A NOTE ON THE ENERGY LEVELS OF HAMILTONIAN SYSTEMS OF TWO DEGREES OF FREEDOM

Jaume Llibre

Secció de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.

Abstract. We use the "blow up" techniques and replace the zero velocity curve of a kind of Hamiltonian systems with two degrees of freedom by an invariant manifold, the zero velocity manifold. The Hamiltonian system extends smoothly over this manifold, and so we get a new flow on an augmented phase space. In this new phase space the energy levels always can be embedded into R³. This makes easy the description of the flow.

We are interested in Hamiltonian systems with two degrees of freedom $\ensuremath{\mathsf{T}}$

$$\frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q}, \quad (1)$$

where the Hamiltonian or total energy function

$$H(q,p) = \frac{1}{2} p^{\dagger} M^{-1} p + V(q)$$
, (2)

is such that M is the diagonal mass matrix 2x2 with positive entries m_1 and m_2 , q is a point in Q (the configuration space) an open subset of R^2 , the potential energy function V: Q \longrightarrow R is sufficiently smooth and homogeneous of degree -k; i.e. $V(rq) = r^{-k}V(q)$, and p in R^2 is the momentum vector. This kind of Hamiltonian system are also studied in [4]. We shall restrict our attention to such potentials trough much that follows can be extended to other classes of potentials.

It is well known that H is a first integral of (1). So we can reduce the dimension of the system by one considering (1) as a vector field on the energy level $\operatorname{H}^{-1}(e)$.