

Contents lists available at SciVerse ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Uniqueness of limit cycles for Liénard differential equations of degree four

Chengzhi Li^{a,*}, Jaume Llibre^b

^a School of Mathematical Sciences and LMAM, Peking University, Beijing 100871, China
^b Departament de Matemàtiques, Universitat Autònoma de Barcelona, Spain

ARTICLE INFO

Article history: Received 9 January 2011 Available online 20 November 2011

MSC: 34C07 34C08 37G15

Keywords: Liénard equations Limit cycle

1. Introduction

The study of Liénard differential equations has a long history and a lot of results were obtained, see [8] for example. A classical polynomial Liénard differential equation can be written as a planar system

$$\dot{x} = y - F(x),$$

$$\dot{y} = -x,$$
 (1.1)

where F(x) is a polynomial of degree n. In 1977 A. Lins, W. de Melo and C.C. Pugh conjectured in [4] that the classical Liénard differential equation of degree $n \ge 3$ has at most $\left\lfloor \frac{n-1}{2} \right\rfloor$ limit cycles, where $\left\lfloor \frac{n-1}{2} \right\rfloor$ means the largest integer less than or equal to $\frac{n-1}{2}$. They also proved that the conjecture is true for n = 3. In 2007 F. Dumortier, D. Panazzolo and R. Roussarie [3] gave a counterexample to this

* Corresponding author. E-mail addresses: licz@math.pku.edu.cn (C. Li), jllibre@mat.uab.cat (J. Llibre).

ABSTRACT

We prove that any classical Liénard differential equation of degree four has at most one limit cycle, and the limit cycle is hyperbolic if it exists. This result gives a positive answer to the conjecture by A. Lins, W. de Melo and C.C. Pugh (1977) [4] about the number of limit cycles for polynomial Liénard differential equations for n = 4. © 2011 Elsevier Inc. All rights reserved.

^{0022-0396/\$ –} see front matter $\ \textcircled{}$ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jde.2011.11.002