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Abstract. We show the existence of a family of stacked central configura-
tions in the planar five–body problem with a special property. Three bodies
m1, m2 and m3, ordered from left to right, are collinear and form an Euler
central configuration, and the other two bodies m4 and m5, together with
m2 are at the vertices of an equilateral triangle and form a Lagrange central
configuration. n–body problem and stacked central configuration

1. Introduction and main result

Central configurations play an interesting role in celestial mechanics [18]. For
instance, they allow to obtain explicit solutions of the n–body problem where
the initial shape of the configuration is preserved along the orbit up to rescaling
and rotations.

Recently, there has been a growing interest in stacked central configuration,
that is, central configurations such that a proper subset of the n bodies also
form a central configuration. This concept was first introduced by Hampton in
a seminal paper [9] by providing a family of central configurations in the planar
five–body problem where if two masses are removed, the remaining three are
at the vertices of an equilateral triangle. After that, several papers have shown
the existence of other stacked central configurations in the planar five–body
problem, see [3, 5, 7, 11, 12]. Besides planar configurations, stacked central
configuration have also been found in the spatial case, see [10, 14, 15, 19] or
in the general n–body problem, see [20, 6, 21]. Even in limit problems, as the
coorbital satellite problem, see [17, 1].

At this point, a natural question rise: Given a central configuration of the n–
body problem, how many different subsets of bodies, A, do exist with cardinality

Key words and phrases. Planar 5–body problem, central configuration, stacked central
configuration.

J. Lino Cornelio is supported by a CONACyT graduate grant. M. Alvarez-Ramírez
was partially supported by the grant: Red de cuerpos académicos Ecuaciones Diferenciales.
Proyecto sistemas dinámicos y estabilización. PRODEP 2011-SEP, Mexico. J. M. Cors was
partially supported by MINECO grant MTM2013-40998-P, MTM2016-77278-P (FEDER)
and AGAUR grant 2014 SGR 568.

1



2 CORNELIO, ÁLVAREZ, CORS

|A| = k, k = 1, . . . , n−3, such that the n−k bodies form a central configuration
of the (n− k)–body problem?

Using the notation, (n, k)–stacked central configuration, introduced by Fer-
nandes and Mello in [6], where n is the number of bodies of the original central
configuration and k = 1, . . . , n− 3 is the number of the removed bodies, previ-
ous question can be stated as following: What is the number of (n, k)–stacked
central configurations, for all k = 1, . . . , n− 3?

In the non–collinear n–body problem the answer to the case of (n, 1)–stacked
central configuration was given by Fernandes and Mello [6]. They proved that
there exists only one. That is, the configuration where n − 1 bodies form a
co–spherical central configuration with one body, of arbitrary mass, that can
be removed located at the center of the sphere.

Central configurations consisting in two nested or twisted regular polygons
are exemples of two (2n, n)–stacked planar central configurations, that is, ex-
amples where two different subsets of n bodies can be removed, see [16, 2, 13].
Although, in these stacked central configurations, we have two different subsets
of n bodies two choose, the central configurations obtained once the bodies are
removed are similar. Because of this we are interested in counting the number
of stacked central configurations that are not similar after the k bodies are
removed. So, we will count the number of (n, k)–stacked central configurations,
for all k = 1, . . . , n− 3 up to similarity.

In the non–collinear planar five–body problem a configuration that, after
removing two masses in three different ways, such that in each one the remain-
ing three masses are in a collinear configuration is not geometrically realizable,
unless the planar five–body configuration has four collinear masses. It that
case the perpendicular bisector theorem says that such a configuration can-
not be a central configuration of the five–body problem. So, it is impossible
to obtain, in the non–collinear planar five–body problem, three (5, 2)–stacked
central configurations where the remaining three masses form an Euler cen-
tral configuration of the three–body problem. On the other hand, a planar
five–body configuration that includes an equilateral triangle also can include,
in three different ways, two collinear configurations after removing two masses.
That is, when the two non–triangular masses are on the sides of the triangle,
see Figure 1 (a), when only one non–triangular mass is on one side, see Figure
1 (b), and finally when the two non–triangular masses are not on any side of
the triangle, see 1 (c). As before, the perpendicular bisector theorem says that
any of these configurations cannot be a central configuration of the five–body
problem. Then, in the non–collinear planar five–body problem, the number of
(5, 2)–stacked central configurations up to similarity is at most two. Moreover,
only the five–body central configuration given by a square, with four equal
masses at its vertices, and one body located at its center, with arbitrary mass,
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admits a (5, 1)–stacked central configurations. The one given by the square
itself, that is, a 4–gon central configuration, obtained when the central body is
removed. That five–body central configuration also admits one (5, 2)–stacked
central configurations, an Euler central configuration of the three–body prob-
lem, obtained when two bodies located at opposite vertices of the square are
removed. In that case is impossible remove any other two masses and obtain an
equilateral triangle, that is, a Lagrange central configuration of the three–body
problem. Thus, we have the following result.

(a) (b) (c)

Figure 1. Three different configurations in the five–body prob-
lem where after removing two bodies, one equilateral triangular
configuration and two collinear configurations are obtained. All
three are discarded by the perpendicular bisector theorem to be
central configurations in the five–body problem.

Theorem 1. In the non–collinear planar five–body problem, the number of
(5, k)–stacked central configuration, for all k = 1, 2 up to similarity is at most
two.

In this paper we prove the existence of a family in the planar five–body
problem with two (5, 2)–stacked central configurations. In our family bodiesm1,
m2 and m3, ordered from the left to the right, are collinear and form an Euler
central configuration, and bodies m2, m4 and m5 are located at the vertices of
an equilateral triangle and form a Lagrange central configuration. Due to the
shape obtained after removing the two different subsets of two bodies, we have
called the five–body stacked central configuration Lagrange plus Euler in one.
As far as we know, this is the first time that this kind of embedded central
configurations are shown in the plane. For a similar phenomena in the spatial
case see [4].

Our main result is the following theorem.

Theorem 2. Consider the following configuration of the five–body problem:
Three collinear masses m1, m2, m3, ordered from left to right, and the two



4 CORNELIO, ÁLVAREZ, CORS

remaining masses, m4, m5 placed symmetrically with respect to the collinear
configuration. Assume that m2 and m4 = m5 = 1 lie at the vertices of an equi-
lateral triangle whose sides have length equal to one, and so, form a Lagrange
central configuration of the three–body problem. Then there exist positive masses
m1, m2, m3 such that the five bodies form a central configuration of five–body
problem and the three collinear masses also form an Euler central configuration
of three–body problem.

2. Statement of the problem

The planar n–body problem consists in the study of a system of n bodies in
the plane with mass and position given by mi and qi ∈ R2, respectively, subject
to their mutual Newtonian gravitational interaction. Then the equations of
motion in a suitable units are

q̈i =
n∑

j=1

j 6=i

mj

qj − qi

r3
ij

=
∂U

∂qi

, 1 ≤ i ≤ n (1)

where
U =

∑
1≤i<j≤n

mimj

rij

is the potential function and rij =
∣∣qi − qj

∣∣ is the Euclidean distance between
the ith and the jth bodies. Without loss of generality we may assume that the

center of mass is fixed at the origin,
n∑

i=1

miqi = 0.

A planar central configuration of the n–body problem q = (q1, . . . ,qn) ∈ R2n

is a configuration such that the acceleration vector of every body is proportional
(common scalar) to its position vector with respect to the center of mass. Then,
by (1) a central configuration have to satisfies the equations

∂U

∂qi

= λmiqi, i = 1, . . . , n,

for some constant λ, equal for all bodies.

In terms of the mutual distances rij, the equations for central configurations,
named Laura/Andoyer/Dziobek equations [8], are given by

fij =
5∑

k=1
k 6=i,j

mk(Rik −Rjk)∆ijk = 0, (2)

for 1 ≤ i < j ≤ n. Here, Rij = 1/r3
ij and ∆ijk = (qi − qj) ∧ (qi − qk). Thus,

∆ijk gives twice the signed area of the triangle with vertices qi, qj and qk.
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We emphasize that in the planar five–body problem this system consists of ten
equations.

Consider the following particular configuration of the planar five–body prob-
lem. Three bodies m1, m2, m3, ordered from left to right, are in collinear
configuration, and two bodies, m4 = m5 = 1 placed symmetrically, with re-
spect to the line containing the first three bodies. We also assume that m2,
m4 and m5 are at the vertices of an equilateral triangle and so, form a La-
grange central configuration of the three–body problem, see Fig 2. Due to the
impossed simmetry we have that r14 = r15, r24 = r25 = r45 and r34 = r35,
then system of ten equations (2) reduces to the following three equations, since
f12 = f13 = f23 = f45 = 0, f14 = −f15, f24 = −f25, f34 = −f35.

f14 = m2(R12 −R24)∆142 +m3(R13 −R34)∆143 + (R14 −R45)∆145 = 0,

f24 = m1(R12 −R14)∆241 +m3(R23 −R34)∆243 = 0, (3)
f34 = m1(R13 −R14)∆341 +m2(R23 −R24)∆342 + (R34 −R45)∆345 = 0.

Solving system (3), we obtain the following expressions for m1, m2 and m3

in terms of the mutual distances.
m1 = −

(R23 −R34)∆243

(R12 −R14)∆241
m3, (4)

m2 = −
(R13 −R34)(R12 −R14)(R34 −R45)∆143∆241∆345 + (R14 −R45)(R23 −R34)(R13 −R14)∆145∆243∆341

(R12 −R45)∆142(R23 −R34)∆243(R13 −R14)∆341 + (R13 −R34)∆143(R12 −R14)∆241(R23 −R45)∆342
,

(5)

m3 =
(R12 −R14)∆241 ((R12 −R45)∆142(R34 −R45)∆345 − (R14 −R45)∆145(R23 −R45)∆342)

(R12 −R45)∆142(R23 −R34)∆243(R13 −R14)∆341 + (R13 −R34)∆143(R12 −R14)∆241(R23 −R45)∆342
.

(6)

a b

m5

m3m2

m4

m1

Figure 2. Euler plus Lagrange stacked central configuration in
the planar five–body problem.

By a suitable scaling we may assume that r24 = r25 = r45 = 1. Let r12 = a >
0, r23 = b > 0, then, according to Figure 2, our configuration must satisfy the
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following relations

r13 = a+ b, r34 =

√
b2 −

√
3b+ 1, r14 =

√
a2 +

√
3a+ 1,

∆142 = −a
2
, ∆143 = −(a+ b)

2
, ∆145 = −(a+

√
3

2
),

∆243 = − b
2
, ∆245 = −

√
3

2
, ∆341 =

(a+ b)

2
, (7)

∆342 =
b

2
, ∆345 = b−

√
3

2
, ∆241 =

a

2
.

LetM be the region in the (a, b)–plane such that the masses mi, i = 1, 2, 3,
given in (4)–(6) are positive and let ∂M be its boundary, that is, points in
the (a, b)–plane with at least one mi, i = 1, 2, 3, equal to zero and where the
non–zero masses are positives. Figure 3 gives a numerical evidence that the set
M is non–empty, as in [12].

Let E(a, b) be the called Euler quintic polynomial

E(a, b) = − (m2 +m3)− (2m2 + 3m3)α− (m2 + 3m3)α2 + (3m1 +m2)α3

+ (2m2 + 3m1)α4 + (m1 +m2)α5,
(8)

where α = b/a.

Then E(a, b) = 0 is the equation that the three collinear masses m1, m2 and
m3 have to satisfy in order to form an Euler central configuration. Our goal
is to prove that {E(a, b) = 0} ∩ M 6= ∅. Again, Figure 3 give a numerical
evidence that the intersection is not empty.

3. Proof of the theorem 2

First we will show that E(a, b) = 0 intersects ∂M at m1 = 0, that is,
there exists at least one point (a0, b0) ∈ ∂M such that E(a0, b0) = 0 with
m1(a0, b0) = 0 and mi(a0, b0) > 0, i = 2, 3.

Let L be the line segment given by (a, b) ∈ (0, 1
3
) × {

√
3

3
}. Claim: L ⊂ ∂M

and for all a ∈ L, m1 is zero and m2,m3 are positive.

From equation (4), m1 = 0 either m3 = 0 or r23 = r34, or equivalently,
b = (b2 −

√
3b + 1)1/2. Then, in the (a, b)–plane, when m3 6= 0 the boundary

m1 = 0 ofM is given by the straight line b =
√

3
3
. On the other hand, m1 > 0

when m3 > 0 and b <
√

3
3
.
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Figure 3. Positive mass regionM with E = 0 in the (a, b)–plane.

From equation (5), when r23 = r34 we have that m2 = 1. To conclude the
claim we have to show that m3 > 0 for all a ∈ L. From equation (6), when
r23 = r34 we obtain the following expression for m3 in terms of a.

m3(a, b =
√

3/3) = −
(
3a+

√
3
)2
N(a)

27a3
(√

3a2 + 3a+
√

3
) (
a2 +

√
3a+ 1

) 3
2

,

where

N(a) = −2a3−
√
3a2+

(
3a5 + 4

√
3a4 + 6a3 − a2 +

√
3a2 −

√
3a− 1

)√
a2 + a

√
3 + 1.

(9)
It is not hard to check that lim

a→0+
m3(a, b =

√
3/3) = +∞, as well as N(1/3) =

− 2
27
−
√

3
9
− 71+14

√
3

81

√
10
9

+
√

3
3
< 0, so, m3(1/3, b =

√
3/3) > 0. Finally, we are

going to show that m3(a, b =
√

3/3) is never zero in L, or equivalently, N(a)
does not vanish. Expression (9) can be written as a polynomial of degree 12,
P (a), such that, the zeros of N(a) are a subset of the zeros of P (a).

P (a) = 9a12 + 33
√

3a11 + 165a10 + (162
√

3− 6)a9 + (306− 20
√

3)a8

+(126
√

3− 90)a7 + (96− 78
√

3)a6 + (14
√

3− 126)a5

+(12− 42
√

3)a4 + (9
√

3− 24)a3 + (12− 2
√

3)a2 + 3
√

3a+ 1.
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We apply Sturm’s Theorem to conclude that P (a) has no real roots in the
interval (0, 1

3
). Let R1(a) be the remainder obtained by dividing P (a) by P ′(a)

and T1(a) = −R1(a). Let R2(a) be the remainder obtained by dividing P ′(a)
by T1(a) and T2(a) = −R2(a). In general, let Rk(a) be the remainder obtained
by dividing Tk−2(a) by Tk−1(a) where Tk(a) = −Rk(a). Next we evaluate the
Tk(a), k = 1, . . . , 11 at points a = 0 and a = 1

3
, obtaining Table 1.

From the data in Table 1, we see that for a = 0 and a = 1
3
there are 6

changes of sign. Thus, the claim is complete. Notice that the omitted values
in the Table 1 are due to how long are the integers involved into.

Table 1. Values of the P (a), P ′(a) and the Sturm’s sequence Tk
at a = 0 and a = 1

3
.

a 0 1
3

P (a) 1 76693
59049

+ 37739
59049

√
3

P ′(a) 3
√

3 −
(

14512
6561

+ 14927
19683

√
3
)

T1 −37
48

−
(

4019605
2834352

+ 507703
708588

√
3
)

T2
287712+142272

√
3

121
218793536

29403
+ 376399856

88209

√
3

T3 −121(−775+717
√

3)

16(1233+626
√

3)2
−121(3815527+5783121

√
3)

209952(1233+626
√

3)2

T4 −32(47985538239+28537522888
√

3)

5929(395+58
√

3)2
−16(2725693418250549+1576558677574052

√
3)

38900169(395+58
√

3)2

T5 T5(0) > 0 T5(1
3
) > 0

T6 T6(0) > 0 T6(1
3
) > 0

T7 T7(0) > 0 T7(1
3
) > 0

T8 T8(0) > 0 T8(1
3
) > 0

T9 T9(0) < 0 T9(1
3
) > 0

T10 T10(0) < 0 T10(1
3
) < 0

T11 T11 > 0 T11 > 0

The Euler quintic equation (8) restricted to L is given by

E(a,
√
3/3) = − (1 +m3)−(2 + 3m3)

(
1√
3a

)
−(1 + 3m3)

(
1√
3a

)2

+

(
1√
3a

)3

+2

(
1√
3a

)4

+

(
1√
3a

)5

.

An straightforward computation shows that lim
a→0+

E(a,
√

3/3) = +∞ and E(1/3,
√

3/3) <

0. Then using a Bolzano argument there exist a0 ∈ L such that E(a0,
√

3/3) =
0.

To complete the proof we have to show that E(a, b) intersects M, as well.
By continuity, it is also a consequence of the change of sign of E(a, b) restricted
to ∂M when m1 = 0.
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Numerically, we observe that Theorem 2 is valid for any fixed value of
a ∈ (0.043964649299756, 0.162031454283589) and that fixes mass m3 inside
the triangle.

An example of stacked central configurations in the planar five–body problem,
belonging to the Lagrange plus Euler family is given bym1 = 0.117224179225200,
m2 = 0.890322344850114, m3 = 38.7407741323209 and m4 = m5 = 1. In that
case a = 1

8
and b = 0.569110604510880.
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