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Preventive behavioural responses and information
dissemination in network epidemic models

D. Juher∗ and J. Saldaña∗

Abstract— Human behavioural responses have an important impact on the spread of epidemics. To deal with them, some epi-
demic models consider that individuals are aware of the risk of contagion and adopt preventive responses when they learn about
the existence of the disease. If awareness is assumed to be transmitted from individual to individual, the information dissem-
ination can be thought to spread over a second network where links are defined according to a certain type social relationship
(friends, acquaintances, etc.), with the same set of nodes as the contact network. Here we present a simple model for epidemic
spreading with awareness defined on a two-layer network which includes the overlap between these two layers as a parameter.
This formulation leads to an expression of the epidemic threshold as a function of the network overlap.
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1 Introduction

Human behavioural responses have an important impact on the
spread of epidemics. One way to include them into epidemic
models is to consider individuals who are aware of the risk of
contagion and adopt preventive responses when they get in-
formed about the existence of the disease. Some models in-
clude a new class of individuals, the so-called aware or alerted
ones, and derive the corresponding equations for the transmis-
sion of the disease and recovery (see, for instance, [7] and ref-
erences therein). More sophisticated models consider specific
features of the information transmission process. For exam-
ple, in contrast to disease transmission, the quality of informa-
tion passed on to other people decreases at each transmission
event. This leads to more complex models with several classes
of aware individuals (see [3]). On the other hand, the routes of
information transmission do not need to be the same as those
for the spread of a disease. In this case, information dissemina-
tion is modelled by means of a second network, with the same
set of nodes as the contact network but with a distinct set of
links, over which information spreads.

In a more general context, the simultaneous spread of aware-
ness and infectious diseases is an example of interacting
spreading processes taking place on multilayer networks.
Other examples are competitive viruses propagating in a host
population where each virus has different routes of transmis-
sion, i.e., a distinct network for propagation (see [4, 11]). In
such an instance, the interaction among virus species is deter-
mined by the type of competition existing between them (ex-

clusive, reinforcing, weakeing, etc.) when they coincide in the
same host. A challenging issue related to these processes is
to elucidate the effect of the cross-layer interrelation on the
dynamics of simultaneous propagation of contagious agents.
Some analytical results relating different features of the adja-
cency matrices of a two-layer network have been recently ob-
tained in [11].

Following the studies of the impact of network overlap on the
coexistence of competing viral agents in [3, 4, 9], we derive a
simple mean-field epidemic model defined on a two-layer net-
work where the overlap between the two layers appears as a
parameter of the model equations. This fact allows to express
the basic reproduction number R0 as a function of the overlap
of the two networks and, hence, to derive a simple analytical
expression of the epidemic threshold which involves the net-
work overlap. Certainly, the overlap between two layers offers
an incomplete description of the cross-layer interrrelation but,
in addition to degree-degree correlations between layers, is a
basic statistical descriptor of its topology. Finally, model’s pre-
dictions are tested against the output of stochastic simulations
of epidemic spreading carried out in continuous time on par-
tially overlapped networks generated using the so-called net-
work configuration model and a cross-rewiring algorithm.

2 An SIS epidemic model defined on a two-layer
network

As usual in epidemic modelling, we describe the spread of in-
fectious diseases on populations by classifying their individu-
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als into two classes or compartments. Here we consider the
class of susceptible (S) individuals and the class of infectious
(I) ones. The routes of transmission of some infectious dis-
eases, in particular those infections that are sexually transmit-
ted, reveal that a suitable description of populations must take
into account the network A of physical contacts among individ-
uals, with nodes representing individuals and links correspond-
ing to physical contacts along which disease can propagate. On
the other hand, it seems natural to assume that the probability
of getting infected through an infectious contact S-I depends
on the awareness state of the susceptible individual. In such a
case, a second network B over which information about the in-
fection state of individuals circulates can be considered. This
dissemination network has the same set of nodes as the one
of physical contacts but, in contrast, it has a different set of
links representing, for instance, relationships with friends and
acquaintances. So, if two individuals, one susceptible and the
other infectious, are connected to each other on both networks,
we assume that the transmission rate βc of the disease though
a physical contact between them will be smaller than the stan-
dard transmission rate β. The reason is that susceptible indi-
viduals have information on the health state of their infected
partners and adopt preventive measures in order to diminish
the risk of infection.

Under this scenario, we derive a mean-field susceptible-
infectious-susceptible (SIS) epidemic model which implicitly
assumes the spread of both information and an infectious agent
over a two-layer network. Following the standard modelling
approach of sexually transmitted diseases in which the variance
in the number of contacts (sexual partners) is a basic ingredient
[1], individuals are classified according to their infection state
and their number of physical contacts. So, the model will take
into account the network layer A of physical contacts in terms
of its degree distribution pA(k) = Nk/N where Nk is the num-
ber of individuals having degree k. Analogously, the dissem-
ination network (network layer B) is described by its degree
distribution pB(k). A key assumption of the model will be the
existence of a uniform (but not complete) overlap between the
links of both layers, which means that the probability of find-
ing two connected nodes in both networks does not depend on
their degrees. A pair of such nodes is said to share a common
link, although the connections are of different nature.

In each layer, no degree-degree correlation is assumed, i.e.,
neighbours in each layer are randomly sampled from the pop-
ulation according to the so-called proportionate mixing of in-
dividuals [2]. Therefore, in each layer, the probability P (k�|k)
that a node of degree k is connected to a node of degree k� is in-
dependent of the degree k and it is given by the fraction of links
pointing to nodes of degree k�, i.e., P (k�|k) = k�p(k�)/�k� [2].
So, the expected degree of a node reached through a randomly
chosen link, i.e., the expected degree of a neighbour in a pop-
ulation with proportionate mixing, is �k2�/�k�. On the other
hand, let Ik denote the number of infectious nodes of degree
k in network layer A. Although the links are unordered pairs

of connected nodes by definition, let us consider that every link
{u, v} gives rise to two oriented links u → v and v → u. Then,
the probability that a randomly chosen oriented link of A leads
to an infectious node is given by the fraction of oriented links
in A pointing to infectious nodes, that is,

ΘI =
1

�kA�N
�

k

k Ik =
1

�kA�
�

k

k ik

where �kA� is the average degree in A, and ik := Ik/N is the
fraction of nodes that are both infectious and of degree k in A.

Now, let LA, LB , and LA∩B be the number of links of A, B,
and common links, respectively. Then the probability pB|A
that a randomly chosen link of A, an A-link, connects two
nodes that are also connected in B is pB|A = LA∩B

LA
. Similarly,

pA|B = LA∩B

LB
is the probability that a randomly chosen B-link

is a common link to both networks. With all these quantities,
the epidemic spreading is described in terms of the following
system of differential equations for the number of infectious
nodes of degree k in layer A:

(1)
dIk
dt

= k(1− pB|A)β Sk ΘI + k pB|A βcSk ΘI − µIk

where Sk = Nk − Ik is the number of susceptible nodes of
degree k in layer A, β is the transmission rate through a non-
common infectious link, and βc is the transmission rate through
a common infectious link.

The first term in the rhs of equation (1) is the rate of creation
of new infectious nodes of degree k in A by infections through
links that only belong to layer A, whereas the second term is
the rate of creation of new infectious nodes from transmissions
through common links. The last term accounts for the recover-
ies of infectious nodes, which occur at a recovery rate µ. Here
�kA�pB|A is the expected number of common oriented links.
Therefore, since this number is the same regardless the net-
work we use to compute it, the following consistency relation-
ship must follow:

(2) �kA�pB|A = �kB�pA|B .

Now let us express pB|A and pA|B in terms of the overlap α,
which is defined as α := LA∩B

LA∪B
where LA∪B is the set of links

of the union network A ∪ B. It follows that pB|A can be ex-
pressed in terms of α as:

pB|A =
LA∩B

LA
=

LA∩B

LA∪B

LA∪B

LA

= α
LA + LB − LA∩B

LA

= α

�
1 +
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− pB|A

�
.

From this relationship it follows that

(3) pB|A =

�
1 +

�kB�
�kA�

�
α

1 + α
.
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and, also, that pA|B =

�
1 +

�kA�
�kB�

�
α

1 + α
. Note that, as ex-

pected, pB|A and pA|B fulfil relationship (2).

Uppn introducing (3) into Eq. (1), α appears as a new model
parameter. In terms of the fraction ik of nodes that are both
infectious and of degree k, the model reads

dik
dt

=
k

1 + α

�
β

�
1− �kB�

�kA�
α

�
(4)

+ βc

�
1 +

�kB�
�kA�

�
α

�
(pA(k)− ik)ΘI − µik.

This equation corresponds to the standard SIS model for het-
erogeneous populations with proportionate mixing, but with an
averaged transmission rate which depends on α.

Remarks:

1. If �kB� > �kA�, the non-negativity of the factor mul-
tiplying β is guaranteed because the overlapping α is
bounded from above by

α =
LA∩B

LA∪B
≤ �kA�N

�kA�N + �kB�N − �kA�N
=

�kA�
�kB�

because LA∩B ≤ LA = �kA�N/2. An upper bound
for the maximum overlap coefficient is then given by
min{�kA�, �kB�}/max{�kA�, �kB�}. Note that, since
the factor α/(1 + α) in (3) is increasing in α, when
�kA� ≤ �kB� it follows that pB|A ≤ 1 whereas, for
�kA� > �kB�, we have pB|A ≤ �kB�/�kA� < 1. An
improved upper bound for α is derived in [8].

2. If βc = β or α = 0, the previous equation reduces to
the classic SIS-model, as expected, because awareness
plays no role in the infection spread. If α = 1, we ac-
tually have one network and again Eq. (4) reduces to the
SIS-model but now with β replaced with βc.

In order to assess the impact of the network overlap on the ini-
tial epidemic growth, we linearise system (4) about the disease-
free equilibrium i∗k = 0∀k and obtain that the elements of the
Jacobian matrix J∗ evaluated at this equilibrium are

J∗
kk� =

β0(α)

�kA�
kk�pA(k)− µδkk�

where β0(α) :=
�
β
�
1− �kB�

�kA�α
�
+ βc

�
1 + �kB�

�kA�

�
α
�
/ (1 +

α) and δkk� is the Kronecker delta. Since the eigenvalue of
the matrix (kk�pA(k)) with the largest real part is equal to
�k2A� =

�
k k

2pA(k) (with an eigenvector whose components
vk are proportional to kpA(k)), it follows that the dominant
eigenvalue of J∗ is

λ1 =
�k2A�
�kA�

β0(α)− µ,

which corresponds to the initial growth rate of the epidemic
(cf. [1, 10] for α = 0). From this expression we get that λ1

decreases with α when βc < β.
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Figure 1: R0 of the mean-field SIS model as a function of the
overlap α between network layers. Parameters values: µ = 1,
β = 0.1, βc = 0.005, �kA� = 20, �k2A� = 600, and �kB� = 50.
For these mean degrees, α ∈ [0, 2/5].

We can also measure the initial epidemic growth in terms of
the basic reproduction number R0, i.e., the average number of
secondary infections caused by a typical infectious individual
at the beginning of an epidemic in a wholly susceptible pop-
ulation [2]. Interpreting β0(α) as an averaged transmission
rate weighted by the overlap coefficient α and recalling that
�k2A�/�kA� is the expected degree of a neighbour in a popula-
tion with proportionate mixing, R0 is given by

R0 =
�k2A�
�kA�

β0(α)

µ

=
�k2A�

�kA�(1 + α)µ

�
β

�
1− �kB�
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α

�

+βc
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1 +

�kB�
�kA�

�
α

�
.

Therefore, as λ1, R0 is a decreasing function of the overlap
coefficient between the two layers as long as βc < β. This
expression of R0 is, indeed, a straightforward extension of the
one obtained in [1] for heterogeneous populations and STDs.

Figure 1 shows this relationship when layer A has a degree dis-
tribution with mean degree �kA� = 20 and mean square degree
�k2A� = 600. Note that there is no quantity related to the vari-
ance of the degree distribution of network B (as, for instance
�k2B�) in the expression of R0. This fact reflects the asymmetry
of the roles of both networks in the disease propagation.
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3 Stochastic simulations

We test the accuracy of the model by comparing the numerical
integration of equations (4) with the output of stochastic simu-
lations. It is worth noting that, in the derivation of (4), we have
assumed that the edge overlap over the whole network layers is
uniform. So, networks with dissimilar topological features will
not satisfy such a hypothesis and, hence, they are not suitable
to check the model.

Since we are interested in the overlap α as a critical parame-
ter for the epidemic dynamics, we generate two-layer networks
of a given size N by using the configuration model from two
empirical degree sequences that are obtained from two distri-
butions pA(k) and pB(k) with similar variances. Then, in order
to have networks with a prescribed degree of overlap, we use
an algorithm based on a selective cross-rewiring of two pairs of
connected nodes. The cross-rewiring is done if it increases the
overlap between layers (see [8] for details of the algorithm and
properties of the resulting overlap). Finally, for several val-
ues of α, we perform continuous-time stochastic simulations
on these networks based on the Gillespie’s algorithm.

In simulations, the number of nodes is N = 5000, pA(k) is
a power law (pA(k) = Ck−3), and pB(k) is a Poisson dis-
tribution of expected degree �kB� = 25 (Figure 2), or an ex-
ponential distribution of the same expected degree (Figure 3).
In order to avoid the degree-degree correlations within a layer
that appear when very high degrees are present in the degree se-
quence generated from a power law distribution, we normalize
p(k) to have a minimum degree kmin and a maximum degree
given by the cut-off kc(N) = kminN

1/2. This value is defined
as the degree above which one expects to find at most one node
in the network. This expression of kc(N) leads to the normal-
ization constant C = (γ− 1)kγ−1

min N/(N − 1) and an expected
degree �k� = 2kminN/(N − 1) ≈ 2kmin.

The numerical integration of (4) is performed with an initial
condition given by ik(0) = 0.1pA(k) ∀ k, which corresponds
to uniformly infect 10% of nodes, the same initial fraction of
infected nodes as the one used in stochastic simulations. More-
over, the integration is carried out by feeding the model with
the empirical degree distribution obtained from the degree se-
quence of layer A. The reason for not using the theoretical dis-
tribution p(k) is that, when the variance of p(k) is large (i.e., in
highly heterogeneous networks), there can be noticeable differ-
ences among distinct finite samples of p(k). In particular, this
is the case with respect to the values of the highest degrees in
the generated degree sequences, which have a noticeable im-
pact on the epidemic dynamics.
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Figure 2: Fraction of infectious nodes averaged over 10 runs
of stochastic simulations carried out on a two-layer network of
size N = 5000 for α = 0.2 (top), and 0.56 (bottom). In both
panels, pA(k) ∼ k−3 with kmin = 10 (�kA� = 20), and layer
B has a Poisson degree distribution of �kB� = 25. Dashed
line shows the prevalence (

�
k ik) predicted by the SIS model.

Initial fraction of infected nodes: 10%. Parameters: µ = 1,
β = 0.1, and βc = 0.03.

4 Discussion

The derivation of the model is based on the hypothesis of a
uniform distribution of the overlap over the set of nodes. This
means that those nodes with high degrees in layer A have the
same fraction of overlapped links than those with lower de-
grees. Clearly, this will not be the case if there is a large asym-
metry between the degree distributions. One can observe the
differences when layer A, the one over which physical contacts
occur, has a power-law degree distribution whereas dissemi-
nation layer B has a Poisson degree distribution. In particu-
lar, when both degree distributions have similar mean degrees,
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those nodes with the highest degrees in layer A only have a
small fraction of overlapped links because of the low variance
of the Poisson distribution. This amounts to an underestima-
tion of the epidemic prevalence by the mean-field SIS model
(4) because those nodes acting as a superspreaders in layer A
have proportionally much less contacts with a low transmission
rate (see Figure 2). In contrast, by increasing the variance of
the degree distribution of layer B, disease transmission is re-
duced and the epidemic evolution is closer to the one predicted
by the the mean-field model (see Figure 3).
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Figure 3: Fraction of infectious nodes averaged over 10 runs
of stochastic simulations carried out on a two-layer network
of size N = 5000 for α = 0.2 (top), and 0.6 (bottom). In
both panels, pA(k) ∼ k−3 with kmin = 10 (�kA� = 20), and
layer B has an exponential degree distribution of �kB� = 25.
Dashed line shows the prevalence (

�
k ik) predicted by the SIS

model. Initial fraction of infected nodes: 10%. Parameters:
µ = 1, β = 0.1, and βc = 0.03.

Stochastic simulations confirm that, when the mean-field as-
sumptions are met, the proposed mean-field SIS model is suit-
able for modelling two interacting contagious processes like
epidemic spreading and awareness dissemination. As it is usu-
ally the case for mean-field models, the analytical predictions
of the SIS model is not accurate close to the epidemic thresh-
old R0(α) = 1 (not shown here). However, when the overlap
coefficient is not so close to its critical value, the predicted rela-
tionship between prevalence and network overlap shows a good
agreement with stochastic simulations.
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