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Abstract

Christopher in 2006 proved that under some assumptions the linear parts of the Lyapunov constants with 
respect to the parameters give the cyclicity of an elementary center. This paper is devoted to establish a new 
approach, namely parallelization, to compute the linear parts of the Lyapunov constants. More concretely, 
it is shown that parallelization computes these linear parts in a shorter quantity of time than other traditional 
mechanisms.

To show the power of this approach, we study the cyclicity of the holomorphic center ż = iz + z2 + z3 +
· · ·+zn under general polynomial perturbations of degree n, for n ≤ 13. We also exhibit that, from the point 
of view of computation, among the Hamiltonian, time-reversible, and Darboux centers, the holomorphic 
center is the best candidate to obtain high cyclicity examples of any degree. For n = 4, 5, . . . , 13, we prove 
that the cyclicity of the holomorphic center is at least n2 + n − 2. This result gives the highest lower 
bound for M(6), M(7), . . . , M(13) among the existing results, where M(n) is the maximum number of 
limit cycles bifurcating from an elementary monodromic singularity of polynomial systems of degree n. As 
a direct corollary we also obtain the highest lower bound for the Hilbert numbers H(6) ≥ 40, H(8) ≥ 70, 
and H(10) ≥ 108, because until now the best result was H(6) ≥ 39, H(8) ≥ 67, and H(10) ≥ 100.
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1. Introduction

Poincaré began investigating limit cycles of planar polynomial differential systems in the 
1880s. In 1900 David Hilbert presented a list of 23 problems in the International Congress of 
Mathematicians in Paris. The second part of the 16th problem is the estimation of the maximal 
number, H(n), and relative positions of limit cycles for planar polynomial vector fields of de-
gree n. By now, over a century, within the framework of investigation of this problem, numerous 
theoretical and numerical results were obtained, see the survey articles of Ilyashenko and Li, 
[11,13]. However, this problem remains almost completely unsolved even for quadratic vector 
fields. The best lower bounds of H(n) for different n among the literature can be found in [9]
except that H(4) ≥ 26 and H(6) ≥ 39 which was obtained by [12] and [14] respectively.

There are several particular versions of Hilbert’s 16th problem. Arnold in 1977 proposed a 
so-called weakened version to study the number of isolated zeroes of the Abelian integrals [1]. 
This number gives the number of limit cycles bifurcating from the period annulus of Hamiltonian 
systems. The second version is to determine the maximal number of limit cycles of Liénard 
systems, see [10] and the references therein. Another particular version of Hilbert’s 16th problem 
is to estimate the maximum number M(n) of small amplitude limit cycles bifurcating from an 
elementary center or an elementary focus, see [21].

The answer to the question about which is the value of M(n) for any n is only known for 
degree 2. Bautin [2] proved that M(2) = 3. For cubic system without quadratic terms, Sibirskiı̆ 
in [18] proved that at most five limit cycles could be bifurcated from one critical point. Żoładek 
in [21] found an example where 11 limit cycles could be bifurcated from the center of a cubic 
system. Christopher in [4] provided a simple proof of Żoładek’s result. Bondar and Sadovskiı̆
in [3] also provide an example of a family of cubic systems which have at least 11 limit cycles. 
Recently, Żoładek revisited his example in [23]. Perturbing concrete examples of quartic and 
quintic systems, Giné in [8] proved that M(4) ≥ 21 and M(5) ≥ 26. Very recently, Liang and 
Torregrosa in [14] proved that M(6) ≥ 39, M(7) ≥ 34, and M(8) ≥ 46.

An efficient method to produce limit cycles from a singularity of the center–focus type is 
calculating the Lyapunov quantities when small perturbations are considered, see [2,4,8] and the 
references therein. There are several ways to introduce the Lyapunov quantities. The reader can 
find a suitable definition in many standard textbooks of ordinary differential equations, see for 
example [5]. In what follows we will briefly introduce some definition, notation and symbols 
which are very closely to the main topic of the present paper.

It is well known that a planar polynomial differential system of degree n which has an ele-
mentary center or weak focus at the origin can be written using complex coordinates, z = x + iy, 
in the form

ż = iz + pn(z, z̄,λ), (1)

where λ = (λ1, λ2, . . . , λm) ∈ C
m and pn(z, ̄z, λ) = λ1z + ∑n

k+�=2 ck,�(λ2, . . . , λm)zkz̄� with 
ck,�(λ2, . . . , λm) ∈ C.

There is always an analytic positive definite function V (z, ̄z) in a neighborhood of the origin 
such that X(V ) = ∑∞

k=0 vk(zz̄)
k+1, where X is the vector field associated to equation (1). That 

is, X(V ) is the rate of change of V along the orbits of (1). The coefficient vk = vk(λ) is called the 
k-Lyapunov constant of (1) at the origin. Obviously, v0 = 2λ1. The origin is a center if and only 
if vk = 0 for all k ≥ 0. We call the set of parameters for which all the Lyapunov constants vanish 
the center variety. If λ1 �= 0, then equation (1) has a strong focus at the origin. If vk (k ≥ 1) is the 
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first nonzero constant, then the origin is a weak focus of order k. The focus order k is the upper 
bound of the numbers of limit cycles which bifurcate from the focus under analytic perturbations, 
see [15].

In case that λ1 = 0, vk (k = 1, 2, . . .) are polynomials in ck,�(λ). Moreover, from [17] we 
know that vk is determined modulo v0, . . . , vk−1 in spite of the choice of function V is not 
unique. Let L(0) = 2πλ1 and L(k) = vk modulo v0, . . . , vk−1 for k = 1, 2, . . . . We call L(k)

the k-Lyapunov quantities. According to the Hilbert Basis Theorem, the ideal generated by the 
Lyapunov quantities has a finite number of generators. Thus, theoretically to distinguish a center 
from a focus, or to determine the order of a weak focus, can be solved in finite number of steps. 
However, for any given case, with few exceptions, it is unknown a priori how many steps are 
required.

In general the calculation of the Lyapunov constants or Lyapunov quantities by hand is impos-
sible except in the simplest cases. Therefore, the research on the computation of the Lyapunov 
constants using computers is attracting more and more attention. Several computational methods 
have been developed, see the paper [20] and the textbook [5] for instance.

However, even when the computation is implemented in a computer, the computational prob-
lems are still very hard due to the big size, besides the number, of the coefficients of the 
polynomials in the parameters of the vector field. Christopher in [4] developed a simple com-
putational approach to estimate lower bounds for the cyclicity of centers. The idea consists in 
taking into account the lowest terms of the Lyapunov quantities with respect to the parameters. 
As it was shown by several examples, this approach has three nice aspects. The first is the re-
moval of the necessity of lengthy calculations. The second is that the complex independence 
arguments are replaced by the linear independence ones. The third is that it gives room for a 
more creative approach to estimating cyclicity.

The idea behind Christopher’s approach is the following. Suppose that s is a point on the 
center variety. If we can choose independent L(0), L(1), . . . , L(k) values in a neighborhood of 
s ∈ C

m, then with a properly choice of the parameter values we can have that 0 < |L(0)| �
|L(1)| � |L(2)| � · · · � |L(k)| and L(0), L(1), L(2), . . . , L(k) having alternate signs. Hence 
according to [16], we can produce k limit cycles one by one.

Christopher has proved that in many cases it suffices to calculate the linear part of L(i) with 
respect to the parameters. See the following theorem.

Theorem 1.1. (See [4].) Suppose that s is a point on the center variety and that the first k of the 
L(i) have independent linear parts (with respect to the expansion of L(i) about s), then s lies on 
a component of the center variety of codimension at least k + 1 and there are bifurcations which 
produce k limit cycles locally from the center corresponding to the parameter value s.

Applying this Theorem, Christopher in [4] studies the cubic center C31 in Żoładek’s classifi-
cation [21]. A computation shows that the linear parts of L(1), L(2), . . . , L(11) are independent 
in the parameters. Since L(0) = 2πλ1 already, 11 limit cycles can bifurcate from this center. This 
number of limit cycles coincides with the one obtained in [21]. Giné in [8] used Christopher’s 
method (together with the second order bifurcations) to obtain high cyclicities for several classes 
of centers.

However, for polynomial systems of high degree with a lot of parameters, in practice the 
computation of the linear parts of the Lyapunov constants is still very complicated. In fact, the 
systems considered in both [4] and [8] are of very low degree (degrees 3, 4 in [4] and degree 
5 in [8]). While Giné studies the polynomial systems of degrees 6, 8, 9, he has to assume that 
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the system has only homogeneous nonlinear terms [8]. We observe that, using a computer to do 
the calculations for general polynomial systems of high degree, we need to wait a long time. For 
example, for the holomorphic center ż = iz + z2 + z3 + · · · + z9 under the general polynomial 
perturbation of degree 9 without linear nor constant terms (104 real parameters) our computer 
needs more than 4 days of CPU time.1

Therefore, in order to go further with Christopher’s method, we need to reduce the computa-
tion waiting time. The main aim of the present paper is to develop a parallelization procedure for 
computing the linear parts of the Lyapunov constants. We define Ml(n) as the number of limit 
cycles which bifurcate from the polynomial elementary monodromic singularity of degree n, by 
using linear parts of the Lyapunov constants with respect to the parameters. We call Ml(n) the 
linear cyclicity for polynomial system of degree n. It is clear that Ml(n) ≤ M(n). Thus Ml(n)

give a lower bound of M(n). For any given polynomial system of degree n, if we perturb its 
coefficients, starting from the quadratic terms, essentially there will be at most n2 + 3n − 4 free 
parameters and hence Ml(n) ≤ n2 + 3n − 4. We would like to mention here that the author of [7]
conjectured this upper bound should be less than or equal to n2 + 3n − 7.

Another work of this paper is to find a highest possible lower bound for Ml(n) (and hence 
for M(n)), for several relative large degree n. Employing the parallelized procedure we are able 
to deal with the cases n = 7, 8, . . . , 13. However, a priori we do not know which type of centers 
will give rise to the highest cyclicity. Thus we will search for the best candidate among the 
Hamiltonian centers, the time-reversible centers and some Darboux centers. After calculating 
about 6000 examples we have found that the best candidate to provide the highest cyclicity are 
the Darboux ones. Nevertheless, in general the Darboux centers are very hard to find and hence, 
instead we consider a class of holomorphic centers with the complex form ż = iz + ∑n

j=2 zj . 
This class of centers is also a family of Darboux centers because the equation ż = f (z) possesses 
an integrating factor of the form (f (z)f (z))−1, see [6]. Our result is the following theorem.

Theorem 1.2. The cyclicity of the holomorphic center ż = iz + ∑n
j=2 zj is at least n2 + n − 2

for 4 ≤ n ≤ 13 and 9 for n = 3, under general polynomial perturbations of degree n.

As a direct consequence of Theorem 1.2 we obtain the highest lower bounds of M(n) for 
5 ≤ n ≤ 13 among the literature.

Corollary 1.3. For each n = 5, 6, . . . , 13 we have M(n) ≥ n2 + n − 2.

Since H(n) ≥ M(n), we can also improve the Hilbert number when n = 6, 8, 10. The best 
previous known results show that H(6) ≥ 39, H(8) ≥ 67, and H(10) ≥ 100. Now we get from 
the above result that:

Corollary 1.4. Suppose that H(n) is the Hilbert number for the class of polynomial vector fields 
of degree n. Then H(6) ≥ 40, H(8) ≥ 70, and H(10) ≥ 108.

In the proof of Theorem 1.2 we will show how the parallelization procedure reduces the 
waiting time of computation, see Table 1 in Section 4. From this table we also found that it is 
almost impossible to compute the cases of degree 11, 12, and 13 in the traditional way.

1 The computations are done with MAPLE 18 in a Xeon computer (CPU E5-450, 3.0 GHz, RAM 32 Gb) with GNU 
Linux.
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This paper is organized as follows. In Section 2 we establish the linear property for the linear 
parts of the Lyapunov quantities with respect to the parameters. This property is the foundation 
of the parallelization procedure. An example is also provided to illustrate how it works. In Sec-
tion 3 we exhibit that the best center candidate to produce high cyclicity is a Darboux center. In 
Section 4 we study the number of limit cycles bifurcating from some holomorphic centers, using 
the parallelization procedure for computing the linear parts of the Lyapunov constants.

2. Linear property of the linear parts of the Lyapunov constants

This section is devoted to the proof of the following theorem which shows the linear property 
of the linear parts of the Lyapunov constants. Afterward, we give an example to illustrate how 
this property can be applied in the explicit computations.

Theorem 2.1. Let p(z, ̄z) be a polynomial starting with terms of degree 2. Let Qj(z, ̄z, λ) be 
analytic functions such that Qj(0, 0, λ) ≡ 0 and Qj(z, ̄z, 0) ≡ 0, for j = 1, . . . , s. Let a1, . . . , as

be any s fixed constants. Suppose that v
Qj

k are the k-Lyapunov constants of equations

ż = iz + p(z, z̄) + Qj(z, z̄,λ), λ ∈C
m, for j = 1, . . . , s. (2)

Then the linear part, with respect to the components of λ, of a1v
Q1
k + · · · + asv

Qs

k is the linear 
part of the k-Lyapunov constant of equation

ż = iz + p(z, z̄) + a1Q1(z, z̄,λ) + · · · + asQs(z, z̄,λ), (3)

with respect to the components of λ.

Proof. We recall that the way to find the Lyapunov constants of a given vector field X =
X(z, ̄z, λ) at the origin is, as it is given in [4], as follows. We seek a positive definite analytic 
function W = W(z, ̄z, λ) in a neighborhood of the origin such that

X(W) =
∞∑

k=0

βkr
2k+2,

with r2 = zz̄. If we want to find the term of degree j of βk with respect to the parameters λ, it 
turns out to be equivalent to solve the following equations step by step:

X0(W0) =
{

0, if X0 has a center at the origin,

β̄�r
2�+2 + · · · , if X0 has a weak focus at the origin with order �,

(4)

X0(W1) + X1(W0) =
∞∑

k=0

βk,1r
2k+2,

X0(Wj ) + X1(Wj−1) + · · · + Xj(W0) =
∞∑

βk,j r
2k+2, (5)
k=0
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where Xj , Wj , and βk,j are the terms of degree j of X, W , and βk , respectively, with respect to 
the parameters λ.

This means that βk,1 is the linear part of the k-Lyapunov constant of vector field X if and only 
if there exists a positive definite analytic function W0 = W0(z, ̄z) and W1 = W1(z, ̄z, λ) (linear 
in λ) such that both (4) and (5) are satisfied.

Suppose that WQj (z, ̄z, λ) is the positive definite analytic function in a neighborhood of the 
origin such that

XQj (WQj ) =
∞∑

k=0

v
Qj

k r2k+2, (6)

where XQj are the vector fields associated to equations (2).
Let

XQj = X0 + X
Qj

1 + X
Qj

2 + · · · , WQj = W0 + W
Qj

1 + W
Qj

2 + · · · ,

where X
Qj

k (resp. W
Qj

k ) is the term of degree k of XQj (resp. WQj ) with respect to λ. Denoted 

by v
Qj

k,1 the linear term of v
Qj

k with respect to the parameters. It follows from (6) that

X0(W
Qj

1 ) + X
Qj

1 (W0) =
∞∑

k=0

v
Qj

k,1r2k+2, j = 1, . . . , s. (7)

By the linear property of vector field, we obtain from (7) that

X0

⎛
⎝ s∑

j=1

ajW
Qj

1

⎞
⎠ +

⎛
⎝ s∑

j=1

ajX
Qj

1

⎞
⎠ (W0) =

∞∑
k=0

(
a1v

Q1
k,1 + · · · + asv

Qs

k,1

)
r2k+2.

Therefore, there exists a function W1 := a1W
Q1
1 +· · ·+asW

Qs

1 being linear in the parameters 
such that

X0(W1) + (
a1X

Q1
1 + · · · + asX

Qs

1

)
(W0) =

∞∑
k=0

(
a1v

Q1
k,1 + · · · + asv

Qs

k,1

)
r2k+2.

We remark that a1X
Q1
1 +· · ·+ asX

Qs

1 is exactly the linear part of the vector field X associated to 
equation (3), thus W1 and βk,1 := a1v

Q1
k,1 + · · · + asv

Qs

k,1 are the solutions of equation (5). Clearly 
equation (4) is satisfied automatically and hence the proof is complete. �

The advantage of applying Theorem 2.1 is the following. In computation of the linear 
part of the Lyapunov constants with respect to the parameters of polynomial equation ż =
iz + pn(z, ̄z) + ∑n

k+�=2 λk,�z
kz̄�, we will one-by-one compute the linear part of each Lyapunov 

constant of equation ż = iz + pn(z, ̄z) + λk,�z
kz̄�. After all the computations have been done, 

we take the summation of all the results and hence we obtain the linear part of the Lyapunov 
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constant of the original complete equation. The computation done in this way is called paral-
lelization. Additionally, when we implement this procedure, the computations in each separate 
equation given by each perturbation monomial are shorter in size and time. Clearly, if we use 
several computers to do the computations for different λk,�z

kz̄� simultaneously, then the total 
waiting time will be reduced drastically. We will compare, at the end of Section 4, both the time 
differences between the computations when they are done, when it is possible, in the traditional 
way using only one computer and with the parallelization procedure using a cluster of computers.

Next we give an example to illustrate the parallelization procedure. Consider the equation

ż = iz + 10z2 + 5zz̄ + (3 + 4i)z̄2 + (λ2iz
2 + λ3zz̄ + λ4z̄

2), (8)

where λj (j = 2, 3, 4) are real small parameters.
The unperturbed system of (8) in its real form is

ẋ = −y + 18x2 + 8xy − 8y2, ẏ = x + 4x2 + 14xy − 4y2. (9)

It has a first integral

H = (80x3 − 480x2y + 960xy2 − 640y3 + 120xy − 240y2 − 30y − 1)2

(20x2 − 80xy + 80y2 + 20y + 1)3
.

Therefore, system (9) has a center at the origin.
Now we employ the parallelization to compute the linear part of the Lyapunov constants for 

equation (8) at the origin. By direct computation using the algorithm of [5] we obtain the first 
three linear parts of the Lyapunov constants of equations (8)λ3=λ4=0, (8)λ2=λ4=0, and (8)λ2=λ3=0, 
which are respectively

v
�,Q1
1 = −10πλ2, v

�,Q1
2 = 16 000πλ2, v

�,Q1
3 = −682 934 375πλ2

18
,

v
�,Q2
1 = 0, v

�,Q2
2 = 2000πλ3

3
, v

�,Q2
3 = −16 356 250πλ3

9
,

and

v
�,Q3
1 = 0, v

�,Q3
2 = 0, v

�,Q3
3 = 18 750πλ4.

According to Theorem 2.1, the first three linear parts of the Lyapunov constants of equation (8)
are

v�
1 = v

�,Q1
1 + v

�,Q2
1 + v

�,Q3
1 = −10πλ2,

v�
2 = v

�,Q1
2 + v

�,Q2
2 + v

�,Q3
2 = 16 000πλ2 + 2000πλ3

3
,

v�
3 = v

�,Q1
3 + v

�,Q2
3 + v

�,Q3
3 = −682 934 375πλ2

18
− 16 356 250πλ3

9
+ 18 750πλ4. (10)

With the goal of checking the correctness of (10), we also compute the Lyapunov constants 
of equation (8) in a direct way. It turns out that
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v1 = −2πλ2(5 + λ3),

v2 = 2π(5 + λ3)

3
(18λ3

2 + 27λ2λ
2
3 + 3λ2λ3λ4 + 8λ2

2 + 759λ2λ3 − 25λ2λ4 + 8λ2
3 + 4800λ2

+ 200λ3),

v3 = −π(5 + λ3)

18
(1944λ5

2 + 4572λ3
2λ

2
3 + 8λ3

2λ3λ4 + 3384λ2λ
4
3 + 1112λ2λ

3
3λ4 + 3816λ4

2

+ 150 504λ3
2λ3 − 28 592λ3

2λ4 + 2082λ2
2λ

2
3 + 209 256λ2λ

3
3 + 15 408λ2λ

2
3λ4 + 1242λ4

3

+ 938 100λ3
2 + 31 300λ2

2λ3 − 336λ2
2λ4 + 4 525 685λ2λ

2
3 − 35 558λ2λ3λ4 + 69 240λ3

3

− 876λ2
3λ4 − 732 150λ2

2 + 41 353 200λ2λ3 − 491 150λ2λ4 + 1 216 450λ2
3

− 24 600λ3λ4 + 136 586 875λ2 + 6 542 500λ3 − 67 500λ4).

By the above expression it is not hard to check that the linear part of the above complete expres-
sions with respect to λ2, λ3, λ4 is just the same as (10).

Remark 2.2. From (10) we know that v�
1, v�

2, v�
3 are linearly independent. Thus if we add the 

linear perturbation λ1z to equation (8), we obtain three limit cycles which emerge from the origin. 
This provides a simple example of a quadratic system with three limit cycles.

Remark 2.3. Usually the expressions of the Lyapunov constants can be simplified by modulo 
the previous ones. In fact, in our example the first three Lyapunov constants v1, v2, and v3 can be 
replaced with the three quantities L(1) = −2λ2(5 + λ3), L(2) = 16λ3

3/3 + 160λ2
3 + 2000λ3/3, 

L(3) = 150λ2
3λ4 + 4500λ3λ4 + 18 750λ4. The linear part of the Lyapunov constants can also be 

done in the same way. But, certainly, the number of independent Lyapunov constants is invariant.

3. Searching the highest linear cyclicity of centers by application of parallelization

In the present section we will apply the parallelization procedure to find the best centers which 
give rise to the highest cyclicity explicit vector fields. More precise, we will study the limit cycles 
bifurcating from the Hamiltonian, time-reversible and Darboux centers, by using the linear part 
of the Lyapunov constants with respect to the parameters.

3.1. Linear cyclicity of Hamiltonian centers

We have computed more than 4000 random Hamiltonian centers with different degrees. They 
are: 1000 quadratic Hamiltonian systems, 1000 cubic Hamiltonian systems, 1000 quartic Hamil-
tonian systems, 1000 quintic Hamiltonian systems, 300 Hamiltonian systems of degree 6, and 
50 Hamiltonian systems of degree 7. In almost all cases, the number of independent linear parts 
of the Lyapunov constants with respect to the parameters are respectively 2, 5, 9, 14, 20, and 27. 
It is clear that these Hamiltonian systems cannot provide a lower bound for Ml(n) bigger than 
(n2 + n − 2)/2. But in almost all cases we have that number of limit cycles. Using the paral-
lelization procedure, the total computing time is, with our computers, about 30 hours.
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3.2. Linear cyclicity of time-reversible centers

First we remember that a system has a time-reversible center if it has a center and it is in-
variant (for example) by the change (x, y, t) → (x, −y, −t). We have computed 2000 random 
time-reversible centers with different degrees. They are: 500 quadratic systems, 500 cubic sys-
tems, 250 quartic systems, 250 quintic systems, 250 systems of degree 6, and 250 systems of 
degree 7. We have found that, in almost all cases, the number of independent linear parts of the 
Lyapunov constants with respect to the parameters are respectively 2, 6, 11, 17, 24, and 32. It 
is clear that these time-reversible systems cannot provide a lower bound for Ml(n) bigger than 
(n2 + 3n − 6)/2. But in almost all cases we have that number of limit cycles. Using the paral-
lelization the total computing time is about 16 hours.

3.3. Linear cyclicity of general Darboux centers

In this part we will first consider some of the known Darboux centers with high linear cyclicity 
when the degree is fixed to n = 2, 3, 4, 5. The selected quadratic Darboux center is equation (8). 
As we have done in Section 2, it holds that Ml(2) ≥ 3. The cubic Darboux centers are the systems 
in [3,4]. These systems have a Darboux first integral of the form

H = (−42x + 7y + 1)3f

(448x2 + 336xy + 63y2 − 44x − 12y + 1)3(1183x2 − 68x + 1)

with f = −10 752x3 − 29 568x2y − 17 640xy2 − 3024y3 + 1600x2 + 2760xy + 576y2 − 74x −
57y + 1 and

H = (xy2 + x + 1)5

x3(xy5 + 5xy3/2 + 5y3/2 + 15xy/8 + 15y/4 + 2)2
, (11)

respectively. The first has a center at the origin and the second at (342/53, 140/53). Bondar and 
Sadovskiı̆ in [3] and Christopher in [4] actually proved that Ml(3) ≥ 11. The quartic and quintic 
Darboux centers selected are respectively system (6) and system (17) appearing in [8]. After 
computation we check that Ml(4) ≥ 16 and Ml(5) ≥ 23 as Giné proves in [8].

We note that, the construction of a polynomial Darboux center, whose linear cyclicity can be 
computed easily, is much harder than the Hamiltonian and time-reversible centers. We finish this 
section providing a class of a Darboux polynomial center of degree n for n ≥ 4. The construction 
of these centers is inspired by the cubic family of (11), which was originally done in [22].

Proposition 3.1. Let H be the rational function

H(x,y) = (xy2 + Ax + B)n+2

xn(xu(y) + v(y))2
,

with A2 + B2 �= 0, n ≥ 4,

u(y) =
n−4∑

ajy
j + n(n + 2)A2

8
yn−2 + (n + 2)A

2
yn + yn+2, (12)
j=0
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and

v(y) =
n−3∑
j=0

bjy
j + n(n + 2)AB

4
yn−2 + (n + 2)B

2
yn. (13)

Then the system

ẋ = P(x, y) := −Hy/M, ẏ = Q(x,y) := Hy/M, (14)

with M = M(x, y) = (xy2 + Ax + B)n+1/(xn+1(xu(y) + v(y))3), is a polynomial system of 
degree n.

Proof. By direct computation we obtain that

P(x, y) = 2x(xy2 + Ax + B)(xu′(y) + v′(y)) − 2(n + 2)x2y(xu(y) + v(y)),

Q(x, y) = (2xy2 + 2Ax − Bn)v(y) − (n + 2)Bxu(y).

Substituting (12) and (13) into the above expressions, it turns out that

P(x, y) = −2x

( n−4∑
j=0

(n + 2 − j)aj x
2yj+1 +

n−3∑
j=0

(n + 2 − j)bj xyj+1 − (Ax + B)

· (
n−4∑
j=1

jajxyj−1 +
n−3∑
j=1

jbjy
j−1 + n(n2 − 4)A2

8
xyn−3 + n(n2 − 4)AB

4
yn−3)

− n(n + 2)B2

2
yn−1

)
,

Q(x, y) = −(n + 2)B

⎛
⎝n−4∑

j=0

ajxyj + n(n + 2)A2

8
xyn−2

⎞
⎠ + (2xy2 + 2Ax − nB)

n−3∑
j=0

bjy
j

+ n(n + 2)AB

4
(2Ax − nB)yn−2 − n(n + 2)B2

2
yn.

Obviously, degP = n if A �= 0 and degQ = n if B �= 0. �
We can construct a Darboux center of degree n of the form (14). As an example, we show, in 

the next proposition, that under a suitable choice of the parameters, system (14) has a center at 
the point (−1, 2).

Proposition 3.2. For any integer n ≥ 4, there exist polynomials u, v of the form (12) and (13)
respectively such that system (14) has a center at (−1, 2).
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Proof. Let

s1(y) =
n−4∑
j=0

ajy
j , s2(y) =

n−3∑
j=0

bjy
j .

By performing straightforward computations we find that

P(−1,2) = 0, Q(−1,2) = 0, Px(−1,2) + Qy(−1,2) = 0

hold if

s1(2) = 1

4
B(A2n(n2 − 4)2n−6 − ABn(n2 − 4)2n−5 − Bn(n + 2)2n−2 + �1(2)),

s2(2) = 2n−5n(16B − A2(n − 2) + 2ABn) + (8 + 2A + Bn)

·
(

2n−8A2n(n − 2) − 2n−7ABn(n − 2) − 2n−4Bn + �1(2))

4(n + 2)

)
, (15)

where �1(2) = s′
1(2) − s′

2(2). Furthermore, if relations (15) are true, then

D : = 4(Px(−1,2)Qy(−1,2) − Py(−1,2)Qx(−1,2))

= −4
(
2nB(−16B + A2(n − 4) − 2AB(n − 2))n(n2 − 4) + 64Bn�1(2)

− 64(8 + 2A − 2B)s′
2(2)

)2 + B2n(−2n(n + 2)(128 + n(−2(−8 + A)A

+ 4(A − 4)B + A(A − 2B)n)) − 64�1(2))(2n(16B2 + A3(n − 4) − 3A2B(n − 4)

+ 2AB2(n − 4))n(n2 − 4) + 64(−(4 + A − B + 4n)�1(2) + 2(4 + A − B)�2(2))),

where �2(2) = s′′
1 (2) − s′′

2 (2).
There are many choices of A, B , s1, and s2 such that D > 0 and that at (−1, 2) neither 

the denominator nor the numerator of M vanish, where M is the rational function defined in 
Proposition 3.1. Consequently, system (14) has a center at (−1, 2).

For example, we can choose A = −B , s′′
1 (2) = s′′

2 (2), s′
1(2) = s′

2(2) = a and then we choose 
s1(2), s2(2) such that relations (15) are satisfied. In this situation we have D = 9(n − 4)(n2 −
4)2n322n−1B7 + P6(B, n), where P6(B, n) is a polynomial in B of degree 6. Thus, if n > 4 and 
B is large enough, then D > 0. If n = 4, we take B = 3 and we obtain D = 65 536(46 656 +
216a − a2). Thus D is positive when a is a small number. Clearly, in any case we can choose the 
values of B and a such that the point (−1, 2) does not lie in the curves xy2 + Ax + B = 0 and 
xu(y) + v(y) = 0. This fact completes the proof. �
Proposition 3.3. There exist Darboux centers of the form (14) of degrees 4, 5, 6, 7 with at least 
16, 26, 35, 47 limit cycles respectively bifurcating from the center at (−1, 2) under polynomial 
perturbation of the same degree, using the linear parts of the Lyapunov constants.

Proof. For n = 4, 5, 6, and 7 we take system (14) with A = An, B = Bn, u = un, and v = vn in 
Proposition 3.1 where
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A4 = −1, u4(y) = y6 − 3y4 + 3y2 + 3151,

B4 = 4, v4(y) = 12y4 − 24y2 − 3648y + 10 668,

A5 = −1, u5(y) = y7 − 7

2
y5 + 35

8
y3 + y − 6 465 749

321 132
,

B5 = 1, v5(y) = 7

2
y5 − 35

4
y3 − 875 275

91 752
y2 + y + 691 483

45 876
,

A6 = −1, u6(y) = y8 − 4y6 + 6y4 − 40 983 577

162 912
,

B6 = −3

2
, v6(y) = −6y6 + 18y4 − 9 704 473

61 092
y2 + 13 333 373

122 184
,

A7 = −1, u7(y) = y9 − 9

2
y7 + 63

8
y5 + 97 542 143

258 048
y2 − 89 413 631

64 512
y + 75 866 111

64 512
,

B7 = 1, v7(y) = 9

2
y7 − 63

4
y5.

After direct calculation, we obtain the required conclusion. �
We have not check values for n > 7 because it is clear from the above proposition that when n

increases the number of limit cycles using the linear parts of the Lyapunov constants is less than 
or equal to n2. The examples in the next section provide better lower bounds for M(n).

As a final conclusion of this section, we remark that among the Hamiltonian, time-reversible, 
and Darboux systems, the best ones to produce high cyclicity centers, using the linear part of 
the Lyapunov constants, are the Darboux ones. However, from the point of explicit computation 
for any fixed degree n, the construction of a Darboux center is much more difficult than other 
families.

4. Cyclicity of holomorphic center under polynomial perturbation

There are two aims in this section. The first one is to give examples showing the power of the 
parallelization procedure developed in Section 2. The second one is to find a good lower bound 
for M(n), for some relative large degrees.

As we have exhibited in the previous section, the best examples to produce high cyclicity are 
some Darboux centers. However, from the point of view of explicit computations, the Darboux 
centers are hard to find. Instead we will study a particular polynomial holomorphic center of 
degree n. We recall that an equation ż = iz + f (z) has a holomorphic center at the origin when 
f is a holomorphic function such that f (0) = 0 and Re(f ′(0)) = 0, see [19]. According to 
Proposition 3.1 of [6], the holomorphic center is also a Darboux center. The holomorphic center 
of degree n studied in this section is

ż = iz + z2 + z3 + · · · + zn.

We are going to deal with a general perturbation of degree n without constant term. That is
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ż = (i + λ1)z + z2 + z3 + · · · + zn +
n∑

k+�=2

(ek,� + fk,�i)z
kz̄�, (16)

where λ1, ek,� and fk,� are small real parameters.
The main result of this section is:

Theorem 4.1. Equation (16) has at least 9 and n2 + n − 2 limit cycles emerging from the holo-
morphic center for n = 3 and 4 ≤ n ≤ 13, respectively.

Proof. First assume in (16) that λ1 = 0. For 4 ≤ n ≤ 13, using the parallelization procedure, 
we find that the coefficients matrix of the linear part of the corresponding Lyapunov constants 
v1, v2, v3, . . . , vn2+n−2, with respect to the parameters ek,�, fk,�, has rank n2 + n − 2. Hence 
v�

1, v
�
2, . . . , v

�
n2+n−2

are linearly independent. Therefore, adding the linear perturbation λ1z, equa-

tion (16) has n2 + n − 2 limit cycles, which arise from the holomorphic center. We have not 
added the explicit expressions of these linear parts because of the huge size of them. The case 
n = 3 works in the same way but the number of linearly independent linear parts of the Lya-
punov constants is 9. The explicit expressions of them, for this cubic family, can be found in 
Appendix A. �

We note that when the perturbation has only holomorphic monomials,

ż = iz + z2 + z3 + · · · + zn + (ek,0 + fk,0i)z
k, (17)

the origin remains as a center. That is, all the Lyapunov constants of equation (17) are zero and the 
parameters ek,0 and fk,0 do not make any contribution in producing limit cycles. Consequently, 
we have that the total number of essential parameters, 2 + 3 + · · · + n = n2 + n − 2, coincides 
with the lower bound of the cyclicity given by the above result.

As an immediate consequence of the above result, we get a lower bound for the number of 
small amplitude limit cycles for polynomial vector fields of degrees 4, 5, . . . , 13.

Corollary 4.2. M(n) ≥ n2 + n − 2 for every degree 4 ≤ n ≤ 13.

Remark 4.3. For 5 ≤ n ≤ 13, Corollary 4.2 provides the highest lower bound of M(n), among 
all the known results.

The proof of Theorem 4.1 is based on the computation, with an algebraic manipulator, of the 
Lyapunov constants. In practice we found that when we compute them, in the traditional way, the 
computation time as well as the size of the constants grow very fast with the degree n. To reduce 
the waiting time, we compute only the linear part of the Lyapunov constants for equation (16)
case by case independently. That is, for each case we only compute them with one-monomial 
perturbation:

ż = iz + z2 + z3 + · · · + zn + ek,�z
kz̄�, or ż = iz + z2 + z3 + · · · + zn + ifk,�z

kz̄�.

Finally, we add all the computational results and hence the full expression of the linear part 
of the Lyapunov constants is obtained. Theorem 2.1 ensures the validity of this parallelization 
procedure.
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Table 1
Computation time for the linear parts of the Lyapunov constants of equation (16). The last col-
umn shows the rank of the coefficients matrix of the linear part of the first n2 + n − 2 Lyapunov 
constants.

n Number of cases Total time Waiting time Rank

3 10 8 s 8 s 9
4 18 2 m 6 s 18
5 28 12 m 30 s 28
6 40 1.2 h 2 m 40
7 54 5.8 h 7.4 m 54
8 70 1.4 d 1.1 h 70
9 88 4.9 d 3.1 h 88

10 108 12.3 d 6.3 h 108
11 130 33.2 d 0.9 d 130
12 154 100.1 d 2.5 d 154
13 180 357.6 d 8.0 d 180

Table 1 illustrates the advantage of the computation method presented in this paper for the 
holomorphic center (16) for n = 3, 4, . . . , 13. The total CPU time is 17 months but, using the 
parallel procedure,2 the real waiting time is less than 12 days.

The computations to go further in n have two main constraints: the first is the time needed and 
the second is the memory requirements. Both restrictions make it almost impossible to calculate 
the effective values of the Lyapunov constants for bigger values of n within a reasonable time.

Remark 4.4. When we handle the quadratic holomorphic center, only one limit cycle appears 
from the linear part of the Lyapunov constants. But we can find another one using the second 
order terms. Moreover, the third Lyapunov quantity can be expressed as a polynomial in the first 
two and the third vanishes when the first two also vanish. Hence there are no more than two limit 
cycles emerging from the origin for this quadratic holomorphic center. For the cubic family, also 
using approximations of order two, no more than 9 limit cycles can be found, nor using other 
cubic holomorphic centers different from (16).
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Appendix A

In this appendix we list, for equation (16) with n = 3, the expressions of the linear terms of 
v1, . . . , vn2 with respect to parameters ek,� and fk,�, which are denoted by v�

1, . . . , v
�
n2 .

2 The computations are done in a cluster of eight computers with 64 cores in total.
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v�
1 = −2f1,1 + 2e2,1,

v�
2 = −2f1,2 + 12f1,1 − 12e2,1 − 2e1,1 − 4

3
e0,2,

v�
3 = f2,1 + 20f1,2 − 105f1,1 − 1

2
f0,3 + 3

2
f0,2 + 104e2,1 + 21e1,1 − 3

4
e0,3 + 41

3
e0,2,

v�
4 = −50

3
f2,1 − 258f1,2 + 12 752

9
f1,1 + 41

5
f0,3 − 373

15
f0,2 − 12 614

9
e2,1 + 2

3
e1,2

− 824

3
e1,1 + 111

10
e0,3 − 2674

15
e0,2,

v�
5 = 7675

24
f2,1 + 57 481

12
f1,2 − 2 018 419

72
f1,1 − 18 833

120
f0,3 + 7151

15
f0,2 + 499 441

18
e2,1

− 33

2
e1,2 + 40 881

8
e1,1 − 24 659

120
e0,3 + 1 791 283

540
e0,2,

v�
6 = −296 831

36
f2,1 − 29 764 657

240
f1,2 + 34 692 256

45
f1,1 + 5 097 221

1260
f0,3 − 2 581 051

210
f0,2

− 45 814 873

60
e2,1 + 6674

15
e1,2 − 19 047 371

144
e1,1 + 368 121

70
e0,3 − 30 919 933

360
e0,2,

v�
7 = 40 837 813

144
f2,1 + 1 032 614 491

240
f1,2 − 20 324 018 167

720
f1,1 − 748 011 683

5376
f0,3

+ 6 817 870 105

16 128
f0,2 + 5 035 491 263

180
e2,1 − 2 774 227

180
e1,2 + 1 651 130 047

360
e1,1

− 1 942 410 935

10 752
e0,3 + 17 158 101 913

5760
e0,2,

v�
8 = −177 051 675

14
f2,1 − 26 100 328 784

135
f1,2 + 35 195 459 317 213

26 460
f1,1

+ 2 251 596 398 797

362 880
f0,3 − 6 840 775 814 797

362 880
f0,2 − 69 794 246 470 681

52 920
e2,1

+ 1 485 135 871

2160
e1,2 − 778 666 933 763

3780
e1,1 + 5 846 388 826 217

725 760
e0,3

− 31 216 718 867 753

233 280
e0,2,

v�
9 = 2 065 517 374 450 619

2 903 040
f2,1 + 111 181 806 164 273 311

10 160 640
f1,2

− 1 595 247 717 563 460 547

20 321 280
f1,1 − 5 067 118 487 024 053

14 515 200
f0,3

+ 3 848 676 339 819 287

3 628 800
f0,2 + 49 448 632 701 419 887

635 040
e2,1 − 3 117 488 162 039

80 640
e1,2

+ 236 838 515 220 943 261

20 321 280
e1,1 − 939 874 882 082 747

2 073 600
e0,3

+ 3 462 158 492 424 717 361

457 228 800
e0,2.
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