WEAK-FOCI OF HIGH ORDER AND CYCLICITY

HAIHUA LIANG AND JOAN TORREGROSA

Abstract

A particular version of the 16th Hilbert's problem is to estimate the number, $M(n)$, of limit cycles bifurcating from a singularity of center-focus type. This paper is devoted to finding lower bounds for $M(n)$ for some concrete n by studying the cyclicity of different weak-foci. Since a weak-focus with high order is the most current way to produce high cyclicity, we search for systems with the highest possible weak-focus order. For even n, the studied polynomial system of degree n was the one obtained by [20] where the highest weak-focus order is $n^{2}+n-2$ for $n=4,6, \ldots, 18$. Moreover, we provide a system which has a weak-focus with order $(n-1)^{2}$ for $n \leq 12$. We show that Christopher's approach [5], aiming to study the cyclicity of centers, can be applied also to the weak-focus case. We also show by concrete examples that, in some families, this approach is so powerful and the cyclicity can be obtained in a simple computational way. Finally, using this approach, we obtain that $M(6) \geq 39, M(7) \geq 34$ and $M(8) \geq 63$.

1. Introduction and statement of the main results

The second part of the sixteenth Hilbert's problem is concerned with the maximal number (denoted by $H(n)$) and relative positions of the limit cycles of planar polynomial systems of degree n

$$
\begin{equation*}
(\dot{x}, \dot{y})=\left(P_{n}(x, y), Q_{n}(x, y)\right) \tag{1}
\end{equation*}
$$

This problem remains unsolved even for quadratic systems. There have been a lot of attempts to make progress in this problem, see the survey articles of Ilyashenko and $\mathrm{Li},[12,14]$. Many results have been obtained for lower bounds of $H(n)$. For example, $H(2) \geq 4, H(3) \geq 13, H(4) \geq 21, H(5) \geq 28$, and $H(6) \geq 35$. Recently, Johnson in [13] show numerically that $H(4) \geq 26$. Han and Li detail other lower bounds in [10]. In particular, developing the method used in [6] and introducing some new perturbation techniques, they improve all the existing results for $n \geq 7$ and prove that $H(n)$ grows at least as fast as $(n+2)^{2} \log (n+2) / \log 4$, see also [10].

We note that the standard technique to obtain a high number of limit cycles for a polynomial differential system is the perturbation of symmetric polynomial systems or systems with many centers or weak-foci. But there are relative few results concerning on the maximum number of limit cycles surrounding only one singularity. In the first paragraph of his paper [27], H. Zoladek said "The particular version of this (Hilbert's 16th) problem is to estimate the number $M(n)$ of small amplitude limit cycles bifurcating from an elementary center or an elementary focus. The ...problem is ...still complicated." Clearly $M(n) \leq H(n)$.

Bautin [3] proved that $M(2)=3$. For cubic systems without quadratic terms, Sibirskii in [24] proved that no more than five limit cycles could be bifurcated from one critical point. Zoladek found an example where 11 limit cycles could be bifurcated from a single critical point of a cubic system, see [27, 28]. Christopher in [5] gave a simpler proof of Zoladek's result perturbing a Darboux cubic center. The same lower bound was also done with a different Darboux cubic center by Bondar and Sadovskii in [4]. By perturbations of a family of Darboux quartic (resp. quintic) systems inside the general quartic (resp.

[^0]
[^0]: 2010 Mathematics Subject Classification. 34C23, 34C25, 34C07.
 Key words and phrases. Weak-focus order, cyclicity, polynomial system, Lyapunov quantities.

