On the degree of the invariant algebraic curves of polynomial differential systems

Jaume Llibre

Abstract

We present the two recent examples (of Christopher and Llibre [7] and Moulin Ollagnier [11]) on the existence of invariant algebraic curves of arbitrary degree for quadratic polynomial differential systems without rational first integrals, which solved in the negative sense an open question of Lins Neto [9]. We provide a new proof of the result of Moulin Ollagnier with the explicit expression of its invariant algebraic curves (unknown previously). Finally, we present an open question.

By definition a planar polynomial differential system or simply a polynomial system is a differential system of the form

$$
\begin{equation*}
\frac{d x}{d t}=\dot{x}=P(x, y), \quad \frac{d y}{d t}=\dot{y}=Q(x, y) \tag{1}
\end{equation*}
$$

or equivalently

$$
\frac{d y}{d x}=\frac{Q(x, y)}{P(x, y)}
$$

where P and Q are polynomials in the variables x and y. Moreover, the dependent variables x and y, the independent variable t, and the coefficients of the polynomials P and Q are either all complex, or all real. In the former case the system is called a complex polynomial system and in the later a real polynomial system. The independent variable t will be called the time of system (1). The degree m of the polynomial system (1) will be the maximum of the degrees of the polynomials P and Q.

Let $f \in \mathbb{C}[x, y]$; i.e. f is a polynomial with complex coefficients in the variables x and y. The complex algebraic curve $f(x, y)=0$ is an invariant algebraic curve of the vector field \mathcal{X} if for some polynomial $K \in \mathbb{C}[x, y]$ we have

$$
\begin{equation*}
\mathcal{X} f=P \frac{\partial f}{\partial x}+Q \frac{\partial f}{\partial y}=K f \tag{2}
\end{equation*}
$$

The polynomial K is called the cofactor of the invariant algebraic curve $f=0$. We note that since the polynomial system has degree m, then any cofactor has at most degree $m-1$.

We remark that in the definition of invariant algebraic curve $f=0$ we always allow that this curve is complex; that is $f \in \mathbb{C}[x, y]$. As we will see this is due to the fact

