J LLIBRE

Sufficient conditions for a continuous map of Rⁿ into itself to have m-periodic points for all m>0

INTRODUCTION AND RESULTS

In the last few years there has been considerable interest in the study of continuous maps of \mathbb{R}^n into itself from a dynamic point of view. That is, let $T:\mathbb{R}^n\to\mathbb{R}^n$ be a continuous map and let p be an initial point; we are interested in the sequence p,Tp,T^2p,\ldots which reflects some properties of the map T. Periodic points are of particular interest. We shall say p is an m-periodic point if $p=T^mp$ and $p\neq T^kp$ for $1\leq k\leq m-1$. We say p is a periodic point of p is an m-periodic point for some m>0. We are interested in the answers to the following two questions: (i) when does a continuous map T of \mathbb{R}^n into itself have m-periodic points for all m>0? (ii) when does T have the shift on two elements as a subsystem?

Let $T:\mathbb{R}^n\to\mathbb{R}^n$ be a continuous map with n=1. Then the three following statements are equivalent, and give a complete and simple answer to question

- (i) in dimension one.
- (a) The map T has m-periodic points for all m > 0.
- (b) The map T has a 3-periodic point.
- (c) There exist two closed intervals L and R such that R \subset TL, R \cup L \subset TR and T 2 (R \cap L) \cap R = Ø.

Sarkovskii [4] proves (a) \iff (b), and Li and Yorke [1] that (b) \iff (c). The following result is a generalization of the above theorem of Li and Yorke to dimensions greater than one.

Theorem 1

Let $T:\mathbb{R}^n\to\mathbb{R}^n$ be a continuous map with n>1. Assume that there exist two subsets L and R of \mathbb{R}^n homeomorphic to the closed unit ball of \mathbb{R}^n such that: (1) $R\subset TL$, (2) L \cup R \subset TR, (3) $T^2(L\cap R)\cap R=\emptyset$ and (4) the map T restricted to R (resp. L) is a homeomorphism between R (resp. L) and TR (resp. TL). Then for every $m=1,2,\ldots$ there exists an m-periodic point in R.

It is not difficult to construct examples which prove that if the map