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Tuning the overlap and the cross-layer correlations in two-layer networks: application
to an SIR model with awareness dissemination
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We study the properties of the potential overlap between two networks A, B sharing the same
set of N nodes (a two-layer network) whose respective degree distributions pa(k),ps(k) are given.
Defining the overlap coefficient « as the Jaccard index, we prove that « is very close to 0 when A
and B are random and independently generated. We derive an upper bound ajs for the maximum
overlap coefficient permitted in terms of pa(k), ps(k) and N. Then we present an algorithm based
on cross-rewiring of links to obtain a two-layer network with any prescribed « inside the range
(0, anr). A refined version of the algorithm allows us to minimize the cross-layer correlations that
unavoidably appear for values of o beyond a critical overlap a. < anr. Finally, we present a very
simple example of an SIR epidemic model with information dissemination and use the algorithms
to determine the impact of the overlap on the final outbreak size predicted by the model.

PACS numbers: 89.75.-k,89.75.Kd

I. INTRODUCTION

Some contagious processes interact with each other
during their propagation, which can occur either through
the same route of transmission or through routes that
share the same set of nodes but use different types of
connections. In the second case, the description of the
spread uses the concept of multilayer or multiplex net-
work, namely, a set of nodes (individuals, computers,
etc.) connected by qualitatively different types of links
corresponding to possible relationships among them (ac-
quaintanceship, friendship, physical contact, social net-
works, etc), each layer defined by a type of connection.
Competitive viruses spreading simultaneously through
different routes of transmission over the same host popu-
lation, or the spread of a pathogen and awareness during
an epidemic episode are examples of processes that are
better described by means of multilayer networks [1].

In the last years it has been a development of the math-
ematical formulation of multiplex networks and, also, of
more general interconnected networks for which the set
of nodes does not need to be the same at each layer [2—
4]. Moreover, recent results show the importance of the
interrelation between different layers in determining the
fate of competitive epidemic processes [1, 5]. In other
cases, however, the importance of such an interrelation
is not so evident from the analytical results of the epi-
demic threshold [6, 7], or even seems to be not relevant
at all [8].

Only a few papers dealing with competing epidemics
over multilayer networks focus on the impact of layer
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overlap on the epidemic dynamics [5, 9, 10]. In [5], the
authors consider a sequential propagation of two epi-
demics using distinct routes of transmission over a net-
work consisting of two partly overlapped layers. Using
bond percolation, it is determined the success of a second
epidemic through that part of its route of transmission
whose nodes have not been infected by the first epidemic.
In [10], the authors develop an analytical approach to
deal with simultaneous spread of two interacting viral
agents on two-layered networks. In that work, moreover,
the respective effects of overlap and correlation of the
degrees of nodes in each layer on the epidemic dynamics
are considered.

Here the overlap o between two (labeled) networks A
and B of N nodes is defined as the fraction of links of
the union network that are common links of A and B or,
equivalently, the probability that a randomly chosen link
of the network A U B is simultaneously a link of both A
and B. In fact « is the Jaccard index, a statistic used
for comparing the similarity of two sample sets, as de-
fined in [11]. Just to illustrate that this simple statistical
parameter can play a critical role in the qualitative re-
sponse of a two-layer network model, in Section VIII we
present a mean-field model for the spread of an infectious
agent on one layer (contact layer). The model implicitly
assumes an information dissemination on a second layer
(notification layer) about the infection status of the nodes
which causes a raise in awareness and the adoption of pre-
ventive behaviors. As an interesting feature, the overlap
coefficient a between the networks embedding the respec-
tive routes of transmission is a parameter of the model.
This allows us to derive a simple relationship between
« and the epidemic threshold. Provided that one wants
to perform simulations to validate this (or any) model,
a systematic procedure to generate couples of networks



of given size and degree distributions with a prescribed
value of a would be a useful tool. We stress that this
is the main focus of the paper, and that the model in
Section VIII is just a simple example to illustrate the
convenience of having such tools.

Our approach is based on the study of the potential
overlap between two networks whose (finite, empirical)
degree distributions are previously fixed. More precisely,
in Sections III and IV we estimate the minimum and
maximum values (call them «,,, and ayy) for the overlap
coefficient between two networks of size N and degree
distributions p4(k) and pp(k). In particular, we show
that a,, ~ 0. The study of the maximum «; is based on
the computation of the potential overlap PotOv(D 4, Dp)
between two fixed degree sequences D4, Dp following
pa(k), pp(k). In Section V we present the CR algorithm,
that takes as input any two degree sequences D 4, Dp and
a desired overlap a € (0,PotOv(D 4, Dp)) and generates
a couple of networks with degree sequences D 4, Dp and
overlap coefficient close to a. When D4, Dg are ran-
domly sampled from pa(k),pp(k), the potential overlap
PotOv(D 4, Dp) is called critical overlap. In Section VI
we show that the CR algorithm starting with two ran-
dom sequences succeeds in constructing pairs of networks
having any overlap below the critical one and exhibiting
some desirable statistical properties, specifically lack of
in- and cross-layer degree-degree correlations. Of course
the critical overlap belongs to the interval (o, anr), and
is higher than expected from intuition. In Section VII we
show that for values between the critical overlap and a
there is an unavoidable direct relationship between over-
lap and cross-layer degree-degree correlation, and pro-
pose a refined version of the CR algorithm that tries to
reach values beyond the critical overlap while maintain-
ing the cross-layer degree-degree correlation as small as
possible.

With this collection of algorithms, we are given a tool
to test the analytical predictions relating overlap and epi-
demic thresholds. In the few previous works dealing with
interacting epidemics on overlay networks [5, 9, 10], the
two-layer network over which multiple pathogens spread
was characterized by the probability p(ka, kg, k.) that
a randomly selected node belongs to k4 links unique to
layer A, kp links unique to layer B, and k. common
links (note that, using this language, what we are assum-
ing here as a natural requirement is that the marginal
distributions pa(ka) and pp(kg), that can be recov-
ered as pa(ka) = st,kc plka — ke, kp — ke, ke) and
pB(kB) = kakc p(kA — ke, kp — kcakc)v are given)'
Those papers put the main focus on the influence of the
overlap and the degree correlations on the epidemic dy-
namics predicted by the model, rather than on the algo-
rithms used to construct the two-layer network. So, the
simulations to test the validity of the predictions were
performed over particularly simple cases (rich enough,
nevertheless, to extract valid conclusions). As an exam-
ple, to test the model response to an arbitrary overlap
«, the authors perform the simulations in the simplest

setting pa (k) = pp(k) = p(k), that obviously admits any
overlap coefficient from 0 to 1, take

plkas kg, ke) = pka + ko) p i (P47 oM (1 — )

(attach independently k4 + k. = kp + k. links to a node,
with a probability « for each link to belong to both net-
works) and execute a “configuration model”-like algo-
rithm to connect pairs of stubs sampled from p with the
obvious restrictions. As another example, the respective
effects of overlap and degree correlations are isolated by
considering again simple (and extremal) cases: random
overlap and no degree correlation; random overlap and
full degree correlation; and full overlap.

In a more general setting (pa # pp), it is not straight-
forward to extend the configuration model algorithm to
get prescribed intermediate overlaps and/or degree corre-
lations. In contrast, the algorithm we present here can be
used to generate any permitted value of both parameters
in the range forced by the marginal degree distributions.

II. TERMINOLOGY AND STANDING
NOTATION

All along this paper, the nodes of any network will
be labeled with the natural numbers {1,2,..., N}. The
cardinality of a finite set X will be denoted by |X|. Let
V ={1,2,...,N} for some N € N. Let E and E’ be
two subsets of {{i,j} : ¢ # jand ¢, € V}. Let G and
G’ be the undirected networks having V as the set of
nodes and E and E’ as the respective sets of links. The
union network G UG’ is the undirected network whose
sets of nodes and links are V and E U E’ respectively.
By definition, we will say that G and G’ are different
from each other if and only if £ # E’. In particular, if
we have a network H and we simply permute the labels
of the nodes of H, then we obtain a network that is in
general different from (but isomorphic to) H. Observe
that the union operation is not a topological invariant:
the union of two networks does not depend only on their
shapes but also on the way their nodes are labeled. The
overlap between G and G’ is defined as the fraction
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which can be thought as the probability that a randomly
chosen link of G U G’ is simultaneously a link of both G
and G'.

A degree set of cardinality N is a multiset (i.e. multiple
instances of each element are allowed) of N integers that
is realizable as the set of degrees of a network. That
is, there exist a labeling {k1, ko, ..., knx} of the elements
of the set and a network G of N nodes such that k;
is the degree of the node i. Equivalently, > k; is even
and the integers k; satisfy the well-known Havel-Hakimi
condition [12, 13] (a technical recursive condition that is
irrelevant to our purposes). As usual, the ordered list



D = (k1, ko, ..., kn) will be called the degree sequence of
G. Note that rearranging the elements of D by means of
a permutation ¢ corresponds to relabeling the nodes of G
to get another network G’ isomorphic to G with degree
sequence o(D) (and the same degree set as G).

A probability distribution p(k) with bounded support
will be called empirical (of N nodes) if it is realizable as
the degree distribution of a network of N nodes. That
is, there exists a network G of N nodes such that, if
{k1,ka, ..., kn} is the degree set of G, then Ny := |{i :
k; = k}| = p(k)N. Observe that giving an empirical
distribution p(k) of N nodes is completely equivalent to
specify a degree set K of cardinality N. For an ordered
sequence D we will write D ~ p(k) to indicate that D
is a particular arrangement of the elements of K. For
a pair of ordered sequences (D,D’) and two empirical
distributions p(k), p’(k), we will write (D, D) ~ p(k) x
p' (k) to indicate that D ~ p(k) and D’ ~ p/(k).

We use the term empirical for a degree distribution
to distinguish it from a (theoretical, not necessarily with
bounded support) probability distribution p(k). In this
case, for any NV € N, one can use several standard algo-
rithms (see Section III) to construct a network G of N
nodes whose empirical degree distribution py (k) is close
to p(k), in the sense that, for big enough values of N,
pn (k) converges in probability to p(k) ([14], Theorem
2.1).

Assume that we are given two empirical degree distri-
butions p(k), p’ (k) of N nodes, with corresponding degree
sets K and K'. Let n and n’ be the total number of pair-
wise different networks having respectively K and K’ as
degree sets, each one numbered with an integer in the
range [1,n] (respectively, [1,n']). Then we can clearly
consider a function of two variables Ov(z,y) on the grid
of all pairs (z,y) of integers in [1,n] x [1,n/], that gives
the value of the overlap of the networks numbered as x
and y. Observe that the function Ov(z,y) has a global
minimum/maximum. These extremal values will be de-
noted by MinOvy (p,p’) and MaxOvy(p,p’).

III. THE EXPECTED OVERLAP BETWEEN
TWO RANDOM INDEPENDENT LAYERS

Assume that we are given two empirical degree distri-
butions p(k),p’(k) of N nodes. In this section we prove
that the expected overlap between two random networks
of N nodes and degree distributions p(k) and p’(k) (gen-
erated, for instance, via the standard configuration model
algorithm [15-17]) is very close to zero when N is big
enough, thus showing that MinOvy(p,p’) = 0. Giving
estimations for MaxOv y (p, p’) will be the matter of Sec-
tion IV.

Let us recall the configuration model algorithm to gen-
erate a random network with a given degree sequence
(k1,ko, ..., kn). Take a vector X of length 2L := > k;
containing k; times the integer 1 in the first ki entries,
ko times the integer 2 in the following ko entries, etc.

Each entry v of X represents a single stub (or semi-link)
attached at the node labeled as v. Then, take a ran-
dom permutation of the entries of X to get a new array
Y. Finally, read the contents of Y in order, interpreting
each pair of consecutive entries v,w as a link between
the nodes v and w. For an example, take N = 6 and
consider the degree distribution p(k) defined by p(1) =
p(3) = 1/6, p(2) = 4/6 and p(k) = 0 for k # 1,2,3.
The corresponding degree set is {1,2,2,2,2,3}. Take,
for instance, (1,2,2,2,2,3) as degree sequence. Then,
X =1(1,2,2,3,3,4,4,5,5,6,6,6). Now we permute X at
random, obtaining Y = (3,4,5,1,6,3,6,2,4,5,2,6). The
links of the obtained network are {3,4}, {5,1}, {6,3},
{6,2}, {4,5}, {2,6}. Observe that the link {6, 2} appears
twice. In general, the configuration model algorithm
gives multigraphs rather than graphs. It is well known,
however, that the fraction of self-loops and multi-links
over the total number of links goes to 0 when N — oo
when the variance of the degree distribution is bounded
[18]. See [14] for alternative implementations of the con-
figuration model to get simple graphs.

It seems natural to expect that the overlap between
two networks of respective degree distributions p(k), p’(k)
and size N generated via the configuration model algo-
rithm is very small. When the respective mean degrees
are small with respect to the total size IV this turns out
to be true. To prove this fact, we need to estimate the
probability that two given nodes are connected in a ran-
dom network generated via the configuration model al-
gorithm. So, let G be a network of N nodes, L links
and degree distribution p(k). Assume that G has been
obtained by means of the configuration model algorithm
starting with a degree sequence (k1, ka, ..., kn). Take at
random any pair {4, j} of nodes with k; < k;. Next we
estimate the probability p;; that the network G contains
the link {¢,j}. This probability is given by the quotient
a/b, where b is the total number of rearrangements Y
of the vector X (here we are using the notation intro-
duced in the definition of the configuration model) and
a is the number of such rearrangements having at least
two consecutive entries 4, j (or j,7) in places Y;,, Y, 1 for
n=13,5,...,2L — 1. We have that

(2L)!
T kilko! kNl (1)

Let us compute a. For [ = 1,2,...,L, let Y be the set
of rearrangements Y containing the entries 4, j (or j,14)
in places Yo;_1,Y5. Then, a = [Y'UY2?2U...UY?"|.
By the inclusion-exclusion principle, a = a1 —ag + ...+
(=1)*~1ay,, where a; is the sum of the cardinalities of
all intersections of ! sets in Y1, Y?,..., YL, A simple
combinatorial argument yields that, for | < k;,

(M)2!(2L - 21)!
Tl ki (ki — Dl ey 1y — Dyl k!

a; =

while a; = 0 for k; < I < L. Using the previous expres-



sion and the inclusion-exclusion principle we get that

ki —1/L (2L—21)!
B > (D) ()2
T Ealhal kit kg (k) el

Taking it all into account, we get that the probability
that G contains the link {7,j} is

Dk%ﬂ 1i-t2l2n — 21)!
Pij = E:m L—0)!(k; — )k — ) @

This exact expression is too complex to be used to
estimate the expected overlap between two random net-
works. Instead, if in the previous proof we replace a
simply by a1, then it easily follows that

kik;

5T 1’ 3)
that is in fact an standard approximation used in the
literature for the probability p;; [18, 19]. The approxi-
mation (3) is good enough only when k; and k; are small
with respect to L, in particular when we consider net-
works with bounded mean degree and large size N, which
is the case for most modeling applications. However, in
general (3) can significantly differ from the exact formula
(2).

Now let p(k),p’'(k) be two empirical degree distribu-
tions with respective means (k) and (k'). Let G,G’ be
two networks of N nodes and degree distributions p(k)
and p’(k) generated via the configuration model algo-
rithm starting with degree sequences (k1, ka, . .., ky) and
(K1, kb, ..., k). Assume that N is big enough with re-
spect to (k) and (k') in such a way that the approxima-
tion (3) holds. Let L, L’ be the number of links of G and
G’ respectively. Using (3) we can compute the proba-
bility p that two different nodes chosen at random are
neighbors in G:

1
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where in the last expression (k) denotes the expected de-
gree of a node and we have used that (k)N = 2L. Now
the expected overlap between G and G’ can be computed
as the probability that two different nodes are connected
in both G and G’ over the probability that they are con-
nected in G U G’ which, by virtue of (4), is

(k) (k') /N
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In consequence,

() ()
N+ - O

telling us that, given N and any two degree distributions
p(k),p'(k), the minimum overlap MinOvy(p,p’) is very
close to 0, at least when N is big with respect to the ex-
pected values (k) and (k’). Of course, for small networks
this is not true in general.

Ov(G,G') ~

IV. AN UPPER BOUND FOR THE MAXIMUM
OVERLAP

We start this section by giving a computable upper
bound for MaxOv y (p,p’) in terms of the size N and the
empirical distributions p(k),p’(k). To do it, first we in-
troduce the notion of potential overlap between two fized
degree sequences.

Let G, G’ be two networks of N nodes and empirical
degree distributions p(k), p’(k), with means (k) and (k')
and corresponding degree sequences D = (kq, ks, ..., kn)
and D' = (K|, kb, ..., Ky), with > k; = (k)N =: 2L and
S k= (kYN =:2L'. If E and E’ are the sets of links of
@ and G’, then by definition

ENE| ENE|
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where x stands for |[E N E’|. Now observe that F(x)
is increasing in z. In consequence, an upper bound for
the overlap is obtained when replacing = by the max-
imum possible number of links of the intersection net-
work. It is clear that the intersection network cannot
have more than min{k;, k} links attached at node i. In
consequence, the total number of links of the intersection
network is at most

| N
3 Zmin{kzi,k‘;}.
i=1

So, we define the potential overlap PotOv(D, D’) asso-
ciated to a pair (D, D’) of degree sequences as

%Z min{ki,k;}
QZ (ki +k") smin{k;, k}

that, since k; + k] = max{kz, k;} + min{k;, k;}, can be
rewritten as

(7)

N
Z min{k;, k}}
Ikmov(D,DU:—-iALAA—————f (8)

Z max{k;, k,}

Now observe that

MaxOvy(p,p') < max {PotOv(D,D’)}

(D,D’)~pxp’

and recall that the set of possible degree sequences as-
sociated to p(k) coincides essentially with the set of all
permutations of the numbers ki, ko,...,ky. Thus, if
(D,D") ~ p(k) x p'(k) and o,p are two permutations
of order N, then (o (D) ( ") ~ p(k) x p' (k). Moreover,
PotOv(o(D),c(D’)) = PotOv(D, D’). In consequence,



Regular|Poisson| SF |Exponential
0.7693 | 0.7508 |0.6301| 0.6654
Regular | 0.7693 | 0.7508 [0.6301| 0.6654
0.7552 | 0.7259 |0.5969|  0.6392
Poisson | 0.7552 | 0.7709 |0.7221| 0.7739
0.5451 | 0.5365 |0.4903| 0.5117
SF 0.5451 | 0.6000 |0.7688| 0.7023
0.6330 | 0.6174 |0.5415| 0.5683
Exponential| 0.6330 | 0.7077 |0.7715|  0.7706

TABLE I. Critical overlap as defined in Section VI (first row)
and the upper bound (9) for the maximum overlap permitted
(second row) between pairs of empirical distributions. In all
cases N = 10000. For the left column distributions, (k) = 20
while, for the upper ones, (k) = 26.

without loss of generality we can assume that D is in-
creasingly ordered (that is, k; < k; if ¢ < j). In this
case, it is easy to check that if there is a pair of entries
ki > kj of D" with i < j, then if we swap both en-
tries the obtained sequence D" satisfies PotOv(D, D’) <
PotOv(D, D"”). So, the maximum in the previous in-
equality is attained precisely when both D and D’ are
increasingly ordered. So, we have proved that

N
Z min{k;, k;}

/ i=1
MaxOvy (p,p) < —

Z max{k;, k. }
1

ki <ks<...<kyand K, <k, <...<kl.

, whenever
(9)

Inequality (9) allows us to design an efficient algorithm
to compute an upper bound for the maximum overlap.
The algorithm takes as input the empirical distributions
p(k) and p’(k), sorts increasingly the elements of the re-
spective degree sets and finally returns the rhs of the in-
equality in (9). Table I (second rows) shows the output of
this algorithm for several pairs of empirical distributions,
obtained by approximating the corresponding pairs of
(theoretical) distributions. Here “SF” stands for a scale-
free network with p(k) = Ck™7 with v = 3, minimum
degree m, cut-off k. = mN'/2, and the normalization
constant C' = (y—1)m? "t N/(N —1), for which (k) ~ 2m
[20]. “Exponential” corresponds to p(k) = (1/m)e!~*/™
with minimum degree m, for which (k) = 2m. “Poisson”
corresponds to p(k) = e */k! with A = (k), and “Reg-
ular” stands for a random network for which all nodes
have the same degree. In all cases, N = 10000.

V. AN ALGORITHM TO SWEEP THE RANGE
OF POTENTIAL OVERLAPS BETWEEN TWO
DEGREE SEQUENCES

In this section we design an algorithm that takes
any pair of degree sequences D, D’ and a value a be-
tween 0 and PotOv(D, D) and constructs a pair of net-
works G, G' with degree sequences D, D’ whose overlap
is as close as possible to a (values of «a very close to
PotOv(D, D') are not attainable since PotOv(D, D’) is
just an upper bound).

Assume that we have generated two random networks
G(0), G'(0) of N nodes using the configuration model. In
view of (5), Ov(G(0),G’(0)) = 0. Thus, it seems natural
to propose an algorithm that works as follows. At each
time step ¢ > 0, modify the networks G(t), G'(t) a little
bit without modifying the degree sequences by perform-
ing a local operation (an operation involving few nodes
and/or links) to obtain new networks G(t + 1), G'(t + 1)
in such a way that Ov(G(¢+1), G'(t+1)) is slightly larger
than Ov(G(t), G'(t)). Repeat until the overlap is close to
.

The kind of local operation that we will use in the
scheme above is a cross rewiring [21], according to the
following definition. Let G(t), G'(t) be two networks of
N nodes. A good pair in G(t) with respect to G'(t) is a
pair of links {a, b}, {¢,d} in G(¢) satisfying the following
conditions:

1. {a,b} and {c,d} are not links in G'(t)
2. {a,c} and {b,d} are not links in G(t)
3. {a,c} is a link in G'(t).

Analogously we define a good pair in G’ (t) with respect to
G(t) by interchanging the roles of G(t) and G’(t) in the
previous definition. Given a good pair {a,b}, {c,d} in
G(t) with respect to G'(t), the associated cross-rewiring
operation consists of replacing the links {a, b} and {c,d}
in G(¢) by {a, c} and {b, d} to get a new network G(¢t+1).
Observe that G(t) and G(t 4+ 1) are in general different
as non-labeled networks. However, the degrees of the in-
volved nodes a, b, ¢, d are not modified after performing
the cross-rewiring. In consequence, G(t) and G(t + 1)
have the same degree sequences. On the other hand, set
G'(t+1)=G'(t) and let E(t), E(t+1), E'(t), E'(t+ 1)
be respectively the sets of links of G(¢), G(t + 1), G'(¢),
G'(t+1). Then, |E'(t +1)| = |E'(t)| and, by the defi-
nition of the cross rewiring operation over a good pair,
|E(t+1)| = |E(t)|. Moreover, by the definition of a good
pair, either |E(t +1)NE'(t +1)| = |E(t) N E'(t)| + 1 if
{b,d}isalinkin G'(t) or |[E(t+1)NE'(t+1)|=|E(t)N
E'(t)| + 2 otherwise. Then, if we denote Ov(G(t), G'(t))
and Ov(G(t 4+ 1),G'(t + 1)) by Ov(¢) and Ov(t + 1) re-
spectively, a trivial computation yields that

xOv(t)2 +220v(t) + o

Ov(t+1) = Ov(t) + —F——— zOv(t)

(10)



where z € {1,2} and L = |E(¢)|+]|E’(t)|. In other words,
the overlap after performing a cross rewiring operation in
a good pair of links slightly (but strictly) increases.

From now on, let 0 < a < PotOv(D, D’) be the desired
overlap coefficient. In view of what has been said, let us
consider the following CR Algorithm (standing for Cross
rewiring):

CR Algorithm (input: D, D’ «)

1. Use the configuration model to get two random net-
works G(0),G'(0) of size N and degree sequences
D, D’. The overlap between G(0) and G’(0) is close
to 0.

At each time step t > 0:

2. Choose at random (if it exists) a good pair of links
in G(t) with respect to G'(t). Perform a cross
rewiring operation in G(t) using such a pair, ob-
taining a new network G(t + 1). Set G'(t + 1) :=
G'(t). Then, by (10), Ov(G(t + 1),G'(t + 1)) >
Ov(G(t),G'(t)). HOv(G(t+1),G'(t+1)) > «, set
G:=G(t+1), G :=G(t+1) and stop.

3. Repeat the previous step interchanging the roles of
G(t) and G'(t). Proceed to the next time step.

It is clear that after a finite number ¢y of steps the
algorithm will stop, either because no good pairs are
found or because the overlap between G(tp) and G’ (o)
has reached the value a. In any case, the output of the
algorithm is the pair of networks G(¢o), G'(tp). A natu-
ral question is whether in general the algorithm may halt
forced by the condition that no good pairs are found, be-
fore having reached a value of the overlap close to a, spe-
cially when « is close to PotOv(D, D’) (we stress the fact
that PotOv(D, D’) is just an upper bound, far from being
realizable in general). So, it makes sense to remove the
stop condition given by the overlap and let the algorithm
run until no more good pairs are found. In Table IT we
show the maximum overlap obtained in this way for sev-
eral pairs of distributions, together with the upper bound
PotOv (D, D'). In all cases, the input degree sequences
D, D’ are random arrangements of the degree sets as-
sociated to the respective distributions. The obtained
overlap is relatively close to the upper bound, suggesting
that indeed the CR algorithm is able to sweep the entire
range of permitted overlaps between 0 and PotOv(D, D).

VI. BELOW THE CRITICAL OVERLAP: TWO
DESIRABLE STATISTICAL FEATURES OF THE
NETWORKS GENERATED BY THE CR
ALGORITHM

Let us introduce another relevant quantity that we will
call critical overlap. It is defined as the potential overlap
between two random sequences (Drand, D\ opq) ~ P(K) X

Regular|Poisson| SF |Exponential
1 0.73811(0.56201| 0.63731
Regular 1 0.77612]0.61129| 0.67817
0.63881(0.49242| 0.56393
Poisson 0.69605(0.56536| 0.62555
0.44673| 0.47769
SF 0.51443| 0.53822
0.53426
Exponential 0.58936

TABLE II. Maximum overlap generated by the CR Algo-
rithm starting with two random arrangements D, D’ of the
corresponding degree sets (first row) vs the upper bound
PotOv(D, D') (second row). In all cases N = 10000, (k) = 10.

p' (k) where p(k),p'(k) are empirical distributions of N
nodes:

CrtOvy (p,p') := PotOV(Drands Dyand)s

rand

that for IV big enough and pairs of distributions with
bounded variance can be essentially considered as inde-
pendent from the particular sampled sequences. Against
an initial intuition, the critical overlap is not close to 0
but lies relatively near to MaxOvy(p,p’) (see Table I).
By running the CR Algorithm with sequences D;qnq,
D) ... one can get any overlap o between 0 and (val-
ues close to) CrtOvy(p,p’). As we will see, proceeding
in this way the obtained two-layer network exhibits some
desirable statistical features (lack of in- and cross-layer
correlations). For higher values of «, it is unavoidable to
introduce correlations and deviate from what happens in
a “configuration model” context (Section VII).

A. Lack of in-layer degree-degree correlations

The lack of degree-degree correlations inside each layer
is often a crucial requirement in the derivation of the
equations governing mean-field multi-layer models. In
particular, this will be a basic assumption in the deriva-
tion of system (16)-(17) for the SIR model proposed in
Section VIII. It is reasonable to expect that each network
in a pair created via the CR Algorithm with random ini-
tial sequences is uncorrelated, since:

1. The networks G(0), G’(0) are randomly generated
via the configuration model algorithm, which is
known to produce uncorrelated networks.

2. A cross rewiring performed over a good pair of
links {a, b}, {c,d} increases (decreases) the global
degree-degree correlation if the new links connect
the two nodes with the smallest degrees and the
two nodes with the largest degrees (respectively,
if one of the new links connects the node with the
largest degree to the node with lowest degree). But



a=0.15/a=0.3|a =045 a=0.15|a=0.3|a =045

Poisson | 0.02288 |0.02474| 0.05429 Poisson | 0.01404 |0.03758| 0.07338
SF 0.00673 |0.04774| 0.12942 Poisson | 0.01382 |0.04392| 0.05624

SF 0.00419 |0.03207| 0.07498 SF 0.00830 |0.03033| 0.07882
Exponential | 0.02711 [0.07771| 0.13175 SF 0.01586 |0.04719| 0.07909
Poisson | 0.01888 [0.03588| 0.05401 ||Exponential| 0.02210 [0.07099| 0.12841
Exponential | 0.03290 [0.07054| 0.09741 ||Exponential| 0.05203 [0.07887| 0.11722

TABLE III. Pearson coefficient to measure the degree-degree
from the CR Algorithm with prescribed overlap a = 0.15,0.3,

the rewiring criterion in the CR Algorithm is in-
tended to increase the overlap coefficient and has
nothing to do with the degrees of the four involved
nodes. So, some reconnections will increase the
global degree-degree correlation and some will de-
crease it, thus expecting essentially an overall bal-
ance.

To support this claim, we show in Table III the stan-
dard Pearson coefficient r for each layer, computed from
the two random variables defined by the degrees of the
nodes at both ends of randomly chosen links [22]. Values
of r close to —1 (respectively 1) account for dissortative
(resp. assortative) networks, while values close to 0 cor-
respond to uncorrelated networks. As in Table II, the
CR Algorithm was executed taking as input two random
arrangements of the corresponding degree sets.

B. Lack of cross-layer degree-degree correlations

The cross-layer degree-degree correlation T is defined
as the correlation of the respective degrees k; and kj of
the same node 7 in the two layers. In Section VII we will
precise how to measure it. We note that the epidemic
model proposed in Section VIII will be simple enough
to be independent of this sort of correlation, but this
may not be the case for more sophisticated models, so
that the question of obtaining a given overlap control-
ling T makes sense. Observe that the cross-layer degree-
degree correlation between two networks G, G’ depends
only on the respective degree sequences, not on the par-
ticular links joining the nodes in G and G’. On the
other hand, 7 &~ 0 for two independent random sequences
Drand, D, q- Since during the execution of the CR Al-
gorithm the respective degree sequences are not modified,
the lack of degree-degree correlations follows when using
the CR Algorithm starting with two independent random
arrangements of the degree sets of p(k),p’(k).

correlations in each layer for several pairs of networks obtained
0.45. In all cases, N = 10000 and (k) = 10.

VII. ABOVE THE CRITICAL OVERLAP:
ACCOUNTING FOR CROSS-LAYER
DEGREE-DEGREE CORRELATIONS

In view of the previous sections, there is a natural
algorithm that allows us to get any prescribed over-
lap 0 < a < MaxOvy(p,p’): arrange the degree sets
of p(k) and p'(k) to get degree sequences D, D’ in-
creasingly ordered. According to (9), MaxOvy(p,p’) <
PotOv(D, D’). Then, run the CR Algorithm taking
D, D’ and « as input. This algorithm generates a pair of
networks with mazimum cross-layer degree-degree cor-
relation. Indeed, nodes 1 and N have respectively the
smallest and the largest degree in both layers, and the
intermediate nodes have the same degree rank.

As we will see, there is an unavoidable relation-
ship between high values of the overlap and the cross-
layer degree-degree correlation, but the question arises
whether it is possible to get a value of the overlap close
to the maximum while controlling the cross-layer corre-
lation to some extent.

Given two degree sequences D = (kq,ko,...,ky) and
D" = (K|, kb, ..., k), it is natural to mesure the cross-
layer degree-degree correlations by using the Kendall’s
tau-b coefficient [23]:

N, — N,
V(No = N)(No — Na)

Here N, is the number of concordant pairs, Ny is the
number of discordant pairs, Ny = N(N —1)/2, Ny =
diti(ti —1)/2 and Ny = >, ¢4(t; — 1)/2, where t; is
the number of tied values in the i-th group of ties for D
(analogously for ¢’ and D'). A pair of indices i # j is
said to be concordant if (k; —k;)(k; — k) > 0, discordant
if (kl — k])(k; — k;) <0, or tied if (kl — kj)(k; — k;) =0.

It is well known that if the agreement (respectively,
disagreement) between the two rankings is perfect, then
7(D,D") =1 (resp. 7(D,D’) = —1), while if D and D’
are independent (lack of cross-layer degree-degree cor-
relation) then 7(D,D’) is expected to be close to 0.
Note also that if ¢ is any permutation, 7(c(D),o(D")) =
7(D, D'). So, in what follows we will assume without loss
of generality that D is increasingly ordered:

7(D,D’") :=

ki1 <ky<...<kn.



The cross-layer degree-degree correlation between two
networks G, G’ depends only on the respective degree se-
quences D, D’, not on the particular links joining the
nodes in G and G’. Considering a permutation o of
the elements of D’ corresponds to relabeling the nodes
of G’ to get a network G” isomorphic (so, equally dis-
tributed) to G’, and it makes sense to study how the
potential overlap PotOv(D,o(D’)) and the correlation
coefficient 7(D,o(D’)) vary in terms of o with respect
to PotOv(D,D’) and 7(D,D’). Since any permutation
decompose in a sequence of transpositions (or swaps) of
two elements, let us consider a pair of indices i < j such
that k; > k} (a discordant pair). When we swap both
entries in D’ to get a sequence D" such that k' = kj,
k) = ki and k' = k; for | # 4,5, then 7(D,D") >

(D D’ ) On the other hand, it is trivial to check that
> min{k,, k'Y — 5 min{k,, k], } equals:

a) 0if k) < ki < ki <k;

b) kj —k; > 0if ki <k <kj <k

c) k >Oifk‘;<ki<kg<kj

d) k >Oifki<k;<k§<kj

e) k; —kJ>Oifk:i<k’-<kj<k§

£) 0if ki < ky < k) <kj.

Since PotOv((r,)Y, (1)) is increasing as a function
of >, min{r,,r} (see (7)), it follows that the poten-
tial overlap does not decrease when performing a swap
that increases the tau-b coefficient. Analogously, one can
check that the tau-b coefficient does not decrease after a
swap that increases the potential overlap. This remark
plainly shows that, as expected, there is a direct rela-
tionship between overlap and cross-layer degree-degree
correlation.

Keeping in mind that we want to find a sequence of
swaps in order to increase the potential overlap while
controlling in some sense the cross-layer degree-degree
correlation, a crucial remark is that, together with the
swaps of types (b—e) above, that increase both the po-
tential overlap and the tau-b coefficient, there are two
cases for which the swap kj <> k; does not modify the
potential overlap while decreases the tau-b coefficient:

A) k:g<k;<k1<k:j

Before describing what we call the LS/CR Algorithm
(standing for label swap / cross rewiring), we give an
example of how it works. Let p(k),p’(k) be two empir-
ical distributions approximating respectively a Poisson
distribution with (k) = 10 and a scale-free distribution
with (k') = 12. Set N = 10000. Let D, D’ two random
arrangements of the degree sets. The cross-layer degree-
degree correlation is expected to be close to 0. Indeed,
in a particular simulation we get 7(D,D’) = 0.01470,

0 600 800 1000 1200 1400 1600 1800
number of swaps

FIG. 1. Evolution of the potential overlap (crosses) and the
cross-layer degree-degree correlation (diamonds) when per-
forming a sequence of swaps.

while PotOv(D,D’') = 0.57478 = CrtOvy(p,p’). So,
since the cross rewiring operations do not modify the
cross-layer correlation, if we want a prescribed overlap
« smaller than 0.57478, the CR Algorithm suffices to
construct a two-layer network with overlap close to «
and a small tau-b coefficient. But suppose that the de-
sired overlap is significantly larger. To see how big it
can be, rearrange the elements in D, D’ to get two se-
quences o(D), p(D’) increasingly ordered and compute
PotOv(a (D), p(D’)) = 0.749283, that according to (9) is
an absolute upper bound for the largest permitted over-
lap. The corresponding tau-b coefficient is of course very
close to 1: 7(o(D), p(D")) = 0.949190. Suppose now that
the desired overlap is very close to MaxOv x (p, p'), for in-
stance a = 0.73. We proceed as follows. Rearrange D’
using the permutation o (so o(D) is increasingly ordered
while o(D’) is not). Both the potential overlap and the
tau-b coefficient between o (D) and o(D’) do not change.
Now we perform a series of swaps in o(D’) of any of types
(b—e), that increase both the potential overlap and the
tau-b coefficient, until we reach the potential overlap a.
Then, we perform as many swaps of type (A-B) as pos-
sible in order to diminish the tau-b coefficient without
modifying the potential overlap. After running this algo-
rithm in our particular simulation, we get a sequence D"
such that 7(o(D), D") = 0.648549. Of course the correla-
tion is high, but significantly smaller than 1. Finally, now
we can use the CR Algorithm with input o(D), D", « to
effectively construct the two-layer network. If we repeat
the previous scheme with a prescribed overlap o = 0.65,
still close to the maximum, we get a sequence D" such
that 7(o(D),D"”) = 0.209785. It is instructive to vi-
sualize the evolution of both PotOv and 7 during the
complete sequence of swaps (see Figure 1).

So, let 0 < o < MaxOv (p,p’) be the desired overlap.
The following LS/CR Algorithm (standing for Label swap



0.6 0.65 | 0.70 | 0.75 | 0.80 0.85

o | 0.5844 | 0.5952 [0.6389(0.6985| 0.7614 | 0.8050

ER 12 / Exp 14 | 7 |-0.0178|-0.0005|0.0935|0.3537 | 0.6152 | 0.7899
CrtOv = 0.6330 |p1| 0.0753 | 0.0692 |0.0522(0.0241|-0.0087|-0.0095
MaxOv = 0.8350| p2| 0.1865 | 0.2055 [0.3517|0.3543| 0.3311 | 0.2727
a | 0.5387 | 0.5788 0.6386|0.7014| 0.7688 | 0.8459

Exp 12 / Exp 14| 7 |-0.0006| 0.0323 |0.2116|0.3656| 0.5132 | 0.6743
CrtOv = 0.5797 |p1|0.2010 | 0.1833 |0.1451{0.0851| 0.0366 | 0.0166
MaxOv = 0.8545|p2| 0.1715| 0.2377 |0.2104|0.1798| 0.3271 | 0.1102
a|0.5102 | 0.5702 |0.6236|0.6879| 0.7611 | 0.8385

SF 12 / SF 14 | 7| 0.1543 | 0.2900 [0.4033|0.4989| 0.5722 | 0.6246

CrtOv = 0.5027 |p1 | 0.0982 | 0.0957 |0.0761|0.0551| 0.0269 | 0.0021
MaxOv = 0.8522|p2| 0.1215| 0.1106 |0.0980|0.0696 | 0.0362 | -0.076

TABLE IV. Three examples of a series of executions of the LS/CR algorithm with prescribed overlaps 0.6, 0.65, 0.7, 0.75,
0.8 and 0.85. In all cases, N = 10000, (k) = 12 for the first distribution and (k') = 14 for the second one. For any pair
of distributions we report both the critical and the theoretical maximum overlap. For each two-layer network, we show the
overlap a, the Kendall’s tau-b coefficient 7 for the cross-layer degree-degree correlation, and the Pearson coefficients p1, p2 for

the in-layer degree-degree correlations.

/ Cross rewiring) is intended to construct two networks
of N nodes distributed according to p(k),p’(k) with an
overlap close to a and an cross-layer degree-degree cor-
relation as small as possible.

LS/CR Algorithm (input: N,p(k),p'(k), «)

1. Take degree sequences Dyqnq, D..,,,, by rearranging

at random the degree sets of p(k), p'(k). Then,

PotOV(Dyand, Dhyna) = CrtOvy (p, p').

2. If a < CrtOvy(p,p’), execute the CR Algorithm
with input D,qng, D! « and stop. Otherwise,

rand?

3. Let o be the permutation that rearranges D,.qnqg
increasingly. Set Dy = 0(Drand), Dy = 0(D.. 4na)-
Then,

PotOv( Dy, D6) = PotOV(Dyand, D;and)’

T(DO;Dé)) :T(Dranda !

rand

)~ 0.

4. At each time step t > 0:

Choose at random (if it exists) a pair of indices
1 < j such that the four corresponding entries in Dy
and D, satisfy any of the conditions (b—e). Swap
the entries ¢ and j in D} to get a new sequence
Di, 4. Then,

POtOV(D(), £+1) > POtOV(.D()7 D;)

If PotOv(Dg, D; ) > a, set to :=t + 1 and go to
step 5. Otherwise, proceed to the next time step.

5. At each time step t > tg:

Choose at random (if it exists) a pair of indices
1 < j such that the four corresponding entries in Dy
and D; satisfy either (A) or (B). Swap the entries
i and j in Dj to get a new sequence Dj ;. Then,

PotOv(Dy, D} 1) = PotOv(Dy, D)),

T(Do, D£+1) < 7'(.D07 Dé)

If no pairs are found satisfying (A) or (B), set ¢1 :=
t and go to step 6. Otherwise, proceed to the next
time step.

6. Execute the CR Algorithm with input Do, D} ,a.

In Table IV we show some statistical features of the
two-layer network obtained from the LS/CR algorithm
for several pairs of distributions and different values of
the prescribed overlap, all beyond the critical one. In
each case we show the obtained overlap «, the Kendall’s
tau-b coefficient 7 for the cross-layer correlation, and the
Pearson coefficients p1, po for the degree-degree correla-
tion inside each layer. The evolution of the statistics with
the overlap depends of course on the particular distribu-
tions considered, but some clear general conclusions can
be extracted. In all cases, the obtained overlaps are close
to the prescribed one. The tau-b coefficient approaches
1 (even relatively) only for values of the overlap beyond
about 80% of the theoretical maximum. The degree-
degree correlations inside each layer remain in most cases
close to 0.

As a final remark, it is clear that the LS/CR algorithm
admits a lot of variants depending on the type and or-
der of swaps that one performs (in the “LS” part of the
algorithm). For instance, one may be interested in in-
verting the roles and generate a two-layer network with



a prescribed cross-layer degree-degree correlation, while
getting an overlap as big as possible.

VIII. A SIMPLE EXAMPLE: A MEAN-FIELD
SIR EPIDEMIC MODEL ON A TWO-LAYER
NETWORK

This section aims at illustrating that, specially for
mean-field models of processes that take place over a two-
layer network, the qualitative response of a model may
depend critically on the inter-layer overlap. To do it, we
present a simple example of an epidemic model with in-
formation dissemination and determine the impact of the
overlap on the final outbreak size predicted by the model.

Epidemic models describe the spread of infectious dis-
eases on populations whose individuals are classified into
distinct classes according to their infection state as, for
instance, susceptible (S), infectious (I) and recovered (R)
individuals. A closer look at the physical transmission of
an infection reveals that a suitable description of pop-
ulations must take into account the network layer A of
physical contacts among individuals, with nodes repre-
senting individuals and links corresponding to physical
contacts along which disease can propagate. On the other
hand, if one assumes that the probability of getting in-
fected through an infectious contact S-I depends on the
awareness state of the susceptible individual, then a sec-
ond network layer B over which information about the
infection status of individuals circulates can be consid-
ered. In the context of management and control of sex-
ually transmitted diseases (STDs), an example of this
second network layer is given by the partner notification
program. This service helps to reach sexual contacts of
patients of STDs and inform them that they may be at
risk, and hence the need of seeking medical care [24, 25].
So, in our approach, if a pair of individuals, one suscepti-
ble and the other infectious, are connected to each other
in both network layers, we assume that the transmission
rate 3. (here ¢ stands for common) will be smaller than
the normal transmission rate 8 because the susceptible
partner adopts preventive measures to diminish the risk
of contagion.

According to this scenario, next we derive a mean-field
SIR epidemic model which implicitly assumes spreading
of information on the infection status of nodes in one
layer, while explicitly modeling the transmission an in-
fectious agent in a second layer. Following the standard
approach for STDs where the heterogeneity in the num-
ber of contacts (sexual partners) is a basic ingredient [26],
individuals are classified according to their infection state
and their number of physical contacts. So, the model will
take into account the network layer A of physical contacts
in terms of its degree distribution p(k) = Ni/N where
Ny, is the number of individuals having degree k. Anal-
ogously, the information/notification network (network
layer B) is described by its degree distribution pg(k).
For sake of brevity, a pair of nodes connected to each
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other in both networks is said to share a common link,
although the natures of the connections are dissimilar.
Moreover, the model does not assume that links in layer
B are a subset of those in the layer A, as it could be the
case in partner notification.

Within each layer, it is assumed that there is no degree-
degree correlation, i.e., neighbours in each layer are ran-
domly sampled from the population according to the so-
called proportionate mixing of individuals. This means
that, in each layer, the probability P(k’|k) that a node of
degree k is connected to a node of degree k' is indepen-
dent of the degree k and it is given by the fraction of links
pointing to nodes of degree k', i.e., P(k'|k) = k'p(k")/ (k).
Now, let I}, (t) be the number of infectious nodes of degree
k at time ¢ in layer A. Although links are unordered pairs
of connected nodes by definition, let us consider that ev-
ery link {u, v} gives rise to two oriented links u — v and
v — u. Then, the probability that a randomly chosen
oriented link of A leads to an infectious node is given by
the fraction of oriented links in A pointing to infectious
nodes [26], that is,

05 (t) = ﬁ ACE @ S kil

where (k4) is the average degree in A, and ix(t) =
I (t)/N is the fraction of nodes that are both infectious
and of degree k in A at time ¢.

Finally, let L4, Lp, and Lanp denote the number of
links of A, B, and common links, respectively. Let pg|a
be the probability that a randomly chosen link of A, an
A-link, connects two nodes that are also connected in B,
that is, ppja = 2422, Similarly, pap = £492 is the
probability that a randomly chosen B-link is a common
link to both networks.

We stress that a key assumption in the model deriva-
tion is the uniformity of the overlap between the links
of each layer. More precisely: the overlap « is a global
feature of the pair of networks {4, B} that depends on
the respective whole sets of links, and the equations of
the model, that will account for what happens around a
typical node ¢, will be derived using o as a parameter.
Implicitly, this corresponds to the mean-field approxima-
tion that the local overlap around the node ¢ (fraction of
links confluent to ¢ in the union network that are com-
mon links of A and B) does not deviate significantly from
a. This assumption is clearly unrealistic in general. For
instance, a particular run of the LS/CR algorithm with
prescribed overlap a = 0.5 over two exponential networks
of 5000 nodes and mean degrees 45 and 30 leads to a mean
local overlap equal to 0.5439 and a standard deviation of
0.1790. So, it is relevant to test the goodness of this ap-
proximation by comparing the predictions of the model
with simulation outputs.

Taking it all into account, the epidemic spreading is
described in terms of I (), and also of Sk (t) and Ry(¢),
the number of susceptible and recovered nodes of de-
gree k in layer A at time ¢ respectively, which satisfy




Sk(t) + I (t) + Ri(t) = Ni. In particular, the differential
equations for S and I are

ds,

7; = —k(1 —ppja)BSkOr — kpp|a BcSkOr, (11)
dl,

T k(1 —ppja)BSkOr + kppja BeSk O1 — ply,

(12)

The first term in the rhs of (12) is the rate of creation
of new infectious nodes of degree k in A due to trans-
missions of the infection through links that only belong
to layer A, whereas the second one is the rate of cre-
ation of new infectious nodes from transmissions across
common links. The last term accounts for the recover-
ies of infectious nodes, which occur at a recovery rate
p. Here (ka)pp|a is the expected number of common
oriented links. Therefore, since this number is the same
regardless the network we use to compute it, the follow-
ing consistency relationship must follow:

(ka)ppia = (kB)pa|B- (13)

Now let us express ppj4 and p4 p in terms of the over-
lap o := Ov(A, B), which is defined as o = £425 where
L sup is the set of links of the union network 1121 UB. Us-
ing that (k)N = 2L, ppja can be expressed in terms of
« as follows:

_ LanB _ Lanp LauB
PBlA Ly Laup La
La+Lp—Lann ( (kB) )
—a —a 1+ 28 . (14
L, (ka) PB|A (14)

From this simple relationship it immediately follows that

-~ (kB)\ «
pB|A<1+<kj>>1+a. (15)

1+ E:J‘:i) lJiLa' As expected, pp|a
and p4|p fulfil relationship (13).

Introducing (15) into system (11)-(12), the overlap ap-
pears as a new parameter of the model which now, in
terms of the fractions sy = S/N and i, = I},/N of sus-

ceptible and infectious nodes of degree k, reads

Similarly, pap =

dditk = —kﬁo(a)sk Oy, (16)
% = kBo(a)sk O — iy, (17)
where
1 (kB) {ks)
fole) = = (5 (1<A>0‘> e (”M)O‘)’

and sg + ix + 15 = pa(k).
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These equations correspond to the standard SIR model
for heterogeneous and closed populations with propor-
tionate mixing [26, 27], but with an averaged transmis-
sion rate fo(a) that takes into account the degree of
overlap between the two layers. A similar mean-field
approach for modeling epidemic spreading in single het-
erogeneous networks was adopted in [28] using, as state
variable, the fraction py of nodes of degree k that are
infectious. The connection between both approaches is
given by the relationship between the state variables. For
instance, i = I, /N = Iy /Ny - N, /N =: pp. p(k).

Simple facts about system (16)-(17) are:

1. Since the factor /(1 4+ «) in (15) is increasing in
a, and a < min{(k4), (kp)}/ max{{ka), (kg)} (see
(8)), it follows that

min {(ka), (k5)}
pBla < <;A> IR

So, when (ka) < (kp) we get pgja < 1 while, for
(ka) > (kp), we get ppja < (kp)/(ka) < 1.

2. If B. = B or a = 0, the system reduces to the classic
SIR-model, as expected, because information dis-
semination plays no role in the infection spread. If
a =1, we actually have one network and again the
system reduces to the SIR model but now with g
replaced by ..

To determine the impact of the network overlap on the
initial epidemic growth, we linearize the system (16)-(17)
about the disease-free equilibrium (s}, ;) = (pa(k),0) Vk
and obtain that the elements of the Jacobian matrix J*
evaluated at this equilibrium are

50( ) /
Ton) kk'p

where 0y is the Kronecker delta. Since the dominant
eigenvalue of the matrix (kk'pa(k)) is equal to (k%) =
>k k*pa(k) (with an associated eigenvector whose com-
ponents vy are proportional to kpa(k)), it follows that
the dominant eigenvalue of J* is

(k2)
(ka)

which corresponds to the initial growth rate of the epi-
demic. Clearly, A; decreases with o because . < 3, and
Ai(a) = 0 at Bo(a)/u = (ka)/(k%), which corresponds
to the epidemic threshold according to this mean-field
approximation. Notice that, under proportionate mix-
ing, the expected degree of a node reached by following
a randomly chosen link in network A is (k%)/(ka).

We have checked the accuracy of the model (16)-(17)
by collating the predicted epidemic final size, i.e. the
number of individuals ever infected, with the histogram
of final outbreak sizes of an ensemble of 1500 stochas-
tic epidemic realizations on a network of 5000 nodes and

*
Jkk/ —

A(k) — plkrs

Al (Oé) ==
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FIG. 2. Histograms of 1500 final outbreak sizes on a two-
layer network of 5000 nodes. Each layer is generated as a
regular random network of degree k4 = 45 and kg = 30,
respectively. The size distribution of small outbreaks ranges
from 1 to 9 in the three panels but only the frequency of a
final size equal to 1 (the initial infected node recovers before
infecting any neighbor) can be distinguished. Vertical dotted
line from bottom to top shows the predicted final epidemic
size according to (18)-(19). Insets: magnified histograms of
major-outbreak sizes. Parameters: 8 = 0.1, 8. = 0.05, p =1,
and a = 0.3 (a), 0.4 (b), and 0.5 (c).
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using « as a tuning parameter. Each network layer is
generated according to the configuration model, and the
desired value of « is attained using the CR algorithm to
guarantee the in-layer degree-degree correlation as close
to 0 as possible. To clearly separate the dichotomy “mi-
nor outbreak vs major outbreak” (initial extinctions are
highly feasible because only 1 node is randomly infected
at ¢ = 0), we chose the values of the parameters to be
far enough from the epidemic threshold. This guaran-
tees the existence of a marked distribution of final major-
outbreak sizes, in addition to the one of minor-outbreak
sizes around 1.

For an acceptable prediction of the model, the final
epidemic size obtained from the mean-field approxima-
tion should be relatively close to the mean value around
which major outbreaks are distributed. We insist that, in
addition to the well-known limitations of the mean-field
approach when modeling epidemic processes on one-layer
networks [29], here the accuracy of predictions also de-
pends on the fulfillment of the implicit hypotheses as-
sumed in the derivation of the expression (15) for pg|a.
Namely, (i) there is no in-layer degree-degree correla-
tions, and (ii) the occurrence of a common link is the
same for any pair of nodes in the network. So, the value
of pp|a does not depend on the degree of a node in layer
A and, hence, the overlap between layers is uniformly
distributed (i.e. there are not parts of the network more
overlapped than others). Assumption (i) is guaranteed
by the algorithms. However, assumption (ii) is not fea-
sible when the architectures of both layers are very dif-
ferent from each other. Then, our simulations have been
performed on networks with two different architectures
reflecting to extreme cases. First, we have considered
two-layer networks where each layer is in turn a regular
random network. This guarantees that both hypotheses
are satisfied and, moreover, a good accuracy of the mean-
field approach for this type of networks if the degree of
each layer is high enough. Second, we have considered
networks with both layers having exponential degree dis-
tributions which have a high variance. In both cases, the
mean degrees are 45 (layer A) and 30 (layer B), both high
enough to minimize the impact of stochastic fluctuations
around infected nodes.

To derive an analytical expression of the final epidemic
size note that, for all k, Si(co) = Ni — Rp(o0) since
lim; 00 I (t) = 0 (Sk(c0) and Ry (oco) are the limits of
Sk(t) and Ry(t) as t — oo). From this fact, the ini-
tial condition is (sx(0),7x(0)) = (pa(k),0), and integrat-
ing from 0 to oo the equation resulting from the sum of
Egs. (16) and (17), we have

> 1
/0 Tilt)dt = i (o).

Now, integrating (16) from 0 to oo, and using the pre-
vious expression, it follows that Ry (co) = Ni(1 — e™*¢),

with £ := #’?}353)]\[ >k kRi(00). Therefore, the final epi-
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FIG. 3. Histograms of 1500 final outbreak sizes on a two-layer
network of 5000 nodes and exponential degree distributions
on each layer with expected degrees (ka) = 45 and (kg) = 30,
respectively (see Sect. IV for details). The size distribution of
small outbreaks ranges from 1 to 5 in top panel, and from 1 to
7 in middle and bottom panels. Note that only the frequency
of a final size equal to 1 (the initial infected node recovers
before infecting any neighbor) can be perceived. Vertical dot-
ted line from bottom to top shows the predicted final epidemic
size according to (18)-(19). Insets: magnified histograms of
major-outbreak sizes. Parameters: = 0.1, 8. = 0.05, p = 1,
and o = 0.3 (a), 0.4 (b), and 0.5 (c).

13

demic size is given by

D Ri(o0) =D Nip(1—e %) (18)
k

k

with & being the positive solution (if it exists) of the
equation

_ Bo(e) ke
€= 2T k(1 - ) (19)

It is interesting to observe that, since £ = 0 is always a
solution, this equation will have a unique positive solu-
tion £* () if the derivative with respect to £ of its rhs is
larger than 1, which is equivalent to have A;(a) > 0, i.e.
a positive initial epidemic growth (the uniqueness follows
from the convexity of the function defined by this rhs).
This derivation of the final epidemic size is presented for
the sake of completeness because, indeed, it follows from
the one given in [26], Appendix E, in a more general set-
ting.

Figures 2 and 3 show the histograms of final outbreak
sizes obtained from the stochastic simulations on regular
random networks (RNN) and on networks with exponen-
tial degree distributions, respectively, for three values of
a. These figures also show the mean final epidemic size
given by Eq. (18) after numerically solving Eq. (19) us-
ing the generated degree sequence in layer A. When the
CR algorithm is applied and the distribution of major
outbreaks is clearly distinguished from the one of minor
outbreaks (otherwise to talk about the final size of an
epidemic has no sense), the predicted final size on RNN
is almost the same as the mean final size of the major
outbreaks (4853 vs 4850, 4816 vs 4818, and 4776 vs 4775
for @« = 0.3, 0.4, 0.5, and rounded values). For the expo-
nential networks, the predicted final epidemic size differs
less than 5% from the mean final size of major outbreaks
for most of the networks generated with the configura-
tion model with different degree distributions (not shown
here). In Figure 3, this disagreement is indeed less than
2%. Therefore, in these cases the proposed mean-field
model qualitatively captures the impact of the overlap
on the expected final size of an epidemic.

IX. CONCLUSIONS

The aim of this paper is to provide a toolbox of algo-
rithms to generate two networks G, G’ sharing the same
set of N nodes (a two-layer network) whose respective de-
gree distributions p(k), p’(k) are given, with a prescribed
overlap coefficient a defined by the Jaccard index.

First of all, we study the possible range (ay,, ay) C
[0,1] of permitted overlap coefficients in terms of p(k),
p'(k) and N. We start by proving that «,, =~ 0 for
any p(k),p’(k) and N big enough. Given two fized de-
gree sequences D = (k)X and D' = (k)X,, we de-
rive an upper bound of « for any pair of networks se-
quenced as D and D’, by assuming the condition (not



realizable in general) that the intersection network has
exactly min{k;, k.} links attached at node i. We call
this upper bound potential overlap between D and D’
and we denote it by PotOv(D, D’). Then we prove that
an estimate (more properly, an upper bound) for ay; is
precisely PotOv(S,S”), where S, S’ are degree sequences
sampled from p(k),p’(k) whose respective elements are
increasingly arranged.

To construct the desired algorithm we proceed in three
steps. First, we define a partial procedure, that we call
CR Algorithm, that takes any pair of degree sequences
D, D’ and a value « between 0 and PotOv(D, D’) and
constructs a pair of networks G, G’ sequenced as D, D’
whose overlap is as close as possible to a. Second, we in-
troduce what we call the critical overlap a.,, < a. < apr,
defined as PotOv(Dyand, D..,,,q) Where Dygpna, Dl . are
random sequences sampled from p(k),p’(k). Against an
initial intuition, a. is closer to aj; than expected. We
show that the CR algorithm with D44, D).,,.4 & Input
suffices to construct a pair of networks having any overlap
below o, and exhibiting some desirable statistical proper-
ties, specifically lack of in- and cross-layer degree-degree
correlations. Finally, when the desired overlap is beyond
a., we propose what we call the LS/CR Algorithm, that
minimizes the cross-layer degree-degree correlations that
unavoidably appear for high values of «.
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To illustrate the impact of the network overlap, we
present a simple example of an SIR epidemic model over
a two-layer network (physical contacts / information dis-
semination) and determine the impact of a on the initial
epidemic growth and on the final epidemic size predicted
by the model. The comparison of the epidemic final size
with the average final size of major outbreaks obtained
from stochastic simulations shows an excellent agreement
on regular random networks of high degrees, and a qual-
itatively good agreement on exponential networks. Pro-
vided that one wants to perform simulations to validate
this (or any) model where a multi-layer network is in-
volved, a systematic procedure to generate couples of
networks of given size and degree distributions with a
prescribed value of the overlap a as those presented here
seems to be a useful tool.
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