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GLOBAL PHASE PORTRAITS OF THE KEY PITCHFORK

BIFURCATION

SHIMIN LI1 AND JAUME LLIBRE2

Abstract. This paper deals with the following quadratic polynomial differ-
ential systems

dx

dt
= y2 − y − x,

dy

dt
= x2 − µx− y,

with parameter µ ∈ R, which is the key example of [30] for studying the
pitchfork bifurcation of a singular point. We classify the global phase portraits

in the Poincaré disc of these systems when µ varies.

1. Introduction and statement of the main results

Global phase portraits are an invaluable tool in studying the long dynamical
behaviour of differential systems. They reveals information such as whether an
attractor, a repellor or a limit cycle is present for a given parameter value. Hence
the global phase portraits analysis is the one of most important problems in the
qualitative theory of differential systems.

The possibilities of topological distinct phase portraits for a general polynomial
differential system are huge, it is expected that the quadratic polynomial differential
systems have more than 2000 topological distinct phase portraits. Most of known
results about global phase portraits of differential systems are mainly deal with
special differential systems, see [1, 2, 3, 4, 6, 9, 11, 18, 27, 29, 31] for quadratic
polynomial differential systems, see [5, 7, 10, 13, 14, 33, 34] for cubic polynomial
differential systems, see [8, 25, 24, 26] for quartic polynomial differential systems,
see [12, 15, 16, 17] for Liénard differential systems, see [22, 23, 28] for Hamiltonian
differential systems. In [20] the authors introduce how to use the computer program
P4 for drawing phase portraits in a Poincaré disc.

In a recent paper [30] Rajapakse and Smale considered the following quadratic
polynomial differential systems

(1)
dx

dt
= y2 − y − x,

dy

dt
= x2 − µx− y,

as a key example to describe the pitchfork bifurcation, where µ ∈ R. They showed
that symmetry is a dispensable condition for the existence of pitchfork bifurcation.

Let X1 and X2 be two vector fields defined on open subsets ∆1 and ∆2 of R2,
respectively. We say that two vector fields X1 and X2 are topologically equivalent
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when there exists a homeomorphism h : ∆1 → ∆2 which sends orbits of X1 to orbits
of X2 preserving or reversing the orientation.

In this paper we provide the topological classification of the phase portraits of
systems (1) in the Poincaré disc.

Theorem 1. The global phase portrait of a differential system (1) is topologically
equivalent to Figure 1.1 if µ 6 1, Figures 1.2 if 1 < µ < µ∗, Figure 1.3 if µ > µ∗

and Figure 1.4 if µ = µ∗, where µ∗ ∈ (10.4722, 10.4723).

1.1 S = 10, R = 3 1.2 S = 16, R = 5

1.3 S = 16, R = 5 1.4 S = 15, R = 4

Figure 1. Topological phase portraits of differential systems (1).
S and R denote the number of separatricies and canonical regions,
respectively.

Note from Figure 1 that the pitchfork bifurcation at the origin of coordinates
takes place at µ = 1, where the stable node bifurcates into two stable foci and one
saddle.

The layout of this paper is as follows. In section 2 we analyze the equilibria of
systems (1) in the Poincaré compactification. In section 3 we prove Theorem 1.
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2. Poincaré compactification

2.1. Poincaré compactification. For a given polynomial differential system

(2)
dx

dt
= P (x, y),

dy

dt
= Q(x, y),

of degree d = max{deg(P ), deg(Q)}. Let X = (P,Q) be the vector field associated
system (2).

We call S2 = {s = (s1, s2, s3) ∈ R3 : s21 + s22 + s23 = 1} the Poincaré sphere. The
Poincaré compactified vector field p(X ) corresponding to X is an analytic vector
field induced on S2 as follows, for more details see Chapter 5 of [21].

First we take R2 as the plane in R3 defined by (x, y, 1) ∈ R3, and then project
each point (x, y, 1) in two points of the Poincaré sphere S2 using the straight line
through (x, y, 1) and the origin (0, 0, 0). It is obvious that the equator S1 = {s ∈
S2, s3 = 0} corresponds to the infinity of R2. So we have two copies of the vector
field X on the Poincaré sphere S2, one in the open northern hemisphere S− = {s ∈
S2 : s3 > 0}, and the other in the open southern hemisphere S+ = {s ∈ S2 : s3 < 0}.
This vector field on S2 \ S1 can be extended to a vector field p(X ) defined in the
whole S2 multiplying it by sd3.

For studying the Poincaré sphere we use the following six local charts

(3) Ui = {s ∈ S2 : si > 0}, Vi = {s ∈ S2 : si < 0},

for i = 1, 2, 3.

The expression of p(X ) in the local charts U1 and V1 are given by

(4)
du

dt
= vd

[
− uP

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
,

dv

dt
= −vd+1Q

(
u

v
,
1

v

)
;

with v > 0 and v < 0, respectively.

The expression of p(X ) in the local charts U2 and V2 are given by

(5)
du

dt
= vd

[
− uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
,

dv

dt
= −vd+1P

(
1

v
,
u

v

)
;

with v > 0 and v < 0, respectively.

The expression of p(X ) in the local charts U3 and V3 are just

(6)
du

dt
= P (u, v),

dv

dt
= Q(u, v).

For studying the phase portrait of a differential system (2), we just need to study
its Poincaré compactification p(X ) restricted to the closed northern hemisphere. We
do the orthogonal projection π(s1, s2, s3) = (s1, s2) of the closed northern hemi-
sphere onto the Poincaré disc D2 = {s21 + s22 6 1} for drawing the phase portrait.

It is obvious that the finite equilibria of system (2) are the equilibria in the
interior of D2, and they can be studied using U3. The infinite equilibria of systems
(2) are the equilibria of p(X ) in the boundary of D2. Note that for studying the
infinite equilibria it suffices to look the ones at the local charts U1|v=0 and V1|v=0,
and at the origin of the local charts U2 and V2.
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2.2. In charts U1 and V1. Doing the change of variables x =
1

v
, y =

u

v
, systems

(1) become

du

dt
= 1− v − u3 + µu2v,

dv

dt
= v2(v − u2 + µuv).

Let v = 0, then we obtain the unique infinite equilibrium (1, 0) in the chart U1,
which is a stable node. Since the degree of systems (1) is 2, so we can deduce
that there is also a unique unstable node infinite equilibrium (1, 0) in chart V1 by
symmetry.

2.3. In charts U2 and V2. Doing the change of variables x =
u

v
, y =

1

v
, systems

(1) become

(7)
du

dt
= 1− µv − u3 + u2v,

dv

dt
= v(v − u2 + uv).

Therefore the origin of U2 and V2 are not equilibria.

2.4. In charts U3 and V3. In order to determine the number of finite equilibrium
of systems (1), we introduce the following result, see for example [32].

Lemma 2. For a general quartic polynomial

(8) a0x
4 + a1x

3 + a2x
2 + a3x+ a4, (a0 ̸= 0).

We define the following parameters:

(9)

E = 8a20a3 + a31 − 4a0a1a2,

D2 = 3a21 − 8a0a2,

D3 = 16a20a2a4 − 18a20a
2
3 − a0a

3
2 + 14a0a1a2a3 − 6a0a

2
1a4 + a21a

2
2 − 3a31a3,

D4 = 256a30a
3
4 − 27a20a

4
3 − 192a20a1a3a

2
4 − 27a41a

2
4 − 6a0a

2
1a

2
3a4 + a21a

2
2a

2
3

−4a0a
3
2a

2
3 + 18a31a2a3a4 + 144a0a

2
1a2a

2
4 − 80a0a1a

2
2a3a4 + 18a0a1a2a

3
3

−4a21a
3
2a4 − 4a31a

3
3 + 16a0a

4
2a4 − 128a20a

2
2a

2
4 + 144a20a2a

2
3a4.

The following statements hold.

(i) If D4 > 0, D3 > 0, D2 > 0, then (8) has four simple real zeros.
(ii) If D4 < 0, then (8) has two simple real zeros.
(iii) If D4 = 0, D3 = 0, D2 > 0, E ̸= 0, then (8) has a simple zero and a triple

zero.

The finite equilibria of systems (1) must satisfy the following quartic polynomial

(10) f(y) = y(µ− 1− (µ− 1)y − 2y2 + y3).

By direct computation we obtain

(11)
E = −8, D2 = 4(1 + 2µ), D3 = (µ− 1)3(4µ2 + 5µ+ 23),

D4 = 2(µ− 1)(2µ2 + 3µ+ 7).
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If µ < 1, then D4 < 0. Therefore systems (1) have two simple finite equilibria
E1 = (0, 0) and E2.

If µ = 1, then D2 > 0 and D3 = D4 = 0. Hence systems (1) have a simple finite
equilibrium E1 = (0, 0) and a triple finite equilibrium E2.

If µ > 1, then D2, D3 and D4 are positive. So systems (1) have four simple finite
equilibria Ei, i = 1, 2, 3, 4.

We state the well known Bendixson’s Theorem as follows, see for instance The-
orem 7.10 of [21].

Theorem 3 (Bendixson’s Theorem). Assume that the divergence function of d-
ifferential system has constant sign in a simply connected region R, and is not
identically zero on any subregion of R. Then differential system does not have a
periodic orbit which lies entirely in R.

According to Bendixson’s Theorem, we can obtain a preliminary result for sys-
tems (1).

Proposition 4. Systems (1) have no periodic orbits, no homoclinic loops as the
one of Figure 2.1.

2.1 µ ∈ R

Γ

s1,1

s1,2

s1,3

s1,4

E2

2.2 µ > 1

E1

E2

s2,1

s2,2s2,3

s2,4

E3

E4

l1

l2

l3

l4

l5

Figure 2. 2.1. The homoclinic loop of the saddle E2. 2.2. Local
dynamics of the finite equilibria of systems (1) for µ > 1. l1, l2, l4
are the straight lines through the equilibria E1 and E3, E2, E4,
respectively. l3 is the straight line y = x. l5 is the straight line
through equilibria E2 and E3.

Proof. Since the divergence of systems (1) is −2, it follows that these systems have
no periodic orbits by Theorem 3. Assume that systems (1) have a homoclinic loop
Γ containing equilibrium E2, see Figure 2.1. From Green’s formula we have

(12)

∫
Γ

Pdy −Qdx =

∫∫
int(Γ)

(
∂P

∂x
+

∂Q

∂y

)
dxdy.
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Note that Γ is an orbit of systems (1), Pdy −Qdx = 0 holds everywhere along Γ.
Hence the left side of (12) is zero. Recall that the divergence of systems (1) is -2,
so the right side of (12) negative, which giving a contradiction. �

In order to study the types and stabilities of finite equilibria of systems (1), we
introduce the Poincaré-Hopf Theorem and the Berlinskii Theorem, see Theorem
6.30 of [21] and Theorem 7 of [19], respectively.

Theorem 5 (Poincaré-Hopf Theorem). For every tangent vector field on S2 with
a finite number of equilibria, the sum of their topological indices is 2.

Theorem 6 (Berlinskii Theorem). Consider the quadratic polynomial differential
systems (2). Suppose that there are four equilibrium points. If the quadrilateral with
vertices at these points is convex then two opposite equilibrium points are saddles
and the other two are antisaddles (nodes, foci, or centers). But if the quadrilateral
is not convex then either the three exterior vertices are saddles and the interior
vertex an antisaddle, or the exterior vertices are antisaddles and the interior vertex
a saddle.

The types and stabilities of the infinite equilibria of systems (1) can be stated
as follows:

Proposition 7. Consider systems (1) we have

(i) If µ < 0, then systems (1) have two finite equilibria: E1 is a hyperbolic
stable focus, and E2 is a hyperbolic saddle.

(ii) If 0 6 µ < 1, then systems (1) have two finite equilibria: E1 is a hyperbolic
stable node, and E2 is a hyperbolic saddle.

(iii) If µ = 1, then systems (1) have two finite equilibria: E1 is a semi-hyperbolic
stable node, and E2 = (2, 2) is a hyperbolic saddle.

(iv) If µ > 1, then systems (1) have four finite equilibria: E1 and E2 are hyper-
bolic saddles, E3 and E4 are hyperbolic stable foci, see Figure 2.2.

Proof. First we consider the finite equilibrium E1 = (0, 0). The Jacobian matrix of
systems (1) at the equilibrium E1 = (0, 0) is

(13)

(
−1 −1
−µ −1

)
.

The eigenvalues of the Jacobian matrix (13) are −1−√
µ and −1+

√
µ. It is obvious

that E1 is a hyperbolic saddle when µ > 1, a stable hyperbolic node for 0 6 µ < 1,
and a hyperbolic stable focus if µ < 0. For the case µ = 1 doing the change of
variables X = x− y, Y = x+ y, T = −t, then systems (1) become

(14)
dX

dT
= XY,

dY

dT
= 2Y − X2

2
− Y 2

2
.

According to statement (ii) of Theorem 2.19 of [21], we know that the origin of
systems (14) is an unstable topological node. Note that we have reverse the time,
hence the origin of systems (1) for µ = 1 is a semi-hyperbolic stable node.

Second we study the other finite equilibria. For the case µ = 1, it is obvious
that E2 = (2, 2) is a hyperbolic saddle. For the case µ < 1. Since the two infinity
equilibria are hyperbolic nodes and the finite equilibrium E1 = (0, 0) is a node
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or a focus, the other finite equilibrium E2 should be a hyperbolic saddle applying
Theorem 5 to the Poincaré sphere.

For the case µ > 1. According to Theorem 5 again, the sum of the indices of
finite equilibria Ei, i = 1, 2, 3, 4 is 0 because the two infinity equilibria are hyperbolic
nodes. Thus we can conclude that the quadrilateral with vertices at these finite
equilibria is convex by Theorem 6, and then E2 is a hyperbolic saddle, E3 and E4

are hyperbolic antisaddles, i.e. they can be nodes, foci or centers. The equilibria E3

and E4 cannot be centers because systems (1) have no periodic orbits by Proposition
4. In the following we prove that E3 and E4 are stable foci. The eigenvalues of the
Jacobian matrix of systems (1) at a point (x, y) are

(15) λ± = −1±
√
(2x− µ)(2y − 1).

Let µ = 2, then we know that E3 and E4 are stable foci. Since (2x − µ)(2y − 1)
with µ > 1 never vanish in the equilibria E3 and E4 of systems (1) and taking into
account that the sum of the eigenvalues at any equilibrium point is −2, we can
deduce that E3 and E4 are stable foci for all µ > 1. �

3. Proof of Theorem 1

Let φ(t, p) be an orbit of an analytic vector field. If this orbit is defined for all
t > 0 we denote its ω−limit set as ω(p) or ω(φ). If this orbit is defined for all t 6 0
its α−limit set is defined by α(p) or α(φ).

Before prove our main result we state the well known Poincaré-Bendixson Theo-
rem and the Markus-Neumann-Peixoto Theorem, see Corollary 1.30 and Theorem
1.43 of [21].

Theorem 8 (Poincaré-Bendixson Theorem). Let φ(t, p) be an integral curve of an
analytic vector field X in R2 defined for all t > 0, such that γ+

p = {φ(t, p) : t > 0}
is contained in a compact set K. Assume that the vector field X has a finite number
of equilibrium points in ω(p). Then one of the following statement holds.

(i) If ω(p) contains only regular points, then ω(p) is a limit cycle.
(ii) If ω(p) contains regular and equilibrium points, then ω(p) is formed by a

finite number of orbits γ1, γ2, · · · , γn and a finite number of equilibrium
points p1, p2, · · · , pn such that α(γi) = pi, ω(γi) = pi+1 for i = 1, 2, · · · , n−
1, α(γn) = pn and ω(γn) = p1. Such kind of ω−limit sets are called
graphics. Possibly some of the equilibrium points γi can be identified.

(iii) If ω(p) does not contain regular points, then ω(p) is a equilibrium point.
(iv) Similar results for the α−limit set.

Let X be a polynomial vector field, and let p(X ) be its Poincaré compactification.
Assume that p(X ) has finitely many equilibria. Then the set Σ of all separatrices
of p(X ) in the Poincaré disc are all its infinite orbits, its finite equilibria, its limit
cycles and its graphics. It is known that Σ is a closed set in the Poincaré disc D2.
Each open component of D2 \ Σ is called a canonical region. Then a separatrix
skeleton S of X or of p(X ) is the union of Σ plus an orbit of each canonical region.
We say that two separatrix skeletons S1 and S2 corresponding to two polynomial
vector fields X1 and X2 are equivalent if there exists a homeomorphism h : S1 → S2.
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Theorem 9 (Markus-Neumann-Peixoto Theorem). Assume that p(X1) and p(X2)
are two Poincaré compactifications of two polynomial vector fields X1 and X2 with
finitely many separatrices. Then their phase portraits in the Poincaré disc are
topologically equivalent if and only if their separatrix skeletons are equivalent.

In order to obtain the position of the local separatrices of the saddle E1 and E2

(see Figure 2.2), we introduce the following result which is given in [19].

Lemma 10. On any straight line which is not composed of paths the total number
of equilibrium points and contacts is at most two. If there are two such points, P1

and P2, then the paths intersecting the segment ∞P1 cross in the same sense as the
paths intersecting P2∞ and in the opposite sense to the paths intersecting P1P2.

Proof of Theorem 1. From subsections 2.2 and 2.3, systems (1) have two infinite
equilibria, a stable node and an unstable node for all values of µ ∈ R. Recall that
systems (1) have no periodic orbits and no homoclinic loops by Proposition 4.

(I) For the case µ < 0. There are two finite equilibria: E1 = (0, 0) is a hyperbolic
stable focus and E2 is a hyperbolic saddle by statements (i) of Proposition 7.

Since there are no limit cycles and no graphics, the α− and ω−limit sets of the
separatrices of the saddle E2 it must be equilibrium points by Theorem 8. We know
that the two unstable separatrices of the saddle E2 cannot go together to the stable
focus E1, or to the stable node at infinity, because one of the stable separatrix of
the saddle E2 would not have its α−limit set. So one of the unstable separatrices of
the saddle E2 goes to the stable focus E1 and the other goes to the stable node at
infinity. Therefore the two stable separatrices of E2 have their α−limit set at the
unstable node at infinity. From the above analysis, the phase portrait of systems
(1) for µ > 1 is topologically equivalent to the one of Figure 1.1.

(II) For the case µ ∈ [0, 1]. There are two finite equilibria: E1 = (0, 0) is a
hyperbolic stable node if µ ∈ [0, 1), or is a semi-hyperbolic stable node if µ = 1,
and E2 is a hyperbolic saddle by statements (ii) and (iii) of Proposition 7. Similar
with the proof of case (I) we obtain the phase portrait of systems (1) for µ ∈ [0, 1]
is topologically equivalent to the one of Figure 1.1.

(III) For the case µ > 1. There are four finite equilibria Ei, i = 1, 2, 3, 4 by the
statement (iv) of Proposition 7, see Figure 2.2. Ei for i = 1, 2 are hyperbolic saddles,
which have two unstable separatrices si,1 and si,2 and two stable separatrices si,3
and si,4. Ei for i = 3, 4 are hyperbolic stable foci.

We divide the proof of Theorem 1 for µ > 1 into five steps.

Step 1. The flow of systems (1) on the straight line l1 (see its definition in
Figure 2.2) can be determined as follows. According to the orientation of the flow
at infinity we can deduce the flows of systems (1) on the segment ∞E1 is upward,
see Figure 2.2. Then we can determine the flow of systems (1) on the segment E1E3

and E3∞ by Lemma 10. The flow of systems (1) on the straight lines l2, l4 and l5
can be deduced similarly. Recall that l3 : y = x. Since the inner product of the
vectors (−1, 1) and (y2 − y − x, x2 − µx− y) on the straight line y = x is equal to
(1− µ)x, the flows of systems (1) on the line y = x is described in Figure 2.2.
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Thus we can obtain the position of the local separatrices of the saddles E1 and
E2 as they are indicated in Figure 2.2. Let µ = 2 we know that the finite equilibria
E2 and E3 are located in the region y < x, and E4 is contained in the region y > x.
Taking into account the direction of the flows on the straight line l3 and that the
quadrilateral with vertices at these equilibria Ei, i = 1, 2, 3, 4 is convex (due to
Berlinskii Theorem), then we can deduce that for µ > 1 the equilibria E2 and E3

always are located in the region y < x, while E4 is always contained in the region
y > x.

Step 2. Since systems (1) have no homoclinic loops (see Proposition 4), and
taking into account that the sense of the flow of systems (1) on the straight lines
l3 and l4, we know that the α−limit set of separatrix s1,3 of the saddle E1 is the
unstable node at infinity. Similarly we can deduce the α−limit set of the separatrix
s1,4 of the saddle E1 is the unstable node at infinity, and the ω−limit set of the
separatrix s2,2 of the saddle E2 is the stable node at infinity.

Step 3. Note that the separatrix s1,4 of the saddle E1 must intersect the straight
line l4 in the segment ∞E4. It is easy to know using the Poincaré-Bendixson
Theorem that the ω−limit set of the separatrix s1,2 of the saddle E1 is the stable
focus E4 because the systems have no periodic orbits (see Proposition 4), and the
α−limit set of the separatrix s2,3 of the saddle E2 is the unstable node at infinity.

Step 4. We claim using the Poincaré-Bendixson Theorem that the ω−limit set
of the separatrix s2,1 of the saddle E2 is the stable focus E3 because the systems
have no periodic orbits (see Proposition 4). Otherwise it can only be the stable
node at infinity, this situation cannot occurs because then the α−limit set of the
separatrix s2,4 of the saddle E2 cannot exist.

Step 5. The remaining separatrices are s1,1 and s2,4. The ω−limit set of the
separatrix s1,1 of the saddle E1 can be either the stable focus E3 or the stable node
at infinity.

Subcase (III.1) If the ω−limit set of the separatrix s1,1 of the saddle E1 is the
stable focus E3, then the α−limit set of the separatrix s2,4 of the saddle E2 is the
unstable node at infinity. In this case the phase portrait of systems (1) for µ > 1 is
topologically equivalent to the one of Figure 1.2. In fact it is not difficult to check
that for µ > 1 but close to 1, then the phase portrait of a differential systems (1)
is topologically equivalent to Figure 1.2.

Subcase (III.2) If the ω−limit set of the separatrix s1,1 of the saddle E1 is the
stable node at infinity, then the α−limit set of the separatrix s2,4 of the saddle E2

is also the unstable node at infinity. In this case the phase portrait of systems (1)
for µ > 1 is topologically equivalent to the one of Figure 1.3. If µ = 20 it is not
difficult to verify that the phase portrait of a differential systems (1) is topologically
equivalent to Figure 1.3.

Subcase (III.3) From the above subcases (III.1) and (III.2), we know that the
separatrix s1,1 of the saddle E1 and the separatrix s2,4 of the saddle E2 must connect
for some value µ∗ of the parameter µ by continuity. In this case the phase portrait
of a systems (1) is topologically equivalent to the one of Figure 1.4. Moreover,
numerically we find that µ∗ ∈ (10.4722, 10.4723). �
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