting
system (4) is a (continuously differentiable) perturbation of system (5), which turns out to be
structurally unstable because of its continuum of (disease-free) equilibria (see Peixoto’s theorem
in [16] for a full characterization of structurally stable planar systems defined on compact sets
of R2). The main consequence of this perturbation is that the epidemic dynamics now do not
have a second threshold, and the global behaviour of solutions reduces to the standard one in
many epidemic models: a unique disease-free equilibrium (with no aware individuals) which is
globally asymptotically stable (GAE) for β < δ, while it becomes unstable and it appears a
GAE endemic equilibrium for β > δ.

Similar changes in the dynamics are also observed when one compares classic epidemic models
(with no demography) in which susceptible class can be replenished by processes like recovery
or loss immunity (for instance, SIS, SIRS, and SEIRS models) with those in which it is not
(SIR and SEIR models) [4]. From the point of view of dynamical systems, the latter are also
structural unstable because of their continuum of disease-fee equilibria, and it is well known
that smooth perturbations of a structural unstable system, no matter how small, can modify
the phase portrait of the unperturbed system. However, in the SAIS model, susceptible class
can be partially renewed by recovery of infectious individuals, even without awareness decay.
This is the reason why, in contrast to the SIR model, disease can persist if δa = 0 as long as
the awareness rate κ is low enough or, alternatively, susceptibility of aware individuals is high
enough.

What are the consequences of this change in the dynamics of the SAIS model on the preva-
lence of the disease? For δ < βa < β, the epidemic dynamics is governed by the presence of a
GAE endemic equilibrium in both models and, so, there are no remarkable qualitative differences
with respect to the prevalence of the disease. However, for βa < δ < β and small values of δa two
interesting changes are noticeable (see Figure 8). Below the second epidemic threshold of system
(5) (i.e., for δ < β < δ + κ(δ − βa)/βa), solutions (s(t), a(t)) of system (4) spiral in towards
the endemic equilibrium, which is located near the boundary s+ a = 1, instead of representing
minor outbreaks occurring when the initial fraction of aware individuals is negligible and the
inital fraction of infectious individuals is very small (see Figure 2). Above the second threshold
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(β > δ+κ(δ−βa)/βa), the main difference between solutions arises for trajectories starting with
a high fraction of aware individuals and a very small of susceptibles ones. According to system
(5), these trajectories tend to a disease-free equilibrium whereas, in system (4), they tend to
an endemic equilibrium with a significant fraction of infectious individuals when β � δ. The
interesting fact is that, for very small δa, such trajectories remain close to the boundary s+a = 1
for a long time during which the epidemic seems to be eradicated from de population, before
they eventually approach the endemic equilibrium. Therefore, regarding the prevalence of the
disease, these solutions have a transient behaviour similar to that of the solutions of system (5)
with the same initial conditions, but they have a completely different asymptotic behaviour.

In this paper, we have assumed a constant rate of awareness decay. One could think of this
hypothesis to be quite restrictive, and consider more general dependences of this rate on the
disease prevalence. However, as long as they constitute small enough smooth perturbations of
system (4), a qualitatively similar phase portraits will result because this system is structurally
stable. The addition of a term accounting for the creation of new aware individuals by already
aware individuals is another possible extension of the original model. Such a term has been
considered in previous papers dealing with epidemic models and information transmission [7,
10, 13] and allows for a change of the classic epidemic threshold as long as aware individuals are
able to self-sustain their numbers in the absence of disease, that is, when awareness behaves as
second epidemic spreading across the population.

More sophisticated models consider networks with diverse relationships (layers) among their
nodes [3, 10, 21, 23]. These interconnected networks are used, for instance, to model the trans-
mission of multiple pathogens on the same population [8], or the simultaneous spread of an
infectious agent and information about the health state of individuals. The analysis of these
elaborated network models have shown that new results emerge from the interaction of the in-
terconnected networks [21]. However, such an added complexity can hide some aspects of the
dynamics that are rooted in the basic ingredients of the transmission process itself. In [17, 20], a
layer for information dissemination was introduced in the epidemic model, in addition to the one
of physical contacts among individuals. As in [19, 18] no awareness decay was assumed in these
works, and the existence of a second epidemic threshold related to the preventive behaviour of
aware individuals was proven. This second threshold is certainly inherited from the one-layer
version of the model, and it is very likely that other aspects of the dynamics are inherited as
well. Our results strongly suggest that the introduction of an awareness decay into the two-
layer version of the model would have the same implications than for the one-layer model. In
particular, it would result in the disappearance of the second epidemic threshold.
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Figure 1: Evolution of the fraction of infectious nodes i(t) for a smaller epidemic (δ = 4, δa = 0.5, β = 12, βa = 2
and κ = 4) and a larger epidemic (δ = 4, δa = 0.5, β = 18, βa = 2 and κ = 4) on a regular random network with
N = 1000 nodes of degree k = 5. Open circles (◦) correspond to the solutions of the node-based model (2), with
β0 = β/k, β0

a = βa/k, κ0 = κ/k. Continuous lines are the solutions of the mean-field model (4). For the larger
epidemic the initial condition is uniform with each node having a probability 0.9, 0.1 and 0 of being susceptible,
infectious or aware at time t = 0, respectively. For the smaller epidemic, the neighbours of 20 randomly chosen
nodes were infected with probability 1.0, resulting in a 10% infectivity at time t = 0. As proven in Lemma 3.1, the
output from the two models coincide for uniformly random initial conditions. For initially clustered infections,
the mean-field model overestimates the initial epidemic growth predicted by the node-based one, although both
solutions tend to the same steady state i∗ = 0.38618.
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Figure 2: Phase portrait of system (5) for βa < δ < β. Left panel: κ ≥ κ∗. The thick line corresponds to a
minor outbreak. The end point of the attracting boundary L2 is (s∗0, 1 − s∗0) = (0.7273, 0.2727). Right panel:
κ < κ∗. The thick line is the trajectory ending up at (s∗0, 1 − s∗0) = (0.5, 0.5) that limits from above the basin
of attraction of the endemic equilibrium (s∗, a∗) = (0.5714, 0.2857), here represented by a solid dot. Parameters:
δ = 4, βa = 2, and β = 4.75, k = 3 (left) and β = 6, κ = 1 (right).
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Figure 3: Examples of typical time evolution of solutions to systems (5) (left) and (4) (right) with a very small
rate of awareness decay (δa = 0.01) for the cases in the two middle columns of Table 1, i.e., below and above the
second threshold for δa = 0. The following cases are covered: (�) δ = 4, β = 6, βa = 2, κ = 4 with κ∗ = 2 < κ;
(5) δ = 4, β = 6, βa = 2, κ = 0.5 with κ∗ = 2 > κ; and (♦) same as (5) but with s(0) = 0.05, a(0) = 0.85,
i(0) = 0.1. All other initial conditions are set at: s(0) = 0.90, a(0) = 0, and i(0) = 0.1. The dashed line in the
left panels corresponds to the endemic equilibrium (s∗, a∗) as given in Theorem 4.2. Trajectories 5 and ♦ do
not tend to the same limit in the left panels because (s∗, a∗) is not globally stable. Notice the longer transient
behaviour of solutions in the right panels which is due to the very small value of δa.
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Figure 4: Evolution of the fraction of infectious (i), susceptible (s), and aware (a) individuals with no awareness
decay when a minor outbreak occurs (βa < δ < β and κ∗ < κ). Dashed lines: solutions to system (5) with initial
condition s(0) = 0.90, i(0) = 0.1 and a(0) = 0. Solid lines: stochastic simulations over regular random networks of
size 1000 and degree 5 (top left), 10 (top right), 20 (bottom left), and fully connected (bottom right). Simulation
outputs averaged over 100 runs with 10% of randomly infected individuals and 90% of susceptible ones at t = 0.
Parameters: δ = 4, β = 6, βa = 2, κ = 4

.
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with the boundary s+ a = 1 occurs at the point (s∗0, a

∗
0) given by Theorem 4.2. The non-existence of an endemic

equilibrium when δ > β is guaranteed because the slope of a0(s) is always less than −1 if β > βa.
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Figure 6: Left: Sketch of the vector field associated to system (4) for δ < β. The endemic equilibrium E is
globally asymptotically stable whereas the disease-free equilibrium DF is a saddle point. Right: Phase portrait
of system (4) for δ = 4, δa = 0.5, β = 8, βa = 2, and κ = 4. Red dashed line is the graph of a2(s) and blue
dash-dotted line is that of a1(s).
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Figure 7: Behaviour of the fraction of infectious nodes i∗ at equilibrium as a function of the transmission rate β
for different values of δa. For δa = 0, bifurcation occurs at the second epidemic threshold, here given by β = 7.
For δa > 0, i∗(β) > 0 for β > δ. Values of the other parameters: δ = 4, βa = 2, and κ = 3.
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Figure 8: Phase portrait of system (4) for a very small rate of awareness decay and the same parameters values
as those used in panels of Figure 2. In both panels, the endemic equilibrium attracts every trajectory inside R
and the disease-free equilibrium (1, 0) is a saddle point. Left: Trajectories corresponding to minor outbreaks in
left panel of Figure 2 now spiral in towards an endemic equilibrium which is very close to the boundary s+a = 1,
i.e., an equilibrium with a very low fraction of infectious nodes: i∗ = 0.0077. As δa → 0, this endemic equilibrium
approaches the point (s∗0, a

∗
0) on the boundary in Figure 2. Right: In contrast to what happens in right panel of

Figure 2, the basin of attraction of the endemic equilibrium (s∗, a∗) = (0.5824, 0.2528) is the whole interior of R.
Parameters: δ = 4, βa = 2, δa = 0.05, and β = 4.75, κ = 3 (left) and β = 6, κ = 1 (right).
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Figure 9: Evolution of the fraction of infectious (i), susceptible (s), and aware (a) individuals with awareness
decay for the same rates values as in Figure 4, i .e., when a minor outbreak is predicted for δa = 0. Dashed
lines: solutions to system (4) with initial condition s(0) = 0.90, i(0) = 0.1 and a(0) = 0. Solid lines: stochastic
simulations over regular random networks of size 1000 and degree 5 (top left), 10 (top right), 20 (bottom left),
and fully connected (bottom right). Simulation outputs averaged over 100 runs with 10% of randomly infected
individuals and 90% of susceptible ones at t = 0. Parameters: δ = 4, δa = 0.5, β = 6, βa = 2, κ = 4.
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