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Abstract. Phase portraits are an invaluable tool in studying differential sys-
tems. Most of known results about global phase portraits are related to the
smooth differential systems.

This paper deals with a class of planar continuous piecewise linear Liénard
differential systems with three zones separated by two vertical lines without
symmetry. We provide the topological classification of the phase portraits in
the Poincaré disc for systems having a unique singular point located in the
middle zone.

1. Introduction and main results

In recent years there is a growing interest in the analysis of planar continuous
piecewise linear Liénard differential systems of the form:

dx

dt
= y − f(x),

dy

dt
= a− g(x), (1)

where

f(x) =



















k1(x − 1) + k2 if x > 1,

k2x if −1 6 x 6 1,

k3(x + 1)− k2 if x < −1,

(2)

and

g(x) =



















l1(x− 1) + l2 if x > 1,

l2x if −1 6 x 6 1,

l3(x+ 1)− l2 if x < −1.

(3)

Systems (1) satisfying (2) and (3) have been studied extensively, see for instance
[1-7]. For the symmetrical cases, that is a = 0, k1 = k3 and l1 = l3, see [9]
for the bifurcation sets and existence of the limit cycles, see [10] for the amplitude
and period of the limit cycles, see [18] for the global phase portraits and bifurcation
diagrams. While for the non-symmetrical case, the analysis of systems (1) satisfying
(2) and (3) become more complicated. In [15] the authors considered the existence
and uniqueness of limit cycles for the case k1 > 0, k1 < 0, k3 > 0. In [16] the authors
studied the uniqueness and non-uniqueness of limit cycles for the more general cases,
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they showed that systems (1) satisfying (2) and (3) can have at leat two limit cycles
for the cases either k1 > 0, k2 < 0, k3 < 0, or k1 < 0, k2 < 0, k3 > 0. In [7] the
authors found that systems (1) satisfying (2) and (3) can exist jump bifurcations
when l2 = 0. In [26] the authors investigated the boundary equilibrium bifurcations
of systems (1) satisfying (2) and (3).

It is worth to note that if either k1 = k2, l1 = l2, or k2 = k3, l2 = l3, then systems
(1) satisfying (2) and (3) become continuous piecewise linear Liénard differential
systems with two zones. In 1990 Lum and Chua [20, 21] conjectured that a con-
tinuous piecewise linear differential system with two zones separated by a straight
line has at most one limit cycle. In 1998 Freire et al. [8] gave a positive answer
to this conjecture. Note that this conjecture cannot be extended to discontinuous
piecewise linear differential systems see [1, 13], and to continuous piecewise linear
differential systems with non-regular separation line see [3, 17]. There are several
recent works related to the number of limit cycles for piecewise smooth integrable
systems, see for instance [12, 27, 28].

The description of the phase portrait of a differential system is the main objective
of the qualitative theory of differential equations, because it provides the qualitative
information of all their orbits, see for instance [6] and [19].

In this paper we study the global phase portraits of systems (1) satisfying (2)
and (3). Since the number of different phase portraits is large, in the present paper
we only consider the special case g(x) = x, that is

dx

dt
= y − f(x),

dy

dt
= a− x, (4)

with −1 < a < 1, k1k2k3 6= 0 and f(x) given in (2). Without loss of generality we
assume that k2 < 0. Otherwise we can do the change X = x, Y = −y, T = −t, and
then obtain k2 < 0.

It is well known that a separatrix of a polynomial differential system in the
Poincaré disc is an orbit which is either a singular point, or a limit cycle, or a
trajectory which lie in the boundary of a hyperbolic sector at a finite or infinity
singular point. If Σ denotes the set of all separatrices in the Poincaré disk D

2, Σ
is a closed set and the components of D2 \ Σ are called the canonical regions. See
subsection 2.1 for the definition of the Poincaré compactification and of the Poincaré
disc D2 = {(s1, s2) : s21+s22 6 1}. We denote by S and R the number of separatrices
and canonical regions of a given phase portrait in the Poincaré disc, respectively.
For more details on the separatrices and canonical regions see [22, 23, 24].

We say that two phase portraits P1 and P2 of systems (4) are topologically
equivalent if there exists a homeomorphism h : D2 → D

2 such that h(∂D2) = ∂D2,
h(int(D2)) = int(D2), and h maps orbits of P1 into orbits of P2 either preserving
all the orientations, or reversing all the orientations of the orbits. Here ∂D2 and
int(D2) denote the boundary and interior of D2, respectively.

It it convenient to introduce the following crucial parameters.

∆i = k2i − 4, i = 1, 2, 3.



PHASE PORTRAITS OF CONTINUOUS SYSTEMS 3

In section 3 we will see that the type and stability of the finite and infinite singu-
lar points of systems (4) satisfying (2) are determined by the signs of ∆i and ki
respectively.

We classify all the topological equivalent phase portraits in the Poincaré disc
for systems (4) satisfying (2) according to the sign of ki. Our main results are the
following three theorems.

Theorem 1. The phase portrait on the Poincaré disc of a continuous piecewise
Liénard differential system (4) satisfying (2) with −1 < a < 1 and k1 < 0, k2 <
0, k3 < 0, is topologically equivalent to one of the 6 phase portraits described in
Figure 1.

Figure 1. Topological phase portraits of systems (4) satisfying
(2) with k1 < 0, k2 < 0, k3 < 0. The right dashed line represents
the straight line of x = 1, and the left dashed curve represents the
straight line of x = −1. S and R denote the number of separatrices
and canonical regions, respectively.

Theorem 2. The phase portrait on the Poincaré disc of a continuous piecewise
Liénard differential system (4) satisfying (2) with −1 < a < 1 and k1 > 0, k2 <
0, k3 > 0, is topologically equivalent to one of the 6 phase portraits described in
Figure 2.

Theorem 3. The phase portrait on the Poincaré disc of a continuous piecewise
Liénard differential system (4) satisfying (2) with −1 < a < 1 and either k1 >
0, k2 6 k3 < 0 or k2 6 k1 < 0, k3 > 0, is topologically equivalent to one of the 20
phase portraits described in Figure 3.

Doing the change of variables X =
x√
ε
, Y = y, T =

t√
ε
, systems (4) satisfying

(2) become continuous piecewise linear slow fast Liénard differential systems of the
form

dX

dT
= Y − F (X),

dY

dT
= ε(A−X), (5)
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Figure 2. Topological phase portraits of systems (4) satisfying
(2) with k1 > 0, k2 < 0, k3 > 0.

where A = a/
√
ε and F (X) = f(

√
εX).

In [14] the authors studied systems (5) with k2 = −1 and k1 = k3 a fixed constant
greater than 1, but close to 1. They proved that system (5) has at most one limit
cycle using first integrals, and also shown that a usual relaxation oscillation occurs
for such systems. In [4] the authors investigated systems (5) with k1 = k3 > 0 and
k2 < 0. They found that this kind of differential system admits limit cycles that
share a lot of similarity with the van der Pol canards. In [5] the authors analyzed
systems (5) that display fold singularities, primary and secondary canards.

This paper is organized as follows. In section 2 we introduce the Poincaré com-
pactification, which is important for studying the infinite singular points. Section 3
is devoted to investigating the existence and uniqueness of limit cycles. In section
4 we prove our main results by careful qualitative analysis. The conclusions on this
work are given in section 5.

2. Singular points

We use Poincaré compactification to analyze the behaviour of finite and infinite
singular points, see more details in chapter 5 of [6].

2.1. Poincaré compactification. For a given polynomial differential system

dx1

dt
= P (x1, x2),

dx2

dt
= Q(x1, x2), (6)

of degree d=max{deg(P ), deg(Q)} in R
2. Let X = (P,Q) the vector field associate

system (6).

First we consider R2 as the plane in R
3 defined by (s1, s2, s3) = (x1, x2, 1). We

call the unit sphere S
2 = {(s1, s2, s3) : s21 + s22 + s23 = 1} the Poincaré sphere. The

equator S
1 = {(s1, s2, s3) ∈ S

2, s3 = 0} divide S
2 into two parts: the northern

hemisphere S
− = {(s1, s2, s3) ∈ S

2 : s3 > 0}, and the southern hemisphere S
+ =
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Figure 3. Topological phase portraits of systems (4) satisfying
(2) with either k1 > 0, k2 6 k3 < 0 or k2 6 k1 < 0, k3 > 0.

{(s1, s2, s3) ∈ S
2 : s3 < 0}. Now we project each point (x1, x2, 1) ∈ R

3 onto the
Poincaré sphere using a straight line through (x1, x2, 1) and the origin, it is obvious
that the equator S

1 corresponds to the infinity of R2. So we have two copies of
the vector field X on the poincaré sphere S

2, one in the open northern hemisphere
and the other in the open southern hemisphere. This vector field on S

2 \ S1 can be
extended to a vector field p(X ) defined in the whole S

2 multiplying it by sd3.

For studying the Poincaré sphere we consider the local charts

Ui = {s ∈ S
2 : si > 0}, Vi = {s ∈ S

2 : si < 0},
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where s = (s1, s2, s3).

The expression of p(X ) in the local chart U1 is given by

du

dt
= vd

[

− uP

(

1

v
,
u

v

)

+Q

(

1

v
,
u

v

)]

,
dv

dt
= −vd+1P

(

1

v
,
u

v

)

; (7)

with v > 0.

The expression of p(X ) in the local chart V1 is also given by (7) with v < 0.

The expression of p(X ) in the local chart U2 is given by

du

dt
= vd

[

− uP

(

u

v
,
1

v

)

− uQ

(

u

v
,
1

v

)]

,
dv

dt
= −vd+1Q

(

u

v
,
1

v

)

; (8)

with v > 0.

The expression of p(X ) in the local chart V2 is also given by (8) with v < 0.

The expression of p(X ) in the local charts U3 and V3 are just

du

dt
= P (u, v),

dv

dt
= Q(u, v).

It is clear that to study the phase portrait of the differential system (6), it suffices
to study its Poincaré compactification p(X ) restricted to the northern hemisphere.
For drawing the phase portraits we do the orthogonal projection π(s1, s2, s3) =
(s1, s2) of the closed northern hemisphere onto the closed unit disc centered at the
origin of coordinates in the plane x3 = 0. This closed disc is called the Poincaré
disc D

2.

The finite singular points of system (6) are the singular points in the interior of
D

2, and they can be studied using U3. The infinite singular points of system (6)
are the singular points of p(X ) in the boundary of D2. Note that for studying the
infinite singular points it suffices to look the ones at the local charts U1|v=0, V1|v=0,
and at the origin of the local chart U2.

2.2. Chart U1. Let x =
1

v
, y =

u

v
, v > 0, then systems (4) satisfying (2) become

du

dt
= av − 1− u2 + k1u− k1uv + k2uv,

dv

dt
= v(k1 − k1v + k2v − u), (9)

with 0 < v 6 1, and

du

dt
= av − 1− u2 + k2u,

dv

dt
= v(k2 − u), (10)

with v > 1.

In order to study the infinite singular points of systems (4) satisfying (2) in chart
U1, we impose that v = 0. It is obvious that systems (10) have no singular points
because v > 1. Let v = 0, then the singular points of systems (9) should satisfy
u2 − k1u+ 1 = 0. Recall that ∆1 = k21 − 4, then we have:

Proposition 4. For systems (9) the following statements hold.

(I) If ∆1 < 0, then systems (9) have no infinite singular points.
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(II) If ∆1 = 0, then systems (9) have one infinite singular point E1 =

(

k1
2
, 0

)

,

and it is a saddle-node, see Figure 4.
(III) If ∆1 > 0, then systems (9) have two infinite singular points: E+

1 =
(

k1 +
√
∆1

2
, 0

)

, which is a saddle for k1 > 0, and a stable node for k1 < 0;

E−
1 =

(

k1 −
√
∆1

2
, 0

)

, which is an unstable node for k1 > 0, and a saddle

for k1 < 0.

4.1 k1 < 0 4.2 k1 > 0

v

u

v

u

Figure 4. The local phase portrait of the saddle-node singular
point E1 of systems (9).

Proof. (I) Since the infinite singular points must satisfy the equation u2−k1u+1 =
0, statement (I) is obvious.

(II) Since ∆1 = k21 − 4 = 0, the Jacobian matrix at the singular point E1 =
(

k1
2
, 0

)

is







0 a+
k1(k2 − k1)

2

0
k1
2






. (11)

We first consider the case k1 = −2, we do the change U = 1 + u − (2 + k2)v, V =
v, T = −t, then systems (9) become

dU

dT
= U2 − aUV,

dV

dT
= V (1 + U − aV ). (12)

According with Theorem 2.19 of [6] we can deduce that E1 is the saddle-node
singular point described in Fig. 4.1. Note that we have reverse the time, so the
direction is the converse.

The phase portraits of E1 described in Fig. 4.2 can be analyzed similarly for the
case k1 = 2.
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(III) The Jacobian matrix at the singular point E+
1 =

(

k1 +
√
∆1

2
, 0

)

is







−
√
∆1 a− (k1 − k2)

k1 +
√
∆1

2

0
k1 −

√
∆1

2






.

If k1 > 0, then E+
1 is a saddle. If k1 < 0, then E+

1 is a stable node.

The Jacobian matrix at the singular point E−
1 =

(

k1 −
√
∆1

2
, 0

)

is







√
∆1 a− (k1 − k2)

k1 −
√
∆1

2

0
k1 +

√
∆1

2






.

If k1 > 0, then E−
1 is an unstable node. If k1 < 0, then E−

1 is a saddle. �

2.3. Chart V1. Let x =
1

v
, y =

u

v
, v < 0, then systems (4) satisfying (2) become

du

dt
= av − 1− u2 + k3u− k2uv + k3uv,

dv

dt
= v(k3 − k2v + k3v − u), (13)

with −1 6 v < 0, and

du

dt
= av − 1− u2 + k2u,

dv

dt
= v(k2 − u), (14)

with v 6 −1.

Note that systems (14) have no infinite singular points because v 6 −1. For
systems (13) we have

Proposition 5. For systems (13) the following statements hold.

(I) If ∆3 < 0, then systems (13) have no infinite singular points.

(II) If ∆3 = 0, then systems (13) have one infinite singular point E3 =

(

k3
2
, 0

)

,

and it is a saddle-node.
(III) If ∆3 > 0, then systems (13) have two infinite singular points: E+

3 =
(

k3 +
√
∆3

2
, 0

)

, which is a saddle for k3 > 0, and a stable node for k3 < 0;

E−
3 =

(

k3 −
√
∆3

2
, 0

)

, which is an unstable node for k3 > 0, and a saddle

for k3 < 0.

Proof. The proof of this proposition is similar to the proof of Proposition 5, we
omit it here. �
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2.4. Chart U2. Let x =
u

v
, y =

1

v
, v > 0, then systems (4) satisfying (2) become

du

dt
= 1− εauv + εu2 − k1u,

dv

dt
= εv(u− av), (15)

with
u

v
> 1, and

du

dt
= 1− εauv + εu2 − k2u,

dv

dt
= εv(u− av), (16)

with −1 6
u

v
6 1, and

du

dt
= 1− εauv + εu2 − k3u− (k3 − k2)v,

dv

dt
= εv(u− av), (17)

with
u

v
6 −1.

Since (0, 0) is not singular point of systems (15), (16) and (17), the origin of the
local chart U2 is not an infinite singular points. Consequently the origin of V2 is
not an infinite singular point.

2.5. Chart U3. It is obvious that systems (4) satisfying (2) have a unique finite
singular point E2 = (a, k2a). The local phase portrait of E2 is described in the
next result.

Proposition 6. Consider systems (4) satisfying (2) with k2 < 0 and −1 < a < 1,
then the following statements hold:

(I) If ∆2 < 0, then the finite singular point E2 is an unstable focus.
(II) If ∆2 > 0, then E2 is an unstable node.

Note that focus and node are topologically equivalent, thus the topological type
of the finite singular point E2 is independent of ∆2. The proof of this result is
straightforward and it is omitted.

3. Limit cycles

This section is devoted to studying the number of limit cycles for systems (4)
satisfying (2).

First we introduce some definitions. A period annulus is a region in the plane
completely filled by periodic orbits.

A differential system

dX

dT
= F (X)− Y,

dY

dT
= G(X), (18)

has the radial angular monotonicity property (RAM property, for simplicity) when
along any half-ray starting from the origin the angle of the vector filed measured
with respect to the positive direction of the x-axis does not decrease as long as
one moves far from the origin. More precisely, in order to show the nonnegative
rotation property, first we must compute the slope

mλ(X) =
dY

dX

∣

∣

∣

Y =λX

=
X

F (X)− λX
, (19)
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of the vector field along half-rays of the form Y = λX . After in order to analyze the
monotone character of this slope along the half-rays Y = λX , we need to compute
its derivative with respect to X , i.e.

dmλ(X)

dX
=

F (X)−XF ′(X)

(F (X)− λX)2
. (20)

A closed orbit surrounding the origin is called star like with respect to the origin
if any ray through the origin intersects the closed orbit in a unique point.

The following lemma provides an useful criteria on the existence and uniqueness
of a limit cycle for continuous differential systems, see [15].

Lemma 7. [Massera’s Method] Consider a continuous Liénard differential system
(18) with XG(X) > 0 for X 6= 0, and that F (0) = 0, so that the only singular point
is at the origin. Assume that system (18) has the RAM property and has no period
annulus. If the system has a periodic orbit then it is star-like with respect to the
origin and it is a limit cycle, which is unique and stable.

Using the results of [16] and Lemma 7, we can obtain the existence and unique-
ness of limit cycles of systems (4) satisfying (2).

Proposition 8. For continuous piecewise linear Liénard differential systems (4)
satisfying (2) with −1 < a < 1, the following statements hold.

(I) A necessary condition for the existence of a limit cycle is that ki, i = 1, 2, 3
have not the same sign.

(II) If either k1 > 0, k2 < 0, k3 > 0 or k1 < 0, k2 > 0, k3 < 0, then the singular
point E2 is surrounded by a unique stable limit cycle.

(III) If k1 > 0, k2 6 k3 < 0, then the singular point E2 is surrounded by at most
one limit cycle, which is stable if it exist.

(IV) If k2 6 k1 < 0, k3 > 0, then the singular point E2 is surrounded by at most
one limit cycle, which is unstable if it exist.

Proof. Doing the change of variables X = x − a, Y = k2a − y, then systems (4)
satisfying (2) become

dX

dt
= F (X)− Y,

dY

dt
= X, (21)

with

F (X) =



















−k1X + (k1 − k2)(1 − a) if X > 1− a,

−k2X if −(1 + a) 6 X 6 1− a,

−k3X + (k2 − k3)(1 + a) if X < −(1 + a).

(22)

The proof of Proposition 8 follows directly from Theorem 6 of [16] with r = l = 1.
For the reader’s convenience, we provide a complete proof here for statements (III)
and (IV).

(III) We use Lemma 7 to obtain the uniqueness of limit cycles of systems (21)
satisfying (22) with −1 < a < 1 under the conditions k1 > 0, k2 6 k3 < 0. To show
the nonnegative rotation property we need to compute its derivative of the slope
(19) with respect to X , i.e. we must compute (20).
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If−(1+a) 6 X 6 1−a, then F (X) = −k2X . Thus
dmλ(X)

dX
=

(k2 − k2)X

(F (X)− λX)2
=

0.

If X > 1 − a, then F (X) = −k1X + (k1 − k2)(1 − a). It is obvious that
dmλ(X)

dX
=

(k1 − k2)(1 − a)

(F (X)− λX)2
> 0, because k1 > 0, k2 < 0 and 1− a > 0.

If X < −(1 + a), then F (X) = −k3X + (k2 − k3)(1 + a). It follows that
dmλ(X)

dX
=

(k2 − k3)(1 + a)

(F (X)− λX)2
6 0, because k2 6 k3 < 0 and 1 + a > 0.

From the above analysis, we know that systems (21) satisfying (22) has the RAM
property, see Figure 5. According to Massera’s Method, if k1 > 0, k2 6 k3 < 0,

X = −(1 + a)

Y

X = 1− a

O

X

l1

l2

l3

l4

Y = F (X)

Figure 5. The vector fields of systems (21) satisfying (22) along
half-rays for the case k1 > 0, k2 6 k3 < 0 .

then the origin is surrounded by at most one limit cycle, and if it exists is stable.

For the case (IV) doing the change of variables X̄ = −X, Ȳ = Y and T̄ = −T ,
we have k̄1 = k3, k̄2 = k2 and k̄3 = k3. It is obvious that k̄1 > 0, k̄2 6 k̄3 < 0
because k3 > 0, k2 6 k1 < 0. Then we can guarantee the uniqueness of limit cycles
by statement (III). Since we have reverse the time, the stability of limit cycle has
changed. �

Note that if either k2 = k3, or k1 = k2, then systems (4) satisfying (2) become
continuous piecewise linear Liénard differential systems with two zones. Then ac-
cording to Theorem 5 of [11] we have
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Proposition 9. Consider continuous piecewise Liénard differential systems (4)
satisfying (2) with −1 < a < 1 and k2 < 0. Assume that ∆1 < 0,∆3 < 0. Then
the following statements hold.

(I) If k1 > 0, k2 = k3 < 0 and
k1√
−∆1

+
k3√
−∆3

> 0, then the singular point

E2 is surrounded by a unique stable limit cycle.

(II) If k1 > 0, k2 = k3 < 0 and
k1√
−∆1

+
k3√
−∆3

6 0, then the singular point

E2 is globally asymptotically unstable and no limit cycle exists.

(III) If k1 = k2 > 0, k3 < 0 and
k1√
−∆1

+
k3√
−∆3

> 0, then the singular point

E2 is surrounded by a unique unstable limit cycle.

(IV) If k1 = k2 > 0, k3 < 0 and
k1√
−∆1

+
k3√
−∆2

< 0, then the singular point

E2 is globally asymptotically stable and no limit cycle exists.

Proof. First we consider the case k1 > 0, k2 = k3 < 0. Let X = x − 1, Y =
y − k2, T = −t, then systems (4) satisfying (2) become

dX

dT
= F (X)− Y,

dY

dT
= X −A,

with A = a− 1 < 0 and

F (X) =

{

k1X if X > 0,

k2X if X < 0.

According with statements (a) and (b) of Theorem 5 of [11], we can prove statements
(I) and (II), respectively.

Similar to the proofs of statements (I) and (II), we can deduce statements (III)
and (IV) from statements (c) and (d) of Theorem 5 of [11]. �

4. Proof of the results

This section is devoted to proving our main results.

4.1. Proof of Theorem 1. The proof of Theorem 1 directly follows from the
following result.

Proposition 10. The phase portraits of systems (4) satisfying (2) with k1 <
0, k2 < 0, k3 < 0 and −1 < a < 1 are topologically equivalent to

(I) Fig.1.1 if ∆1 < 0,∆3 < 0;
(II) Fig.1.2 if either ∆1 = 0,∆3 < 0, or ∆1 < 0,∆3 = 0;
(III) Fig.1.3 if either ∆1 > 0,∆3 < 0, or ∆1 < 0,∆3 > 0;
(IV) Fig.1.4 if ∆1 = 0,∆3 = 0;
(V) Fig.1.5 if either ∆1 = 0,∆3 > 0, or ∆1 > 0,∆3 = 0;
(VI) Fig.1.6 if ∆1 > 0,∆3 > 0.

Proof. Recall that the finite singular point E2 is an unstable focus or node by
Proposition 6, and there is no limit cycle by statement (I) of Proposition 8.
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(I) For the case ∆1 < 0,∆3 < 0, it is obvious that systems (4) satisfying (2)
have no infinite singular points by statement (I) of Propositions 4 and 5. Therefore
the global phase portrait of systems (4) satisfying (2) is topologically equivalent to
Fig.1.1.

(II) For the case ∆1 = 0,∆3 < 0, the infinite singular point E1 is a saddle-node
by statement (II) of Proposition 4. Hence the global phase portrait of systems (4)
satisfying (2) is topologically equivalent to Fig.1.2.

For the case ∆1 < 0,∆3 = 0, the infinite singular point E3 is a saddle-node
by statement (II) of Proposition 5. So the global phase portrait of systems (4)
satisfying (2) is topologically equivalent to Fig.1.2.

(III) For the case ∆1 > 0,∆3 < 0, the infinite singular points E+
1 is a stable

node, and E−
1 is a saddle by statement (III) of Proposition 4. Then the global

phase portrait of systems (4) satisfying (2) is topologically equivalent to Fig.1.3.

For the case ∆1 < 0,∆3 > 0, the infinite singular points E+
3 is a stable node,

and E−
3 is a saddle by statement (III) of Proposition 5. Therefore the global phase

portrait of systems (4) satisfying (2) is topologically equivalent to Fig.1.3.

(IV) For the case ∆1 = 0,∆3 = 0, the infinite singular points E1 and E3 are
saddle-nodes by statement (II) of Propositions 4 and 5. Hence the global phase
portrait of systems (4) satisfying (2) is topologically equivalent to Fig.1.4.

(V) For the case ∆1 > 0,∆3 = 0, the infinite singular points E+
1 is a stable node,

and E−
1 is a saddle by statement (III) of Proposition 4, and the infinite singular

point E3 is a saddle-node by statement (II) of Propositions 5. So the global phase
portrait of systems (4) satisfying (2) is topologically equivalent to Fig.1.5.

For the case ∆1 = 0,∆3 > 0, the infinite singular points E+
3 is a stable node,

and E−
3 is a saddle by statement (III) of Proposition 5, and the infinite singular

point E1 is a saddle-node by statement (II) of Propositions 4. Then the global
phase portrait of systems (4) satisfying (2) is topologically equivalent to Fig.1.5.

(VI) For the case ∆1 > 0,∆3 > 0, the infinite singular points E+
1 is a stable

node, and E−
1 is a saddle by statement (III) of Proposition 4. The infinite singular

points E+
3 is a stable node, and E−

3 is a saddle by statement (III) of Proposition 5.
So the global phase portrait of systems (4) satisfying (2) is topologically equivalent
to Fig.1.6. �

4.2. Proof of Theorem 2. The proof of Theorem 2 directly follows from the
following result.

Proposition 11. The phase portraits of systems (4) satisfying (2) with k1 >
0, k2 < 0, k3 > 0 and −1 < a < 1 are topologically equivalent to

(I) Fig.2.1 if ∆1 < 0,∆3 < 0;
(II) Fig.2.2 if either ∆1 = 0,∆3 < 0, or ∆1 < 0,∆3 = 0;
(III) Fig.2.3 if either ∆1 > 0,∆3 < 0, or ∆1 < 0,∆3 > 0;
(IV) Fig.2.4 if ∆1 = 0,∆3 = 0;
(V) Fig.2.5 if either ∆1 = 0,∆3 > 0, or ∆1 > 0,∆3 = 0;
(VI) Fig.2.6 if ∆1 > 0,∆3 > 0.
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Proof. Recall that the finite singular point E2 is an unstable focus or node by Propo-
sition 6, and there is a unique stable limit cycle by statement (II) of Proposition
8.

(I) For the case ∆1 < 0,∆3 < 0, it is obvious that systems (4) satisfying (2)
have no infinite singular points by statement (I) of Propositions 4 and 5. Then
the global phase portrait of systems (4) satisfying (2) is topologically equivalent to
Fig.2.1.

(II) For the case ∆1 = 0,∆3 < 0, the infinite singular point E1 is a saddle-node
by statement (II) of Proposition 4. Therefore the global phase portrait of systems
(4) satisfying (2) is topologically equivalent to Fig.2.2.

For the case ∆1 < 0,∆3 = 0, the infinite singular point E3 is a saddle-node by
statement (II) of Proposition 5. Hence the global phase portrait of systems (4)
satisfying (2) is topologically equivalent to Fig.2.2.

(III) For the case ∆1 > 0,∆3 < 0, the infinite singular points E+
1 is a saddle,

and E−
1 is an unsaddle node by statement (III) of Proposition 4. So the global

phase portrait of systems (4) satisfying (2) is topologically equivalent to Fig.2.3.

For the case ∆1 < 0,∆3 > 0, the infinite singular points E+
3 is a saddle, and E−

3

is a stable node by statement (III) of Proposition 5. Then the global phase portrait
of systems (4) satisfying (2) is topologically equivalent to Fig.2.3.

(IV) For the case ∆1 = 0,∆3 = 0, the infinite singular points E1 and E3 are
saddle-nodes by statement (II) of Propositions 4 and 5. So the global phase portrait
of systems (4) satisfying (2) is topologically equivalent to Fig.2.4.

(V) For the case ∆1 > 0,∆3 = 0, the infinite singular points E+
1 is a saddle,

and E−
1 is an unstable node by statement (III) of Proposition 4, and the infinite

singular point E3 is a saddle-node by statement (II) of Propositions 5. Therefore
the global phase portrait of systems (4) satisfying (2) is topologically equivalent to
Fig.2.5.

For the case ∆1 = 0,∆3 > 0, the infinite singular points E+
3 is a saddle, and E−

3

is an unstable node by statement (III) of Proposition 5, and the infinite singular
point E1 is a saddle-node by statement (II) of Propositions 4. Hence the global
phase portrait of systems (4) satisfying (2) is topologically equivalent to Fig.2.5.

(VI) For the case ∆1 > 0,∆3 > 0, the infinite singular points E+
1 is a saddle,

and E−
1 is an unstable node by statement (III) of Proposition 4. The infinite

singular points E+
3 is a saddle, and E−

3 is an unstable node by statement (III)
of Proposition 5. Then the global phase portrait of systems (4) satisfying (2) is
topologically equivalent to Fig.2.6. �

4.3. Proof of Theorem 3. The proof of Theorem 3 for the case k1 > 0, k2 6 k3 <
0 directly follows by the following result. For the case k3 > 0, k2 6 k1 < 0, we can
do the change of variables X = −x and Y = −y.

Proposition 12. The phase portraits of systems (4) satisfying (2) with k1 >
0, k2 6 k3 < 0 are topologically equivalent to

(I) Fig.3.1 and Fig.3.2 if ∆1 < 0,∆3 < 0;
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(II) Fig.3.3 if ∆1 = 0,∆3 < 0;
(III) Fig.3.4 if ∆1 > 0,∆3 < 0;
(IV) Fig.3.5 if ∆1 < 0,∆3 > 0;
(V) Fig. 3.6 if ∆1 < 0,∆3 = 0;
(VI) Fig.3.7, Fig.3.8, Fig. 3.9 and Fig. 3.10 if ∆1 > 0,∆3 > 0;
(VII) Fig.3.11, Fig.3.12 and Fig.3.13 if ∆1 > 0,∆3 = 0;
(VIII) Fig.3.14, Fig.3.15 and Fig.3.16 if ∆1 = 0,∆3 > 0;
(IX) Fig.3.17, Fig.3.18, Fig.3.19 and Fig.3.20 if ∆1 = 0,∆3 = 0.

In order to prove Proposition 12 we need the following result, for a proof see
Theorem XVII of [25].

Theorem 13. Consider a heteroclinic loop with two singular points which are
either two hyperbolic saddles, or one saddle and one saddle-node, with eigenvalues
µi 6 0 6 λi for i = 1, 2 such that µ1µ2 6= 0 or λ1λ2 6= 0. Define K = |µ1µ2|/(λ1λ2),
if K < 1 then the heteroclinic loop is stable, and if K > 1 it is unstable.

Proof of Proposition 12. Recall that the finite singular point E2 is an unstable focus
or node by Proposition 6, and there is at most one limit cycle by statement (IV) of
Proposition 8.

(I) For the case ∆1 < 0 and ∆3 < 0, it is obvious that systems (4) satisfying
(2) has no infinite singular points by statement (I) of Propositions 4 and 5. In the
following we will prove that systems (4) satisfying (2) can have no limit cycles and
then they are topologically equivalent to Fig.3.1, or they have one limit cycle and
then they are topologically equivalent to Fig.3.2.

We consider the special case k2 = k3 < 0. From statements (II) of Proposition 9,

if
k1√
−∆1

+
k3√
−∆3

6 0, then there is no limit cycles surrounding the singular point

E2. Therefore the global phase portrait of systems (4) satisfying (2) is topologically
equivalent to Fig.3.1.

If
k1√
−∆1

+
k3√
−∆3

> 0, then the singular point E2 is surrounded by a stable limit

cycle. Then the global phase portrait of systems (4) satisfying (2) is topologically
equivalent to Fig.3.2.

(II) For the case ∆1 = 0,∆3 < 0, the infinite singular point E1 is a saddle-node
by statement (II) of Proposition 4. Hence the global phase portrait is topologically
equivalent to Fig.3.3.

(III) For the case ∆1 > 0,∆3 < 0, the infinite singular points E+
1 is a saddle, and

E−
1 is an unstable node by statement (III) of Proposition 4. So the global phase

portrait is topologically equivalent to Fig.3.4.

(IV) For the case ∆1 < 0,∆3 > 0, the infinite singular points E+
3 is a stable

node, and E−
3 is a saddle by statement (III) of Proposition 5. Then the global

phase portrait is topologically equivalent to Fig.3.5.

(V) For the case ∆1 < 0,∆3 = 0, the infinite singular point E3 is a saddle-
node by statement (II) of Proposition 5. Therefore the global phase portrait is
topologically equivalent to Fig.3.6.
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(VI) For the case ∆1 > 0,∆3 > 0, the infinite singular points E+
1 is a saddle, and

E−
1 is an unstable node by statement (III) of Proposition 4. The infinite singular

points E+
3 is a stable node, and E−

3 is saddle node by statement (III) of Proposition
5.

First we consider the subcase ∆2 < 0. The finite singular point E2 is an unstable
focus. Systems (4) satisfying (2) in the middle zone −1 6 x 6 1 have the first
integral

H(x, y) = exp
2k

2

2
ArcTan





2a+ (k22 − 2)x− k2y

(k2x− y)
√
−∆2





|x− a|2k2

√
−∆2

×
(

a2 + a(k22 − 2)x+ x2 − k2(a+ x)y + y2

(a− x)2

)

.

(23)

Note that H(a, k2a) = +∞, so the first integral (23) is a decreasing function in a
neighborhood of E2.

Since ∆1 > 0 the finite singular point (a, k1(a− 1) + k2) is a virtual node with
the stable invariant straight line

ΓR : y =
k1 +

√
∆1

2
(x − a) + k1(a− 1) + k2,

which intersects the switching line x = 1 at the point (1, y1), with

y1 =
(a− 1)k1 +

√
∆1

2
+ k2.

Since ∆3 > 0 the finite singular point (a, k3(a+ 1) − k2) is a virtual node with
the unstable invariant straight line

ΓL : y =
k3 −

√
∆3

2
(x− a) + k3(a+ 1)− k2,

which intersects the witching line x = −1 at the point (−1, y2), with

y2 =
(a+ 1)k3 +

√
∆3

2
− k2.

We define the auxiliary function

H̄(a) = H(1, y1)−H(−1, y2), a ∈ (−1, 1). (24)

In the following we prove that H̄(a) given by (24) is an increasing function.

Computing the derivative of H̄(a) with respect to a we have that H̄
′

(a) is equal to

−2k2
√
−∆2

(

(1− a)2(k1 − k2)(k1 −
√
∆1)

)k2

√
−∆2

1− a
exp

2k
2

2
ArcTan





4− k1k2 +
√
∆1k2

(

−k1 +
√
∆1

√
−∆2

)





+
−2k2

√
−∆2

(

(1 + a)2(k3 − k2)(k3 +
√
∆3)

)k2

√
−∆2

1 + a
exp

2k
2

2
ArcTan





−4 + k2k3 +
√
∆3k2

(

k3 +
√
∆3

√
−∆2

)



.

It is obvious that H̄
′

(a) > 0. Note that lim
a→−1

H̄(a) = −∞ and lim
a→1

H̄(a) = +∞,

we can conclude that H̄(a) has a unique zero a∗ in the interval a ∈ (−1, 1).
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If a < a∗ then the separatrix ΓR of the saddle E+
1 is over the separatrix ΓL of

the saddle E−
3 . According to Poincaré-Bendixson Theorem there is a stable limit

cycle surrounding the finite singular point E2. Hence the global phase portrait of
systems (4) satisfying (2) is topologically equivalent to Fig.3.7.

If a = a∗ then there is a heteroclinic loop connecting E+
1 and E−

3 . In order to
study the stability of this loop, we compute the eigenvalues of systems (12) and
(18) at the singular point E+

1 and E−
3 , respectively. Then we obtain

K =

∣

∣

∣

∣

√
∆1(k3 +

√
∆3)√

∆3(k1 −
√
∆1)

∣

∣

∣

∣

.

If K > 1, then the loop is unstable by Theorem 13. According to Poincaré-
Bendixson Theorem, there is a stable limit cycle surrounding the finite singular
point E2. Therefore the global phase portrait of systems (4) satisfying (2) is topo-
logically equivalent to Fig.3.8.

If K < 1, then the loop is stable by Theorem 13. Hence the global phase portrait
of systems (4) satisfying (2) is topologically equivalent to Fig.3.9.

If a > a∗, then the separatrix ΓR of the saddle E+
1 is under the separatrix ΓL

of the saddle E−
3 . So the global phase portrait of systems (4) satisfying (2) is

topologically equivalent to Fig.3.10.

Second we consider the subcase ∆2 = 0. Note that k2 = −2, then the finite
singular point E2 = (a,−2a) is an unstable node with the invariant straight line
ΓC = −x−a, which intersects the switching line x = −1 at the point (−1, ȳL) with
ȳL = 1 − a, see Figure 6. It is obvious that yL > ȳL, thus the phase portrait of
systems (4) satisfying (2) is topologically equivalent to Fig.3.10.

Finally we consider the subcase ∆2 > 0. The finite singular point E2 is an

unstable node with the invariant straight line ΓC =
k2 +

√
∆2

2
(x − a) + k2a,

which intersects the switching line x = −1 at the point (−1, ȳL) with ȳL =

−k2 +
√
∆2

2
(1 + a) + k2a. It is easy to deduce that yL > ȳL when k2 < −2.

Thus the phase portrait of systems (4) satisfying (2) is topologically equivalent to
Fig.3.10.

(VII) For the case ∆1 > 0,∆3 = 0, the infinite singular points E+
1 is a saddle,

E−
1 is an unstable node by statement (III) of Proposition 4, and the infinite singular

point E3 is a saddle-node by statement (II) of Propositions 5. Note that k3 = −2,
then K = +∞. Similarly with the proof of statement (VI) we have:

If a < a∗,∆2 < 0, then the global phase portrait of systems (4) satisfying (2) is
topologically equivalent to Fig.3.11.

If a = a∗,∆2 < 0, then the global phase portrait of systems (4) satisfying (2) is
topologically equivalent to Fig.3.12.

If either a > a∗,∆2 < 0, or ∆2 > 0, then the global phase portrait of systems
(4) satisfying (2) is topologically equivalent to Fig.3.13.

(VIII) For the case ∆1 = 0,∆3 > 0, the infinite singular point E1 is a saddle-
node by statement (II) of Propositions 4, the infinite singular points E+

3 is a stable
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ΓL

x = −1

y

x = 1 ΓRF (x)

yR

ȳL

yL

O
x

ΓCE2

Figure 6. The invariant straight lines of systems (4) satisfying
(2) with k1 > 0, k2 6 k3 < 0 and ∆1 > 0,∆2 > 0,∆3 > 0.

node, and E−
3 is a saddle by statement (III) of Proposition 5. Note that k1 = 2,

then K = 0. Similarly with the proof of statement (V) we have:

If a < a∗,∆2 < 0, then the global phase portrait of systems (4) satisfying (2) is
topologically equivalent to Fig.3.14.

If a = a∗,∆2 < 0, then the global phase portrait of systems (4) satisfying (2) is
topologically equivalent to Fig.3.15.

If either a > a∗,∆2 < 0, or ∆2 > 0, then the global phase portrait of systems
(4) satisfying (2) is topologically equivalent to Fig.3.16.

(IX) For the case ∆1 = 0,∆3 = 0, the infinite singular points E1 and E3 are two
saddle-nodes by statement (II) of Propositions 4 and 5. The proof of statement
(IX) can be deduced from the proof of statement (V) we omit it here. �

5. Conclusion

In this paper we classify the topological phase portraits in the Poincaré disc
of the continuous piecewise Liénard differential systems (4) satisfying (2) with a
unique singular point E2 located at the middle zone. From the proofs of the three
theorems which are given in section 4, we can obtain the conditions for the existence
and uniqueness of limit cycles for systems (4) satisfying (2). It is worth to point out
that the amplitude of limit cycles is also very important, see for instance [2, 4, 29].
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For the case k1 > 0, k2 < 0, k3 > 0, we obtain that systems (4) satisfying (2) have
a unique stable limit cycle by Theorem 2. In fact we can proved that if ∆2 > 0,
then the limit cycle is contained in three zones. While if ∆2 < 0 and 1 − a > 0
(resp. a+ 1 > 0) sufficiently small, then the limit cycle is contained in the middle
and the right (resp. left) zones. These three cases have the same phase portrait
according to the definition of topological equivalence given in section 1.

For the case k1 > 0, k2 6 k3 < 0, we know that the limit cycle of systems (4)
satisfying (2) can be contained either in three zones, or in the middle and the right
zones by numerical simulations. Unfortunately we cannot give an analytical proof
because the computations are complex.
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[14] Llibre J, Nuñez E, Teruel AE. Limit cycles for planar piecewise linear differential systems via
first integrals. Qual Theory Dyn Syst 2002; 3: 29–50.

[15] Llibre J, Ordoñez M, Ponce E. On the existence and uniqueness of limit cycles in planar
continuous piecewise linear systems without symmetry. Nonlinear Anal Real World Appl
2013; 14: 2002–2012.

[16] Llibre J, Ponce E, Valls C. Uniqueness and Non-uniqueness of limit cycles for piecewise linear
differential systems with three zones and no symmetry. J Nonlinear Sci 2015; 25: 861–887.

[17] Llibre J, Ponce E, Zhang X. Existence of piecewise linear differential systems with exactly n

limit cycles for all n ∈ N . Nonlinear Anal 2003; 54: 977–994.
[18] Llibre J, Teruel AE. Introduction to the qualitative theory of differential systems, planar,

symmetric and continuous piecewise linear systems. Birkhauser: Springer–Basel; 2013.
[19] Llibre J, Valls C. On the global dynamics of a finance model. Chaos, Solitons and Fractals

2018; 106: 1–4.
[20] Lum R, Chua LO. Global properties of continuous piecewise-linear vector fields. Part I: Sim-

plest case in R2. Internat J Circuit Theory Appl. 1991; 19: 251–307.
[21] Lum R, Chua LO. Global properties of continuous piecewise–linear vector fields. Part II:

simplest symmetric in R2. Internat J Circuit Theory Appl 1992; 20: 9–46.
[22] Markus L. Global structure of ordinary differential equations in the plane. Trans. Amer. Math

Soc. 1954; 76: 127–148.

[23] Neumann D.A. Classification of continuous flows on 2–manifolds. Proc. Amer. Math. Soc.
1975; 48: 73–81.

[24] Peixoto M.M. Dynamical Systems. Proccedings of a Symposium held at the University of
Bahia. Acad. Press, New York, 1973; pp 389–420.
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et appliquées, 3e série 1881; 7: 375–422.

[26] Ponce E, Ros J, Vela E. Limit cycle and boundary equilibrium bifurcations in continuous
planar piecewise linear systems. Int J Bifurcation and Chaos 2015; 25: 1530008-1-18.

[27] Tian H, Han M. Bifurcation of periodic orbits by perturbing high-dimensional piecewise
smooth integrable systems. J Differential Equations 2017; 263: 7448–7474.

[28] Yang J, Zhao L. Bounding the number of limit cycles of discontinuous differential systems by
using Picard-Fuchs equations. J Differential Equations 2018; 264: 5734–5757.

[29] Yang L, Zeng X. An upper bound for the amplitude of limit cycles in Liénard systems with
symmetry. J Differential Equations 2015; 258: 2701–2710.

1 School of Mathematics and Statistics, Guangdong University of Finance and Eco-

nomics, Guangzhou, 510320, P.R. China

E-mail address: lism1983@126.com
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