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Abstract 

The number of reported early syphilis cases in San Francisco has increased steadily since 2005. It is not yet 

clear what factors are responsible for such an increase. A recent analysis of the sexual contact network of 

men who have sex with men with syphilis in San Francisco has discovered a large connected component, 

members of which have a significantly higher chance of syphilis and HIV compared to non-member 

individuals. This study investigates whether it is possible to exploit the existence of the largest connected 

component to design new notification strategies that can potentially contribute to reducing the number of 

cases. We develop a model capable of incorporating multiple types of notification strategies and compare 

the corresponding incidence of syphilis. Through extensive simulations, we show that notifying the 

community of the infection state of few central nodes appears to be the most effective approach, balancing 

the cost of notification and the reduction of syphilis incidence. Additionally, among the different measures 

of centrality, the eigenvector centrality reveals to be the best regarding reducing the incidence in the long 

term as long as the number of missing links (non-disclosed contacts) is not very large. These results suggest 

the development of an application for mobile phones to broadcast an anonymous alert message when these 

central individuals are detected to be infected. 

 

Introduction 

Since 2001, San Francisco has experienced a sustained syphilis epidemic that has been nearly exclusively 

limited to men who have sex with men (MSM) (Bernstein et al., 2013). The epidemic, which was declining 

a few years ago, is now experiencing a new resurgence, not only in San Francisco but also across the USA 

and Europe (Abara et al., 2016). Innovative prevention measures are needed to reduce syphilis morbidity 

among MSM, and thus avoid spreading to a larger population. Previous work on sexually transmitted 

diseases has shown that sexual contact networks can be very useful to tailor mitigation strategies 

(Rosenberg et al., 1999).  

The San Francisco Department of Public Health (SFDPH) maintains legally mandated case-based 

surveillance for syphilis which includes collected sociodemographic, treatment, and contact tracing 

information on reported and investigated syphilis cases. This surveillance system allows for the description 

of sexual networks among reported cases that are investigated. Each pair of individuals who have had a 

sexual encounter at least once in a time span are connected to each other with a link. The number of early 

syphilis cases in San Francisco has increased steadily from 26.6/100,000 cases in 2007 to 157.1/100,000 

cases in 2015. Network theory indicates the importance of core individuals in sustaining sexually 

transmitted infections (STI) epidemics. An algorithm was developed in (Kohn et al., 2014) to identify the 

sexual contact network in the MSM community of San Francisco from case data routinely collected by the 
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SFDPH to better understand the epidemiology of recent syphilis cases and explore possible new approaches 

for disease control. A sexual contact network with 2,428 nodes and 2,046 links was created. Within this 

network, a total of 457 disconnected components were identified. Of these, 78% consisted of only 2 or 3 

individuals. Eleven components of 10 or more clients were identified, including a large connected 

component of 953 individuals. Clients in this largest component were more likely to be HIV-positive (P < 

0.001 from Chi-square) and to have had more cases of syphilis in the past (P < 0.0001 from ANOVA) than 

clients belonging to smaller connected components (Kohn et al., 2014). 

A partner notification (PN) system is a process in which an infected individual (called an index case) 

notifies (directly or indirectly) his partners (neighbors in the sexual network) of his infectious state (Bell & 

Potterat, 2011). It is hoped that partners of the index case will then seek evaluation and possible treatment 

(alert state). Partner notification is considered the cornerstone of sexually transmitted disease control, 

aiming at controlling transmission by 1) treating exposed partners, 2) preventing reinfection of the index 

cases, and 3) preventing infection of healthy partners. However, public health professionals face many 

challenges in partner notification, especially in populations using social media as a primary communication 

venue, or when most of the partners are anonymous. Partner notification can be performed in person, by 

phone, by mail, or by online systems (e.g., inSPOT (Levine et al., 2008)), and can take advantage of the 

knowledge obtained through network analysis to enhance its efficacy.  

To evaluate theoretical mitigation strategy effectiveness, mathematical and simulation models have been 

successfully used. Biological epidemiology has produced a significant number of deterministic and 

stochastic models (Anderson & May, 1992; Diekmann & Heesterbeeck, 2000; Keeling & Rohani, 2008). 

In the search for more accurate models, individual-based epidemic models were proposed, in which the 

contact network is represented by a graph. Individual-based models were successful in relating critical 

aspects of the epidemic dynamics to the structural properties of the contact network (Liljeros et al., 2003; 

Keeling & Eames, 2005; Riley, 2006; Riley & Ferguson, 2007; Balcan et al., 2009). 

Syphilis transmission characteristics and disease evolution are well described by the susceptible-infected-

susceptible (SIS) model due to the possibility of re-infection after recovery. In the SIS model, each 

individual can either be susceptible or infected. Transitions for an individual are determined by the state of 

the individual and his/her neighbors in the sexual network. For the SIS model, as well as for other models, 

a threshold phenomenon exists such that the infectious disease spreads and become endemic under some 

conditions of the parameters. A good estimation of the SIS threshold is proved to be equal to the inverse of 

the largest eigenvalue of the adjacency matrix of the sexual network under a mean field approximation 

(Chakrabarti et al., 2008; Mieghem et al., 2009). 

Change in human behavior in response to infectious diseases has been a focal point of the behavioral science 

community for more than 50 years. Modeling human reactions to the spread of infectious diseases is an 

extremely important topic in current epidemiology, and has attracted substantial attention (Ferguson, 2007; 

Fenichel et al., 2011). In general, human preventive responses to an epidemic spread can be categorized 

into the following three types: 1) changes in the system state, 2) changes in system parameters, and 3) 

changes in the contact topology. A comprehensive review of the existing results that examine the interaction 

between epidemic spread and human behavior can be found in the survey paper by Funk et al. (2010) and 

in the book Manfredi & D’Onofrio (2013). To include human reactions, Sahneh et al. have proposed the 

susceptible-alert-infected-susceptible (SAIS) model (Sahneh et al., 2012), an extension of the individual-

based SIS model where we add a new compartment (alert) to take into account the change in the behavior 

of susceptible individuals. Juher et al. have studied further this model showing the critical role of the 
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absence of awareness decay (Juher et al., 2015). Finally, the impact of an information dissemination 

network on the spreading of the alertness in the SAIS model is studied in Sahneh et al. (2014). 

The goal of this paper is to evaluate new notification interventions for the San Francisco syphilis epidemic 

exploiting the identified MSM sexual network, interventions that can be effective and simultaneously 

require limited additional costs.   

To this end, we adapt the SAIS model to simulate the syphilis epidemic in the MSM community of San 

Francisco. This model is well suited to represent and test multiple notification strategies. 

The contributions of this paper are based on the use of a long-term, high-quality, historical syphilis dataset 

and cutting-edge network science techniques. In particular: 

 Our analysis is unique because it has been collected for more than a decade and is focused on the 

specific community of MSM at San Francisco where the SFDPH has normalized regular screening 

over the past years.  

 We show the effectiveness of new intervention strategies through extensive simulation. In these 

new strategies, if the index case belongs to a small set of nodes with the highest network centrality 

–specifically eigenvector centrality–, an alert message of increased risk of infection is sent to the 

community, inviting people to increase infection prevention. With this strategy, the infection 

prevalence can be reduced up to 1/3 when the infection status of only 3% of the total individuals is 

shared. 

 

Data and Network Description 

In the following three subsections we describe the data used to create the sexual contact network and its 

characteristics, and we introduce the concept of notification network, an additional layer used to inform 

community members. 

Data Collection and Formats 

The San Francisco Department of Health (SFDPH) routinely investigates reported suspected or confirmed 

cases of syphilis.  In order to maintain the confidentiality of the patient, standard partner services approaches 

focus on the ego-centric network (who are the sex partners of the index).  The named partner does not need 

to name the index back to be considered a sexual connection.  At the Department of Public Health of San 

Francisco, trained field staff members interview index patients, whose infection status is confirmed by lab 

tests, provide assurance of appropriate treatment, and collect elicitation of sexual partners by self-reporting. 

Data are collected in standardized formats and include sociodemographic, substance use, sexual behaviors, 

and HIV serostatus information and consist of a mix of self-reporting and test-based information. Prior 

reports of early syphilis to San Francisco STD Prevention and Control are used to determine repeat syphilis 

cases, while HIV status is based on index self-identification as well as confirmed diagnoses reported to the 

SFDPH. Residential addresses of patients are geocoded and assigned to locally defined neighborhood 

boundary files using MapMarker (Piney Bowes, Troy, NY) and SAS v9.3 (SAS Institute, Cary, NC). Index 

patients residing in census tracts that correspond to the Castro neighborhood, where large numbers of gay-

identified MSM reside, are coded as Castro residents. Any partners listed with an address outside San 

Francisco are considered out of jurisdiction. Numbers and types of sexual behavior are assessed in the 

critical period (3 months before the onset of primary symptoms for primary cases and six months before 

the onset of secondary symptoms for secondary cases) by standard protocols (Bernstein et al., 2013). 
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The temporal network data is represented by records with 8 fields describing the interacting individuals 

(via anonymized ID codes), the interval and frequency with which partners were sexually active, the date 

at which the case of the patient was open, and the critical period for the STD patients over which at least 

one contact with the partner was made. Below in Table I, an example of the format for a data record that 

corresponds to a node pair is shown. Dates are reported as month/day/year. 

TABLE I 

Client 

ID 

Partner 

ID 

First 

Experience 

Frequency Last 

Experience 

Open 

Date 

Critical 

Period 

Start 

Critical 

Period 

End 

478214 482624 6/1/2009 STEADY 7/5/2014 7/8/2014 6/26/2013 6/26/2014 

 

 

Due to the incompleteness of many reported contact intervals – the intervals over which the patients report 

being sexually active with a partner –, we have decided to use the critical period (defined as the time interval 

where syphilis exposure or transmission likely occurred) as a surrogate for the contact period. The critical 

period (CP) is three months for primary syphilis, six months for secondary syphilis, and twelve months for 

early latent syphilis. The CP is a standard metric in syphilis interviews. Since the frequency was also 

reported in a non-quantitative manner we decided to restrict our analysis to the following four fields 

summarized in Table II. 

 

TABLE II 

Client ID Partner ID Critical Period Start Critical Period End 

478214 482624 6/26/2013 6/26/2014 

 

Considering the four fields for 2428 individuals, we can build a contact network with links among nodes 

existing during the critical time periods defined by the data and expressed in days.  

 

Sexual Contact Network 

Contact duration distribution 

One important issue for understanding the temporal networks characteristics is to study the distribution of 

the duration of the relationship. Figure 1 shows the frequency of the critical interval durations for all node 

pairs in the temporal network. 
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FIGURE 1. FREQUENCY DISTRIBUTION FOR THE DURATION OF THE RELATIONSHIPS OF THE 2428 NODES IN THE TEMPORAL 

NETWORK. 

From Figure 1, it is clearly seen that the distribution of the critical periods has peaks around the standard 

durations — 90 days, 180 days, and 360 days approximately — but also has other durations, even larger 

than 12 months. This is due to specific circumstances for each index case. For example, the critical period 

ends whenever patients receive treatment: they could not infect anyone after this time, so we do not need 

any names of partners. Additionally, the beginning of the CP can be defined as the last date a patient tested 

negative for syphilis, since he must have been infected some time afterwards. So, if a secondary case had a 

nonreactive RPR test (standing for rapid plasma reagin, a blood test for syphilis that looks for an antibody 

that is present in the bloodstream when a patient has syphilis) five months ago, his CP will only be five 

months long. CP intervals of length greater than 12 months are due to repeated CPs for the same pair of 

individuals. When we determine that two individuals shared two or more successive critical periods, we 

assume that the critical period has length equal to the sum of the successive critical periods, obtaining an 

overall CP longer than 12 months. In particular, there are 158 pairs that share 2 or 3 critical periods. 

 

The complementary cumulative distribution, F(x) = P(X > x), of partnership duration is shown in Figure 2 

on a semi-logarithmic plot. For large values of the duration, the distribution roughly resembles a sampling 

from an exponential distribution because of its linear character. This type of distribution is in agreement 

with previous studies on sexual partnerships and sexually transmitted infections (Foxman et al., 2006), and 

will be the one we will use to generate randomized versions of the weighted contact network built from the 

data.  
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FIGURE 2. COMPLEMENTARY CUMULATIVE DISTRIBUTION OF THE DURATION OF THE PARTNERSHIPS. THE ROUGHLY LINEAR TAIL 

OF THE DISTRIBUTION INDICATES AN EXPONENTIAL DISTRIBUTION OF THE HIGHEST DURATIONS  

Largest connected component 
 

An aggregated, undirected, and weighted network is then created from the original temporal one with 

characteristics reported in Table III. The complete network includes 457 disconnected components, where 

280 components have only two nodes (61.3%), 75 components have three nodes, 56 components have a 

number of nodes included in the range 5 to 9. Only eleven components include more than 9 nodes, and one 

largest component includes 953 nodes. In Table III, some network characteristics for this largest component 

are reported. 

TABLE III 

 Complete network Largest component 

Number of nodes 2428 953 

Number of edges 2046 1011 

Density 0.000694 0.002 

Average Node Degree 1.68 2.12 

Node Degree Variance 6.43 13.27 

Clustering coefficient 0.014 0.017 

Connected components 457 1 

 

In Figure 3-left panel, the largest connected component of the network is shown. This subnetwork is close 

to having a tree structure, with a clustering coefficient almost one order of magnitude smaller than the 

computed clustering coefficient of other sexual networks (Brignol et al., 2015). We conjecture that this low 

clustering coefficient could be the result of bias in the data collection, which leads to the presence of several 

star-like bunches of nodes in the network, that is, nodes with a high number of nearest-neighbors but with 

a very low number of secondary (next-nearest) neighbors. Additionally, the node degree distribution of the 

largest component shows a trend similar to a scale-free network in a log-log plot. In fact, hubs are present 

in this network: one node has degree 58, four nodes have a degree in the range 11 to 13, and eleven nodes 
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have degree 10. On the other side, 808 nodes have degrees one and two. This node degree trend is in line 

with previous analyses of sexual networks (Liljeros et al., 2003). 

 

 
FIGURE 3. LARGEST CONNECTED COMPONENT OF THE SEXUAL CONTACT NETWORK (LEFT) AND ITS NODE DEGREE DISTRIBUTION 

(RIGHT) 

 

Weighted contact networks  

In order to assess the effectiveness of various mitigation strategies based on community alerting, we will 

carry out stochastic simulations of epidemic spreading until the number of cases reaches a stationary 

regime. To cover this asymptotic behavior, the contact sequence S0={(i, j, t), t =1,…,T} defined on the base 

of the previous temporal contact records, where i and j are interacting nodes at time t, must be extended for 

times larger than T. There are several ways to do that according to the level of randomization of S0 (see, for 

instance, Starnini et. al., 2012; Stehlé et al., 2011).  

One of these procedures consists of creating an extended contact sequence for time intervals of the form 

[T, 2T], [2T, 3T], etc., by randomizing the time ordering of the contacts in [0, T]. Clearly, this extension of 

S0 does not preserve temporal correlations of successive contacts, but the resulting contact sequence has on 

average the same characteristics as the associated aggregated weighted network, a projection along the time 

axis of the contact sequence S0 that contains the information on the duration of each contact (Starnini et. al., 

2012). The latter is a static network that can be used both to carry out stochastic simulations of the epidemic 

and to compute those centrality measures involved in the definition of alerting strategies. Indeed, although 

dynamical centralities in temporal networks have been considered elsewhere (see, for instance, Braha and 

Bar-Yam, 2006; Kim and Anderson, 2012), they are not especially convenient in the approach we present 

for defining alerting strategies.   

We build the aggregated contact network by assuming that the probability of a contact between two nodes 

per unit of time is proportional to the duration of the partnership (length of the critical contact period in our 

data). More precisely, if we consider each record of the contact sequence S0 as
init fin

ij iji j t t   , the 

elements (weights) ωij of the aggregated adjacency matrix A are given by 

  with    max( ) min( )

fin init

ij ij fin init

ij ij ij
ij ij

t t
t t t

t



   


  (1) 
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that is, Δt is the length of the time period covered by the contact sequence. For the largest connected 

component, A is a 953x953 symmetric matrix with 2022 non-zero elements, Δt = 1099 days, and the 

resulting mean link weight �̅� = 0.1766, with a maximum weight of 0.6142 and a minimum weight of 

0.0237.  

In addition to the aggregated matrix A, two other static adjacency matrices will be considered as benchmarks 

to check the robustness of the results about epidemic spreading with respect to the weight distribution. The 

first matrix has the same non-zero elements as A, but these non-zero elements are here all equal to the mean 

weight of the contacts (homogeneous adjacency matrix). The second one also has the same non-zero 

elements as A but their values are randomly drawn from an exponential distribution with expected value 

equal to the mean weight of the contacts. By construction, epidemics on all these three networks will have 

the same mean transmission rate. We built these two additional static matrices to understand the impact of 

weight assignments on simulation results. Once we have built these weighted contact networks, the 

comparison of different alerting strategies will require the computation of centrality measures for ranking 

nodes according to their influential role in the epidemic dynamics. 

 

Notification Network 

Through the notification network, the infection status of nodes can be notified to their neighbors. In the 

standard partner notification (SPN) strategy, when a client is detected to be infected, all its partners are 

notified. From this definition of the notification network, it is clear that it has the same topology as the 

sexual contact network for the SPN strategy. The only difference consists in the fact that the information 

network is directed and unweighted, so the SPN network has 953 nodes and 2022 directed links. In general, 

any notification network will have 953 nodes, but the number of links depends on the specific strategy for 

notification. In the following, we propose and test multiple new notification strategies. 

 

The Model 

 
Testing new notification strategies requires a modeling tool which can simultaneously simulate the disease 

spreading phenomenon and the effect of the partner notification strategy. We propose the use of the 

Susceptible-Alert-Infected-Susceptible (SAIS) epidemic model defined on a two-layer network where, in 

addition to the sexual contact layer, a notification layer plays the important role of alerting nodes of the 

possible risks (Sahneh & Scoglio, 2012; Sahneh et al., 2014). In the following, the details of the SAIS 

model are introduced. 

 

The SAIS Model with Notification 

 
Syphilis transmission characteristics and disease evolution are well described by the Susceptible-Infected-

Susceptible (SIS) model due to the possibility of re-infection after recovery. In the SIS model, each 

individual can be either susceptible or infected. Transitions for an individual are determined by its state and 

those of his/her neighbors. An infected node transmits the disease to its neighbors (sexual partners) with a 

per-contact infection rate , and it is cured with recovery rate . However, once recovered and healthy, the 

individual is again susceptible to infection. For the SIS model defined on a network, a threshold c exists 

such that for c an initial small infection dies out, while for c infection spreads and remains 

in the population. An approximation of this epidemic threshold is proved to be equal to the inverse of the 

largest eigenvalue of the adjacency matrix of the sexual network. Based on this relationship, alternative 
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estimates of the epidemic threshold been proposed for networks with power-law degree distributions 

(Castellano & Pastor-Satorras, 2010). 

Modeling human behavioral responses against the spread of infectious diseases in order to improve models’ 

accuracy is a very complex task and has attracted substantial attention in the last years. In Sahneh et al. 

(2012), the SAIS model was proposed, a stochastic epidemic model based on the network-based individual-

level SIS model, where an alert compartment is added in order to model the change in the behavior of 

susceptible individuals. In a first version of the SAIS model, a susceptible node becomes alert with the 

alerting rate  times the number of infected neighbors in his sexual network. The transition to the alert state 

is then characterized by three elements: 1) the compartment that induces the transition, which in this case 

is the infected compartment I; the transition rate, in this case; and the network that defines the neighbors, 

which in this case is the sexual network Nsexual: (I, Nsexual). An alert individual can become infected in a 

process similar to a susceptible one, but with a smaller infection rate βa where 0 < βa < β due to the 

adoption of preventive behaviors. 

An extension of the SAIS model incorporates information dissemination social networks in addition to the 

contact network (Sahneh & Scoglio, 2012; Sahneh et al., 2014). Figure 4, left panel, illustrates an example 

of the two-layer network concept where two types of links, sexual and notification, connect the same set of 

nodes. In the related two-layer SAIS model, individuals can receive infections from infected neighbors in 

the physical, sexual network (black links), and receive notification of current infections through a 

notification network (red links). In the notification network, each node has a (notification) link to all 

individuals notified of its infectious status. If only physical partners are notified about the infection status 

of a given node, then the notification network is identical to the sexual network, and there is no difference 

between the SAIS and the two-layer SAIS model. However, when a susceptible individual might go to the 

alert state not only if notified of infected partners but also if notified of other core individuals being infected, 

the two-layer SAIS model shows better disease-control properties than the single SAIS. 

Specifically, a susceptible node becomes alert with the alerting rate  times the number of infected 

neighbors in his notification network. Transition to the alert state is then characterized by the triplet (I,  

Nnotification). Figure 4, right panel, shows details of transition rules of the node given its position in the two 

networks. The detailed description and mathematical equations of the exact continuous time Markov 

process and the corresponding approximated mean-field ordinary differential equations for the SAIS, and 

the two-layer SAIS can be found in the modeling framework introduced in Sahneh & Scoglio (2102) and 

Sahneh et al. (2014). 

The time evolution of an epidemic is performed by means of continuous-time stochastic simulations on a 

two-layer network of 953 nodes. At each time step, one of the competing events  –infection (either of a 

susceptible or an alert), recovery, and alerting– will be selected according to the probability that, given the 

configuration of individual states in the network at that moment, the event will occur in the next 

infinitesimal time interval. For each event, this probability is proportional to the number of the potential 

transitions in the network times the corresponding transition rate. This quantity is the so-called propensity 

of this event at that moment. Once the event has been decided, the involved node, or pair of nodes if 

infection or alerting is selected, is randomly chosen among those who can experience the transition. Finally, 

the moment when this transition occurs (i.e., the time increment in the simulation) is drawn from an 

exponential distribution with expected value equal to the inverse of the sum of propensities of the competing 

events. For more details of this and other related algorithms, see Gillespie (2007).  
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For each set of parameter values, the epidemic is repeated 350 times to obtain the mean number of infected 

nodes and the 95% confidence intervals (error bars in the figures). At the beginning of each simulation run, 

47 nodes are infected at random (about 5% of the total) to preclude stochastic extinctions of the disease in 

the initial phase of the epidemic.  

 

 

FIGURE 4. LEFT: THE MULTI-LAYER ARCHITECTURE OF INTERACTIONS BETWEEN INDIVIDUALS. RIGHT: TRANSITION DIAGRAM FOR 

EACH NODE IN THE NETWORK AMONG THE THREE STATES: SUSCEPTIBLE (S), ALERT (SA), AND INFECTED (I), WHEN THE TRANSITION TO 

THE ALERT STATE CAN BE INDUCED BY INFECTED NEIGHBORS IN THE NOTIFICATION NETWORK. 

 

Table IV shows the values of the transition rates used in all the simulations of the SAIS model presented in 

the paper. The selection of the values of model parameters has been performed on the basis of the following 

considerations. Parameters β and  are selected to obtain comparable incidence results between the model 

and the data at the SFDPH. Parameter βa can potentially span all values in the range [0, β]; we selected βa 

equal to half of β as an average value. Finally, we selected a small value of  to represent the difficulties in 

convincing people to adopt preventive behaviors and as a less favorable scenario for our simulations. 

TABLE IV 

Parameter  a   

(1/day) 0.94 0.47 0.02 0.30 

 

With the parameter values in Table IV, simulations converge in the long term to a non-zero number of 

infected individuals, representing the number of cases in the current endemic–like state. After 350 

simulation runs, the mean number of infected nodes in the empirical network is 148.  

The objective of the following analysis is to determine new notification strategies to reduce this mean 

number of cases in the long term with contained costs.  

 

Developing Network-Centric Community Alerting Strategies 
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In this section, we consider notification strategies that mainly have the goal of alerting the community of 

the infection status of a central node, who is not necessarily a direct partner. We call these notification 

strategies as alerting strategies. The objective of this part of the study is to identify and develop key metrics 

to guide alerting strategies. While partner notification has the goal of contacting all sexual partners of an 

index case and alert them and treat them if they are in turn infected, community alerting has the goal of 

alerting some nodes in the network in addition to the sexual partners when the index case belongs to a small 

subset of core nodes in the network. When the alerting strategy notifies and alerts the entire community, 

the strategy becomes a community alerting strategy. With community notification, the identity of the index 

case will not be revealed, and only a generic alert message will be sent to the community with the purpose 

of inviting everyone to adopt effective preventing measures and to look for testing and treatment if needed. 

We assume that a susceptible individual becomes alerted when he receives the alert message, thus reducing 

his infection probability by adopting preventive measures. Mathematical analysis of the SAIS model 

produces a very simple and interesting theoretical result under this assumption: core individuals can greatly 

help contain the infection effectively and promptly if the community is alerted when they are infected 

(Sahneh & Scoglio 2012; Sahneh et al., 2014).  

Community Alerting Strategy 

We have defined a community alerting strategy as a notification strategy where the community is alerted 

to an increased risk of reported syphilis and invited to take preventive actions when few central nodes are 

infected. The definition of "central nodes" depends of course on the used centrality measure that, in general, 

assigns a relative "importance" to each node in the network. In this paper we will consider three different 

centrality criteria labeled as DC, WDC, EC (standing for Degree, Weighted Degree and Eigenvector 

centralities) that respectively assign to each node v: (DC) the degree of v; (WDC) the sum of the weights 

of all links connected to v; (EC) the magnitude of the corresponding component of the principal eigenvector 

of the weighted adjacency matrix. For a detailed description of measures and metrics in networks, see 

Chapter 7 in Newman (2010). 

The above mentioned community notification can happen in the real world through the use of a cell phone 

application whose users are the community members. Theoretical results on the approximated mean-field 

SAIS model with notification show that the most effective community alerting is realized when the 

community becomes alerted as a consequence of the infection of any of the nodes with the highest 

centralities. In other words, the notification network will include C nodes that—when infected—will allow 

the community to be notified of high infection risks. In this theoretical scenario, a limited number of core 

individuals are identified. Therefore, the alerting strategy consists of notifying all community members 

when one of these C central nodes is infected. Under this assumption, we can ask the next questions: What 

is the minimum number of nodes that must be selected to have a significant reduction of the disease?  How 

can we select these C nodes? 

To answer the first question, we plot the average number of infectious nodes at the stationary state against 

the number C of central nodes used in the community alerting. Figure 5 shows this relationship for the 

parameters values in Table IV, and for a selection strategy based on DC, i.e., selecting the C nodes with the 

largest number of connections (links). From the figure, it follows that the reduction of disease prevalence 

is about 2/3 of the maximum possible for C = 30. For values of C larger than 30, the reduction in the number 

of cases is less significant and, moreover, differences between different selection strategies will be 

progressively less pronounced. In particular in this case, differences between DC and WDC almost 

disappear. So, to carry out the comparison of alerting strategies, we will consider C = 0, 5, 14, and 30. Note 

that the minimum prevalence will be reached when selecting all the nodes (dotted line in the figure). 
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An answer to the second question about how we should select the central nodes is given in Table V. This 

table summarizes the effectiveness of the strategies of selection of C nodes based on the DC, WDC and EC 

criteria, plus a "blind" strategy Rand based simply on selecting C nodes at random. 

 

FIGURE 5. THE MEAN NUMBER OF INFECTED INDIVIDUALS AT EQUILIBRIUM (AND 95% CONFIDENCE INTERVALS) AS A FUNCTION 

OF THE NUMBER OF SELECTED NODES WITH THE HIGHEST DEGREES. THE DOTTED LINE SHOWS THE NUMBER OF CASES WHEN ALL 

NODES ARE SELECTED (C=953). 

We computed the mean number of infected individuals in the long run under each selection strategy and 

the corresponding number of additional links with respect to the standard partner notification (SPN) 

network for the chosen values of C (5, 14, 30). The conclusion is that the EC based policy can reduce the 

average number of infected individuals in the endemic-like state from 148 to 53 when C = 30, showing to 

be the most effective strategy among those tested. Moreover, if we take into account the number of 

additional links needed to alert the community as a measure of the cost of a strategy, and compare it with 

the reduction in the disease prevalence, it appears that C=14 could be a better choice than C=30 for the size 

of the set of central nodes: it still amounts to a significant reduction in the number of cases under the EC 

(84 cases reduction) and, at the same time, involves less than a half of the links used when C=30. 

 

TABLE V C=0 C=5 C=14 C=30 

SPN Rand DC WDC EC Rand DC WDC EC Rand DC WDC EC 

Additional links 0 4754 4587 4622 4739 13312 12980 13013 13285 28491 28015 28056 28483 

Number of 

infected 

individuals 

148 123 100 91 87 105 81 72 64 94 64 63 53 

 

 
In Figure 6, we report the mean number of infected individuals as a function of time, I(t), for the same four 

selection criteria of C nodes (C=14 (left) and C=30 (right)). It is interesting to observe that, in both panels, 

only the black curve representing the number of infected individuals in the EC notification scenario crosses 

other curves. This means that, for moderately low transmission probabilities as those considered here, a 

higher initial epidemic growth is expected to occur under the EC selection strategy in comparison to the 

other two non-random selection strategies. Nevertheless, this non-optimal initial behavior of the epidemic 
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under this strategy is then compensated by a lower number of cases in the long run.  In fact, the EC curve 

decreases reaching the minimum value of infected nodes among the five curves at the steady state regime.  

 

FIGURE 6. THE MEAN NUMBER OF INFECTED INDIVIDUALS (AND 95% CONFIDENCE INTERVALS) AS A FUNCTION OF TIME (DAYS) 

FOR FOUR SELECTION STRATEGIES OF 14 (LEFT PANEL) AND 30 (RIGHT PANEL) MOST CENTRAL NODES WHOSE INFECTION STATUS 

IT IS USED TO ALERT THE COMMUNITY: SPN (RED), RAND (GREEN), DC (BLUE), WDC (MAGENTA), AND EC (BLACK). 

 
To assess the consistency of this behavior of I(t) under different selection strategies, we have simulated the 

spread of the epidemic on the same network but assigning the mean link weight in the original contact 

network to all links, namely, �̅� = 0.1766. So, the mean transmission rate along a contact is the same on 

both networks. The results are shown in Figure 7 for the same number of central nodes as in Figure 6. Note 

that, in this case, since the nodes selected by both DC and WDC strategies are the same, the curve for the 

WDC strategy is redundant. 

 
 

FIGURE 7. THE MEAN NUMBER OF INFECTED INDIVIDUALS (AND 95% CONFIDENCE INTERVALS) IN THE HOMOGENEOUSLY 

WEIGHTED CONTACT NETWORK AS A FUNCTION OF TIME (DAYS) FOR THREE SELECTION STRATEGIES OF 14 (LEFT PANEL) AND 30 

(RIGHT PANEL) MOST CENTRAL NODES WHOSE INFECTION STATUS IT IS USED TO ALERT THE COMMUNITY: SPN (RED), RAND 

(GREEN), DC (BLUE), AND EC (BLACK). 

 
As before, the initial epidemic growth under the EC strategy is larger than the one under the DC strategy 

although, at the stationary state, the number of cases is almost the same in both cases for C=14. Differences 
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between levels of the disease prevalence are only noticeable when we select a higher number of nodes 

(C=30 in the right panel). As expected, the number of infected nodes diminishes with C for all the strategies.  

 

The consistency of the behavior of I(t) was also checked by keeping the same topology of the empirical 

contact network (in particular its degree distribution), but now the weights on the links are randomly 

assigned according to an exponential distribution with expected value 0.1766, the mean link weight �̅� 

(which guarantees the same mean transmission rate along a contact in both networks). Moreover, to 

preserve the interpretation of a link weight as a contact probability, any generated weight ω > 1 is replaced 

with 1. Note that, for such an exponential distribution, P (ω > 1) = 0.0035 or, equivalently, only 3.5 

occurrences every 1000 generated weights. Figure 8 shows the outcome of the simulations on a particular 

randomly weighted network. Interestingly, for this and other randomly weighted networks (not shown 

here), the initial epidemic growth is now pretty much the same under the three selection strategies based on 

a centrality measure for C=14 and C=30. With respect to the long-term prevalence, EC is again the best of 

the three strategies for both values of C although the amelioration of the prevalence is more noticeable and 

it happens earlier for C=30.        

 

In contrast to what was observed from the empirical contact network for C=14 (see left panel in Figure 6), 

now differences on the evolution of the prevalence under DC and WDC selection strategies are almost not 

noticeable in Figure 8 for both C=14 and C=30. Indeed, this is not particularly surprising because there is 

a high linear correlation between the highest nodal degrees and the corresponding weighted degrees when 

weights are randomly assigned according to an exponential distribution (in most assignments, the 

coefficient of determination, R2, is larger than 0.75 for nodes of high degree). In Figure 9 we show this 

relationship for nodes of degree larger than 10 for both the empirical contact network (R2= 0.567) and the 

randomly weighted one used in Figure 7 (R2= 0.903). 

 
FIGURE 8. THE MEAN NUMBER OF INFECTED INDIVIDUALS (AND 95% CONFIDENCE INTERVALS) IN THE RANDOMLY WEIGHTED 

CONTACT NETWORK AS A FUNCTION OF TIME (DAYS) FOR FOUR SELECTION STRATEGIES OF 14 (LEFT PANEL) AND 30 (RIGHT 

PANEL) MOST CENTRAL NODES WHOSE INFECTION STATUS IT IS USED TO ALERT THE COMMUNITY: SPN (RED), RAND (GREEN), DC 

(BLUE), WDC(MAGENTA), AND EC (BLACK). 
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Clearly, from this figure it follows that the distribution of link weights among nodes of high degree in the 

empirical contact network appears to depart from the random exponential distribution. Such a departure 

implies, first, a low number of common nodes of the two sets of selected nodes and, second, very different 

centrality values among the non-common nodes. Hence, greater differences in the containment of an 

epidemic appear when comparing both selection strategies using the empirical data. For instance, for C=10, 

both rankings have six nodes in common (left panel) whereas, in the example of the random exponential 

weight distribution in Figure 8, both rankings share eight nodes (right panel). Moreover, from Figure 9 it 

also follows that the nodes with the second and fourth highest weighted degrees in the empirical network 

are not selected under the DC strategy (non-common nodes).  

 

 
FIGURE 9. WEIGHTED DEGREES AGAINST DEGREES OF NODES OF DEGREE LARGER THAN 10 FOR THE EMPIRICAL CONTACT 

NETWORK (LEFT PANEL) AND THE RANDOMLY WEIGHTED NETWORK (RIGHT PANEL) USED IN FIGURE 8. 

 
Robustness against missing data 

  

The selection of the most central nodes under each strategy is based on the information provided by the 

collected data that leads to the construction of the weighted contact network. However, sampling biases and 

missing data are major problems in empirical studies of hard-to-reach populations (Ghani et al., 1998). 

Sampling biases arise because this type of studies is mainly based on chain-referral methods which are 

examples of nonrandom sampling. For instance, in contact tracing, individuals with many connections are 

more likely to be nominated by other participants and, moreover, early reported cases have more time for 

their nominees to be recruited (Friedman et al., 1997). On the other hand, missing or inaccurate data can 

occur because of non-disclosure of partners or the existence of “dead-ends” —untraceable contacts— in 

data collection. In the San Francisco contact network, those sexual partners that are out of jurisdiction (OOJ) 

are examples of untraceable contacts since they were not included in the subsequent contact tracing.  

 

In what follows, we will assume that there is no bias in the collected data that systematically affects 

important features of the resulting contact network. In particular, it is assumed that missing nodes are 

unrelated to the observed data and, hence, they would not significantly change the main structural properties 

of the sexual network (degree distribution, degree-degree correlation, cyclicality, etc.). Therefore, although 

missing OOJ nodes can play an important role in disease flare-ups by bringing new cases into the studied 

area, those properties of the selection strategies depending on the network’s architecture will not be affected 

degree
5 10 15 20 25 30 35 40 45 50 55 60

w
ei

g
h

te
d

 d
eg

re
e

0

2

4

6

8

10

12

R
2
= 0.567

degree
5 10 15 20 25 30 35 40 45 50 55 60

w
e
ig

h
te

d
 d

e
g

re
e

0

2

4

6

8

10

12

14

R
2
= 0.903



16 

 

by neglecting these nodes in the analysis.  For alternative procedures of imputation of missing data see, for 

instance, Huisman (2009).             

 

On the other hand, the previous results relating the behavior of I(t) under different distributions of link 

weights suggest that inaccurate measurement of weights is not a factor that could easily change our findings. 

So, our major concern has to do with the topology of the contact network. Indeed, the addition of L new 

links increases the cyclicality of the considered network, with possible relevant consequences in the 

centrality assigned to each node. We claim that the robustness of our strategy under the addition of (missing) 

links is precisely its main strong point. Recall that the epidemic contention is based on selecting the set S 

of C (say, C=14) top ranked nodes with respect to a given centrality. However, all nodes inside S play 

exactly the same role, so the important question is whether a given individual belongs or not to S and in no 

way its particular position in the ranking. This feature of our contention strategy, combined with the well-

established fact that the sexual contact networks are highly heterogeneous, comes to the rescue (see below). 

 

To assess the robustness of the WDC and EC selection strategies against missing links, we have conducted 

two types of numerical experiments based on the addition of (weighted) links to the original contact 

network. The idea is to check if 1) the node selection itself is robust against modifications of the set of links, 

and 2) the containment of the epidemic has the same features as in the original setting when the initial set 

S of C central nodes is used. Note that, from a practical point of view, the “true” network is unknown and, 

so, only the initial set of central nodes can be considered in the experiments.    

 

First, assuming that the set of observed contacts is a random sample from the set of links of the true (and 

unknown) sexual network, we have randomly added 100, 200, 300, 500, and 1000 links to the original 

network, which approximately corresponds to a 10%, 20%, 30%, 50% and 100% increase in the number of 

links, respectively. The random addition of links has been made according to two different attaching 

mechanisms. In the first one, both ends of the new links are independently attached to nodes that have been 

selected uniformly at random (avoiding self-loops) from the set of nodes. The second mechanism consists 

in a semi-preferential attachment of new links by which one end is preferentially attached to nodes of high 

degree, while the other end is attached to a node selected uniformly at random (again avoiding self-loops). 

Precisely, following previous observations in growing sexual networks, we have assumed a sublinear 

preference for the nodal degree k with an attaching probability proportional to k0.7. This scaling exponent 

falls within the range of observed exponents in De Blasio et al. (2009). So, this second mechanism assumes 

that under-reported contacts are more related to nodes with higher degrees, although it does not assume 

correlations between the degrees of the nodes at both ends of a missing link.   

 

Each added link has a weight ω that is drawn from an exponential distribution with expected value equal 

to 0.1766, the mean link weight �̅� in the original network. As in the previous randomization of link weights, 

any generated weight ω > 1 will be replaced by 1 to preserve its interpretation as a contact probability per 

unit of time. Since the largest connected component has N=953 nodes and L=1011 links, the initial network 

has a cyclomatic number L–N–1=57, that can be roughly interpreted as the number of independent cycles 

in the network. By adding the previous numbers of links, we increase the cyclomatic number to 157, 257, 

357, 557 and 1057 independent cycles respectively. We are now in the position to test the impact of “true 

and unknown networks” with increasing cyclicality on the suggested mitigation strategy.   

 
For each number of added links and for both attaching mechanisms, we have generated 1000 networks and 

counted how many nodes of the set S are among the nodes with the highest C=14 centralities in the new 
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networks, using both EC and WDC selection strategies. Under the EC selection and uniformly random 

attachment of new links, at least 12 central nodes of S are also in the new set of C central nodes in more 

than 93% of the generated networks when we add up to 500 links. When links are added under semi-

preferential attachment, the frequency distribution is shifted to the left and it is more left-skewed than before 

(see Figure 10). Under the WDC selection, the new set of C central nodes always contains at least 11 central 

nodes of S when we add up to 500 links uniformly at random. Under semi-preferential attachment and for 

the same number of added links, the resulting histogram is slightly shifted to the left but it is still highly 

concentrated around 12-13 common central nodes even when we add 500 links (see Figure 11). This high 

presence of common central nodes for networks with increasing cyclicality show the robustness of the 

selection of the central nodes under both strategies. 

  
FIGURE 10. FREQUENCY DISTRIBUTION OF THE NUMBER OF SHARED  CENTRAL NODES UNDER EC SELECTION STRATEGY AFTER 

ADDING 500 (GREEN) AND 1000 (BLACK) WEIGHTED LINKS TO THE ORIGINAL SEXUAL NETWORK UNDER A NON-PREFERENTIAL 

RANDOM ATTACHMENT (LEFT), AND UNDER A SEMI-PREFERENTIAL RANDOM ATTACHMENT (RIGHT).  OVERLAPPING AREAS 

SHOWN IN DARK GREEN. EXPERIMENT REPEATED 1000 TIMES FOR EACH TYPE OF ATTACHMENT AND CENTRALITY MEASURE, AND 

TAKING THE NUMBER OF CENTRAL NODES C=14.  

 
FIGURE 11. FREQUENCY DISTRIBUTION OF THE NUMBER OF SHARED  CENTRAL NODES UNDER WDC SELECTION STRATEGY AFTER 

ADDING 500 (GREEN) AND 1000 (BLACK) WEIGHTED LINKS TO THE ORIGINAL SEXUAL NETWORK UNDER A NON-PREFERENTIAL 

RANDOM ATTACHMENT (LEFT), AND UNDER A SEMI-PREFERENTIAL RANDOM ATTACHMENT (RIGHT).  OVERLAPPING AREAS 

SHOWN IN DARK GREEN. EXPERIMENT REPEATED 1000 TIMES FOR EACH TYPE OF ATTACHMENT AND CENTRALITY MEASURE, AND 

TAKING THE NUMBER OF CENTRAL NODES C=14. 

In contrast to what happens with the WDC strategy, if one analyses the common central nodes selected 

under the EC strategy, one sees that there are very few times where the number of nodes of S in the new set 

of central nodes is only 0 or 1 (5, 15, 22, 30, and 43 networks when we add 100, 200, 300, 500 and 1000 

links, respectively, under the semi-preferential attachment). The reason for such an abrupt change is the 
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distribution of the C central nodes around the top-ranked one in the original network: 12 nodes are neighbors 

of the latter except the node with lowest EC in S (which, in turn, has its 14 neighbors in the set of 30 central 

nodes). Moreover, 9 of these 12 neighbors have degree one. Therefore, when the addition of links leads to 

an important change in the centrality of the top-ranked node, its neighbors will also be dragged off the top 

positions in EC and the composition of the new set of central nodes will be very different from that of S: 0 

or 1 coincidences.   

 

The key point here is that, even though EC is more sensitive than WDC to changes in the number of links, 

under a random addition of a moderate number of links such a sudden change in the composition of the set 

of C top ranked nodes is very unlike when the original network is highly heterogeneous. To illustrate this 

fact, we have generated 1000 networks of N=953 nodes from an initial network with a power-law degree 

distribution with exponent -3 and mean degree 3.89. For this setting, the configuration model gives initial 

networks that are connected and close to that of the sexual contact network in Figure 3 (few highly 

connected hubs, most nodes with a low degree). For example, adding 600 links (about 30% of links) 

uniformly at random to a scale-free network yields a unimodal histogram with its maximum around 11-13 

common central nodes (the exact location depends on the initial network) and, in most cases, there is no 

network having a completely different set of central nodes. Under preferential attachment of links to the 

same instance of network, the resulting histogram is shifted to the left and shows a higher dispersion around 

a lower maximum (see Figure 12 for a typical example).  

 

 
FIGURE 12. FREQUENCY DISTRIBUTION OF THE NUMBER OF SHARED  CENTRAL NODES UNDER THE EC SELECTION STRATEGY 

AFTER ADDING 600 WEIGHTED LINKS TO THE SAME SCALE-FREE NETWORK UNDER A NON-PREFERENTIAL RANDOM ATTACHMENT 

(LEFT) AND UNDER A PREFERENTIAL RANDOM ATTACHMENT (RIGHT).  EXPERIMENT REPEATED 1000 TIMES FOR EACH TYPE OF 

ATTACHMENT AND TAKING THE NUMBER OF CENTRAL NODES C=14. FOR DETAILS SEE MAIN TEXT. 

 
With respect to the containment of the epidemic, simulations were performed on networks sharing different 

numbers of central nodes with the original set and adding different numbers of weighted links (200, 300, 

500, and 1000). It is important to note that, if we want to compare the two selection strategies of central 

nodes (EC and WDC) using the data of the epidemic in San Francisco, the number of cases without any 

notification strategy must be independent of the missing links: the network size is always 953 and what we 

approximately know about the epidemic is its number of cases.  However, the addition of new links implies 

an increase the mean weighted degree of the network and, if 𝛽 is the same in all the numerical experiments, 
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then the epidemic will have higher prevalence in those networks with a higher fraction of new links. So, 

for each number of added links, we tune 𝛽 such that, in the long run, all the networks share a similar number 

of infected nodes when no alert individual is present (𝛽𝑎 =  𝛽). The reference level is given by the original 

contact network with 𝛽0 = 0.94 (see Table IV), which leads to an endemic state with 185-190 cases. 

Suitable values of 𝛽 can then be obtained by imposing that the ratio between the new 𝛽 and 𝛽0 is given by 

inverse of the ratio of the number of links in the corresponding networks: 𝛽 𝛽0⁄ = 𝐿0 𝐿⁄ . So, the values of 

𝛽 we have used in the simulations are 0.785, 0.725, 0.629, and 0.472 when the number of added links are 

200, 300, 500, and 1000 respectively. For instance, when 1000 links are added and 𝛽𝑎 =  𝛽, the resulting 

number of infectious nodes in the long run is about 195 when links are added uniformly at random, and it 

is about 210 under semi-preferential attachment. In general, the previous relation turns out to be better when 

links are added uniformly at random because this mechanism introduces less variability in the degree 

distribution than the semi-preferential one. Once 𝛽 is chosen, we take 𝛽𝑎 = 𝛽/2, as in all the previous 

simulations.  

 

The simulations reveal that under the EC selection strategy, when compared to the WDC selection strategy, 

there is always a higher initial raise in the number of cases. With respect to the disease prevalence in the 

long term, EC performs systematically better than WDC only under the uniform random addition of 200 

links. At the other extreme, WDC performs systematically better than EC when 1000 links are added with 

semi-preferential attachment. In the others cases, we observed a tendency of having similar levels of 

prevalence under both selection strategies and, when there are differences between them, the selection 

strategy that gives a lower prevalence is not always the same but depends on the generated network. 

Independently of the number of added links, the number of infected nodes is slightly higher under the semi-

preferential attachment (60-90 cases) than under the uniformly random addition of links (45-70). In all 

settings, the determinant fact is the number of added links and the mechanism of attachment, but not the 

number of common central nodes between the original network and the new one. In conclusion, also when 

testing the effectiveness of our proposed mitigation strategies in the worst scenarios, the performance of 

the EC selection strategy of central node degrades gracefully with an increasing amount of perturbation, 

showing the robustness property.  

 

Responsiveness  

 
On the other hand, if an alerting message is sent to the community each time one of the central nodes 

becomes infected, the number of messages received by an individual will be equal to the total number of 

infections of the central nodes. This could be, in fact, another reason for selecting a low number of central 

nodes. Otherwise, a decrease in the individual responsiveness might occur because of the saturation caused 

by a high number of received messages. In Figure 13, we show this number for the three selection strategies.  

It is interesting to observe the convergence of the number of infections of the central nodes under DC and 

WDC strategies when C increases from 14 to 30. This is another way to see why DC and WDC selection 

strategies yield the same level of mean prevalence as C increases. On the other hand, the number of 

infections of the central nodes increases, even more, when C increases under EC. This behavior of EC 

explains why this strategy is more effective for the reduction of the number of endemic cases. 

 



20 

 

 
 

FIGURE 13. THE MEAN NUMBER OF INFECTIONS OF THE C CENTRAL NODES (AND 95% CONFIDENCE INTERVALS) DURING AN 

EPIDEMIC UNDER THE DIFFERENT SELECTION STRATEGIES FOR C=5, 14, AND 30. TOTAL TIME OF THE SIMULATIONS: 250 DAYS.   

 
Finally, the possibility that an individual receiving an alerting message will completely ignore it needs to 

be taken into account. To this purpose, we tested the impact on the prevalence of a 30% reduction in 

responsiveness. We assume here that 70% of the individuals receiving the alert message read it and can 

decide whether to adopt a preventive behavior or not at a rate , while the remaining 30% of the individuals 

who receive the message just ignore it. The lack of response to the alerting message is modelled as the lack 

of the corresponding communication link. The individuals who miss responding to the alert message are 

randomly selected. As shown in Figure 14, a modest increase in the mean number of cases is shown when 

reducing the number of links by 30% for each value of C under the highest eigenvector centrality (EC) 

strategy. For example, when C=30, the prevalence increases from 53 infected individuals to 59 individuals 

in the steady state. This can be considered a further robustness feature of the approach. 

The selection of the best notification strategy depends on the practical aspects of its implementation. If the 

notification is performed with a mobile phone app, minimizing the number of links is not a critical goal and 

strategies like “broadcast the alert message if any of the 30 nodes with the highest eigenvector centrality is 

infected” seems to be the most promising. However, if saturation in responsiveness can occur as a 

consequence of the high number of notification messages an individual receives, lower values of C could 

be more suitable, such as C=14.   
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FIGURE 14 . THE MEAN NUMBER OF INFECTED INDIVIDUALS AT EQUILIBRIUM (AND 95% CONFIDENCE INTERVALS) AS A FUNCTION 

OF THE NUMBER OF SELECTED NODES BASED ON EIGENVECTOR CENTRALITY (EC) WITH 100% RESPONSE (BLUE LINE) AND 70% 

RESPONSE (RED LINE).   

 

Discussion 

While the standard partner notification strategy has the goal of testing and alerting the sexual partners of an 

infected individual, here we extend the notification/alerting component of this strategy to the entire 

community — community alerting strategy — but limit the alert-triggering events to the infection status of 

a small number of central individuals. In other words, susceptible individuals will be notified of an increased 

risk of infection due to the infection status of few central nodes and they will become alerted while still 

susceptible with a rate proportional to the number of infected central nodes. Critical decisions for 

community alerting are the number of central nodes selected and the considered centrality measures. The 

selection of central nodes is performed according to three different centrality measures: degree centrality, 

weighted-degree centrality, and eigenvector centrality.  In contrast to previous studies where the 

comparison of these centrality measures in an epidemiological context was in terms of the influence of 

removed (vaccinated) nodes on network topology (Khansari et al., 2016), we have examined their impact 

on the evolution of the number of infected nodes I(t) on a network where alerted nodes are not removed but 

can be infected with a reduced rate. To simulate the effectiveness of community alerting strategies we have 

used a computational model where the rules for the epidemic spread are those given by the transitions 

between nodal states in a susceptible-alerted-infectious-susceptible model with an alert dissemination 

network layer. Alerted individuals can be infected at a rate equal to one half of the rate at which susceptible 

individuals can be infected. Moreover, stochastic simulations are carried out on the largest connected 

component (953 nodes) of an empirical aggregated sexual contact network of the MSM community in San 

Francisco.  

In all the considered situations and using the empirical MSM contact network, the selection strategy based 

on the eigenvalue centrality of nodes is the one that leads to the lowest prevalence of the disease in the long 

run. This strategy takes advantage of the more influential role of nodes high on eigenvector centrality. 
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However, for moderately low transmission probabilities, the initial epidemic growth under DC and WDC 

alerting strategies is lower than the one under the EC strategy. This seems to indicate that the former 

strategies are more efficient to contain the epidemic at its early stage. The most vulnerable nodes to contract 

the disease during an epidemic outbreak are those with the highest degrees which may explain why this 

occurs for moderately low transmission probabilities. For higher transmission probabilities, however, such 

differences in vulnerability seem to be not relevant because there is a monotonous ordering of the 

trajectories of I(t), with the EC strategy being always both the one with the lowest initial epidemic growth 

and the one with the lowest prevalence at the long term. The same behavior of the trajectories of I(t) is 

observed when all the link weights in the network are replaced by their mean weight. However, when 

simulations are performed on a randomized version of the empirical contact network where link weights 

are assigned according to a random exponential distribution with the same mean weight (while keeping the 

same network architecture), the three selection strategies lead to very similar initial epidemic growths for 

the same moderately low transmission probabilities used in the empirical network. This seems to suggest 

the importance, at this early stage of an epidemic, not only of the degree distribution but also of the pattern 

of link weights in contact networks. On the other hand, the number of nodes whose state is used to alert the 

community needs not to be high in order to have a significant impact on the endemic number of cases in 

the community. With the parameters values used in this study, selecting about 1.5% of the nodes with the 

highest EC is enough to reduce more than 50% of the prevalence of the disease. 

We report that the average degree of the largest connected component is very close to 2 indicating its 

dendritic structure (a tree graph with the same number of nodes would have a mean degree of 1.997). This 

feature, along with its very low number of cyclic structures (only nine 2-core groups are detected using the 

clustering algorithm MCODE –a Cytoscape plugin– (Bader & Hogue, 2003)), and the highly fragmented 

complete network, has also been observed in other sexual networks (Potterat et al. 2002a). Indeed, it has 

been claimed elsewhere that this architecture of sexual networks indicates a low level or declining endemic 

transmission of the infection, in contrast to densely connected structures that are empirically associated 

with an intense STI outbreak because of the higher probability of STI transmission (Potterat et al., 1999; 

2002a; 2002b).  

Clearly, these results are obtained under some assumptions the most critical of which are: 1) susceptible 

individuals become alert with a rate proportional to the number of alert messages received, 2) there is no 

systematic bias in the collected data and, hence, the set of observed contacts is supposed to be a random 

sample from the set of links of the true (and unknown) sexual network, and 3) the selected parameters are 

appropriate. Future work will relax these assumptions, by considering uncertainty in the network topology 

and weights, exploring behavioral implications of receiving alerting messages and adapting the model 

consequently, and by fine tuning the model parameters with available incidence data.  

In particular, the interplay between awareness decay over time and disease prevalence as well as the 

determining factors of the former are issues that must be considered for a full understanding of the impact 

of community alerting strategies. For instance, several public health agencies have reported the re-

emergence of some STIs since the mid-1990s, mainly among MSM and in high-income countries, just after 

the decrease in condom use that followed the introduction of the antiretroviral therapy for HIV in 1996 and 

the increased use of other non-condom HIV risk-reduction strategies (Wilton, 2015). On the contrary, the 

usage of face masks as a protection against respiratory infections is still fairly common in several Asian 

countries since the 2003 SARS epidemic. These two examples show that behavioral responses and their 

duration may depend both on the culture of the affected population and on the type of disease.  The simplest 

introduction of awareness decay in the context of an SAIS model is to consider a constant decay rate (Juher 
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at al., 2015). However, this assumption implies that the average time a behavioral response lasts in an alert 

individual is equal to the inverse of this rate and, hence, its duration does not depend on the prevalence of 

the disease in the community. 

From the point of view of the implementation of an alerting strategy, it is interesting to take into account 

that individuals can have a lower propensity to adopt a protective behavior after receiving several alerting 

messages. Communication technologies (text messaging, Internet PN facilities, phone apps, etc.) provide 

an instrument for notifying individuals exposed to STIs through web-mediated communities (dating 

websites, prostitution) and who may not be traceable by other means (Bell & Potterat, 2011; Hsieh et al. 

2014). However, these technologies also have the potential to end up saturating individuals with an 

excessive number of alerting messages. A possible way to deal with this progressive saturation could be to 

structure the population of alerted individuals by the number of messages they receive which, in turn, will 

depend on the disease prevalence. 

In summary, in spite of all possible improvements to the model and its calibration, this paper offers a first 

look at a novel mitigation intervention in the form of a community alerting strategy that has the potential 

to be effective in reducing the number of cases as shown by the simulations, cost efficient since messages 

to the community can be sent with a cell phone application as anonymous messages concerning increased 

infection risk, and practically implementable since it only requires the knowledge of the infection status of 

few individuals. 
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