BOUNDED POLYNOMIAL VECTOR FIELDS II

JAUME LLIBRE

Abstract. Let X be a polynomial vector field in \mathbb{R}^n of degree m, and let X_m be its homogeneous part of degree m. The main purpose of this paper is to give necessary conditions for the boundedness of X in terms of X_m and of the parity of m. Thus, for instance we prove that if X is bounded and m is even then X_m has a straight line of critical points. For m=2 this result was conjectured by Kaplan and Yorke in [KY].

1. Introduction

Let $X: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 vector field and let $\gamma(t,x)$ be the integral curve of X which passes through $x \in \mathbb{R}^n$ when t = 0, defined on its maximal interval I_x . We say that X is bounded if for each $x \in \mathbb{R}^n$ there exists a compact subset K of \mathbb{R}^n such that $\gamma(t,x) \in K$ for all $t \in I_x \cap (0,+\infty)$.

If all the components of a vector field X in \mathbb{R}^n are polynomial functions then we say that X is polynomial. Let $X=(P^1,\ldots,P^n)$ be a polynomial vector field in \mathbb{R}^n . We say that the degree of X is k if $k=\max\{\deg (P^1),\ldots,\deg (P^n)\}$, and we say that X is homogeneous of degree m if its degree is m and each P^i is a homogeneous polynomial of degree m or is identically zero.

The condition that all the solutions of a polynomial vector field are bounded is a great restriction, but one that is necessary in many physically motivated systems, as for instance the Lorenz system which is an example of bounded polynomial vector field in \mathbb{R}^3 of degree 2 (for more details on the Lorenz system, see for instance [GH]).

The bounded homogeneous polynomial vector fields in \mathbb{R}^n of degree 2 were studied by Markus, Kaplan and Yorke (see [KY] for arbitrary n and [Ma] for odd n). They proved that if X is a bounded homogeneous polynomial vector field in \mathbb{R}^n of degree 2, then X has a straight line of critical points.

The main goal of this paper is to prove the following two theorems.

THEOREM 1. Let X be a bounded polynomial vector field in \mathbb{R}^n of even degree m, and let X_m be its homogeneous part of degree m. Then X_m has a straight line of critical points.

Notice that Theorem 1 gives a necessary condition for a polynomial vector field in \mathbb{R}^n of even degree to be bounded.