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Abstract We apply the averaging theory to study a
generalized Yang–Mills Hamiltonian system in dimen-
sion 6 with six parameters. We provide sufficient condi-
tions on the six parameters of the system which guaran-
tee the existence of continuous families of period orbits
parameterized by the energy.
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1 Introduction

We study the generalized classical Yang–Mills Hamil-
tonian system in dimension 6. It consists of a harmonic
oscillator plus a homogenous potential of fourth degree
with six real parameters a, b, c, d, e, and f .
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When z = pz = 0 the previous Hamiltonian contains
the planar classical Yang–Mills Hamiltonian system.
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The periodic solutions of this system when z = pz = 0
were studied in [15]. Our aim is to study the periodic
solutions in the different energy levels H = h of the
Hamiltonian system associated to the Hamiltonian (1).

The mentioned planar Hamiltonian system (z =
pz = 0) for a = 0 was studied by Contopoulos and
co-workers during many years, such a Hamiltonian is
now known as the Contopoulos Hamiltonian which
describes the perturbed central part of an elliptical or
barred galaxy without escapes. For more details see
Refs. [5–7]. See also the article of Deprit and Elipe
[8] where several periodic orbits and bifurcations are
studied for this planar Hamiltonian system. When the
quadratic part (x2 + y2)/2 = 0 and d = 0 we
obtain the mechanical Yang–Mills Hamiltonian H =
(p2

x + p2
y)/2 + bx2 y2/2; where the term x2 y2 charac-

terizes the Yang–Mills potential, which arises in con-
nection with the classical Yang–Mills field with gage
group SU(2) for a homogeneous two-component field,
see [11]. Several authors studied quartic homogeneous
potentials (without quadratic terms), see for instance
Refs [2,3,10]. Moreover, when b �= 0 it is well known
that the Hamiltonian of Yang–Mills is non-integrable
and strongly chaotic. Others studies and investigations
related with generalizations of the mechanical Yang–
Mills Hamiltonian have treated quartic terms with three
up to five terms in [4,9,13,16]. Maciejewski et al. [16]
studied generalized Yang–Mills Hamiltonian systems,
which have a quadratic potential plus a homogeneous
of fourth degree potential with five parameters, and
they proved the existence of connected branches of
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