195

PERIODIC POINTS OF ONE DIMENSIONAL MAPS

JAUME LLIBRE

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

Abstract. The goal of this paper is to give information on the periodic points of a continuous self-map of a connected finite graph by using its induced homology endomorphisms.

1. Introduction and statement of the results

A connected finite graph G is a connected topological space formed by a finite set of points v_1, \ldots, v_N (the vertices) and a finite set of open arcs e_1, \ldots, e_M (the edges), in such a way that each open arc is attached by its endpoints to vertices (see Figure 1). That is a connected finite graph is a connected finite complex of dimension 1. A graph may be embedded into the 3-dimensional Euclidean space \mathbb{R}^3 where any set of points can be joined in pairs by non-intersecting arcs. We consider in the finite graph the relative topology given by the standard topology of \mathbb{R}^3 , which coincides with the weak topology of the graph because it is finite. For more details on topological graphs see [S].

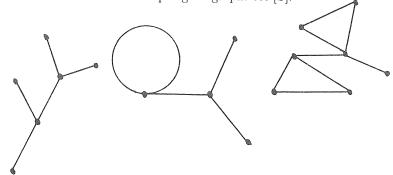


Figure 1. Three connected finite graphs.

If G is a connected finite graph the integral homology groups of G are $H_0(G) = H_0(G; \mathbb{Z}) \approx \mathbb{Z}$ and $H_1(G) = H_1(G; \mathbb{Z}) \approx \mathbb{Z} \oplus {}^{1-N+M} \oplus \mathbb{Z}$, i.e. $H_1(G)$ is free abelian of rank 1 - N + M.

The following result about fixed points for a continuous self-map of a connected finite graph G follows immediately from the Lefschetz fixed point theorem, see [B] or Section 2.

THEOREM 1. Let G be a connected finite graph and $f: G \to G$ a continuous map. Assume that either $H_1(G) = 0$, or $H_1(G) \neq 0$ and $\operatorname{trace}(f_{*1}) \neq 1$ where $f_{*1}: H_1(G) \to H_1(G)$ is the induced endomorphism by f on the first homology group. Then f has a fixed point.

There are well-known corollaries of Theorem 1. Thus, let f be a continuous self-map of a connected finite graph G. Then, since $H_1(G) = 0$ if and only if G is contractible (i.e. G is a tree), from Theorem 1 it follows that every continuous self-map of a tree has a fixed point. Also, if G is the circle and the degree of f is different from 1, then $H_1(G) \neq 0$ and trace(f_{*1}) $\neq 1$. Hence, from Theorem 1 every continuous self-map of the circle of degree different from 1 has a fixed point.

In this paper we study the periodic points for a continuous self-map f of a connected finite graph G when $H_1(G) \neq 0$ and $\operatorname{trace}(f_{*1}) = 1$. To state our results we need some notation.

Let A be an $n \times n$ complex matrix. A $k \times k$ principal submatrix of A is a submatrix lying in the same set of k rows and columns, and a $k \times k$ principal minor is the determinant of such a principal submatrix. There are $\binom{n}{k}$ different $k \times k$ principal minors of A, and the sum of these is denoted by $E_k(A)$. In particular, $E_1(A)$ is the trace of A and $E_n(A)$ is the determinat of A, denoted by $\det(A)$.

If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, then it is well-known that the characteristic polynomial of A satisfies

$$\det(tI - A) = t^{n} - E_{1}(A)t^{n-1} + E_{2}(A)t^{n-2} - \dots + (-1)^{n}E_{n}(A)$$

$$= t^{n} - S_{1}(\lambda_{1}, \dots, \lambda_{n})t^{n-1} + S_{2}(\lambda_{1}, \dots, \lambda_{n})t^{n-2} - \dots$$

$$+ (-1)^{n}S_{n}(\lambda_{1}, \dots, \lambda_{n}),$$

where $S_k(\lambda_1, \ldots, \lambda_n)$ is the kth elementary symmetric function of the n numbers $\lambda_1, \ldots, \lambda_n$ for $k \leq n$, defined as follows:

$$S_k(\lambda_1,\ldots,\lambda_n) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \prod_{j=1}^k \lambda_{i_j},$$

i.e. the sum of all $\binom{n}{k}$ k-fold products of distinct items from $\lambda_1, \ldots, \lambda_n$. Thus $S_1(\lambda_1, \ldots, \lambda_n) = \lambda_1 + \cdots + \lambda_n$ and $S_n(\lambda_1, \ldots, \lambda_n) = \lambda_1 \cdot \ldots \cdot \lambda_n$. Our main result is the following.

THEOREM 2. Let G be a connected finite graph and $f: G \to G$ a continuous map. Suppose that $H_1(G) \approx \mathbb{Z} \oplus \overset{n}{\dots} \oplus \mathbb{Z}$ with n > 1 and that A is the $n \times n$ integral matrix of the endomorphism $f_{*1}: H_1(G) \to H_1(G)$ induced by f. If $E_1(A) = 1$ and k is the smallest integer of the set