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SOME CONJECTURES ON PLANAR POLYNOMIAL
VECTOR FIELDS AND STRAIGHT LINES !
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Abstract. In this note we present some partial results on the Invariant
Straight Line Conjecture: Let P and @ be two real polynomials in the
variables z and y such that degree of P2 + Q% is 2n > 2. Assume that
the polynomial differential system o' = P{z,y), ¥ = Q(z,y), has finitely
many invariant straight lines. Then it has at most 2n + 1 (respectively
2n-+-2) invariant straight lines if n is even (respectively odd). Furthermore
we introduce two new conjectures, one geometric and another algebraic,
which imply the Invariant Straight Line Conjecture.

Let P and ( be two real polynomials in the real variables 2 and
y. We say that the polynomial differential sysiem

(1) m'zp(;c’y)‘) y’ZQ(may)a

has degree n if the degree of the polynomial P? 4 Q2 is 2n.

Studies of polynomial differential systems were carried out by

. Poincaré in [2] and [3]. The algebraic feature of polynomial dif-
. ferential systems renders natural certain questions and problems of

an algebraic or an algebro—geometric nature as the following two.

- Recognize when system (1) has invariant algebraic curves, or is al-

gebraically integrable? See the interesting survey of Schlomiulk [4]

. on these questions. This paper is about the first question.

The straight line az + by + ¢ = 0 is invariant for the flow of

- system (1), and we call it an invariant straight line of system (1) if

IThis paper is a summary of [1].




