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A NOTE ON THE DZIOBECK CENTRAL CONFIGURATIONS

JAUME LLIBRE

Abstract. For the Newtonian n–body problem in Rn−2 with n ≥ 3 we prove
that the following two statements are equivalent.

(a) Let x be a Dziobek central configuration having one mass located at the
center of mass.

(b) Let x be a central configurations formed by n − 1 equal masses located
at the vertices of a regular (n − 2)–simplex together with an arbitrary

mass located at its barycenter.

1. Introduction and statement of the main results

The main problem of the classical Celestial Mechanics is the n-body problem; i.e.
the description of the motion of n particles of positive masses under their mutual
Newtonian gravitational forces. This problem is completely solved only when n = 2,
and for n > 2 there are only few partial results.

Consider the Newtonian n–body problem in the d–dimensional space Rd, i.e.

ẍi =
n∑

j=1, j ̸=i

mj(xj − xi)

r3ij
, for i = 1, . . . , n.

Here mi are the masses of the bodies, xi ∈ Rd are their positions, and rij = |xi−xj |
are their mutual distances. The vector x = (x1, . . . , xn) ∈ Rnd will be called
the configuration of the system. The differential equations are well–defined if the
configuration is of non–collision type, i.e, rij ̸= 0 when i ̸= j. The dimension of
any non–collision configuration of n ≥ 2 bodies satisfies 1 ≤ δ(x) ≤ n− 1.

We define the dimension δ(x) of a configuration x to be the dimension of the
smallest affine subspace of Rd which contains all of the points xi. As usual config-
urations with δ(x) = 1, 2, 3 will be called collinear, planar and spatial, respectively.

The total mass and the center of mass of the n bodies are

M = m1 + . . .+mn, c =
1

M
(m1x1 + · · ·+mnxn) ,

respectively. A configuration x is a central configuration if the acceleration vectors
of the bodies satisfy

(1)

n∑
j=1, j ̸=i

mj(xj − xi)

r3ij
+ λ(xi − c) = 0, for i = 1, . . . , n,
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Central configurations started to be studied in the second part of the 18th cen-
tury, there is an extensive literature concerning these solutions. For a classical
background, see the sections on central configurations in the books of Wintner [17]
and Hagihara [6]. For a modern background see, for instance, the papers of Albouy
and Chenciner [2], Albouy and Kaloshin [3], Hampton and Moeckel [7], Moeckel
[9], Palmore [13], Saari [14], Schmidt [15], Xia [18], ... One of the reasons why
central configurations are important is that they allow to obtain the unique ex-
plicit solutions in function of the time of the n–body problem known until now,
the homographic solutions for which the ratios of the mutual distances between the
bodies remain constant. They are also important because the total collision or the
total parabolic escape at infinity in the n–body problem is asymptotic to central
configurations, see for more details Dziobek [5] and [14]. Also if we fix the total
energy h and the angular momentum c of the n–body problem, then some of the
bifurcation points (h, c) for the topology of the level sets with energy h and angular
momentum c are related with the central configurations, see Meyer [11] and Smale
[16] for a full background on these topics.

Moulton [12] proved that for a fixed mass vector m = (m1, . . . ,mn) and a fixed
ordering of the bodies along the line, there exists a unique collinear central config-
uration, up to translation and scaling.

At the other extreme of the dimension range, Lagrange [8] showed that for n = 3,
the only central configuration x with δ(x) = n−1 = 2 is the equilateral triangle, and
it is central for all choices of the masses. An analogous result of Lagrange‘s result
holds for all n. Thus, it is well known that for n ≥ 3 the only central configuration
x with δ(x) = n − 1 of the n–body problem is formed by the vertices of a regular
(n − 1)–simplex, which is central for all choices of the masses. Of course, a 1–
simplex is a closed interval, a 2–simplex is a closed equilateral triangle, a 3–simplex
is a closed regular tetrahedron, and so on.

For other values of the dimension δ(x) the problem of finding or even counting
the central configurations x of the n–body problem is very difficult, see for instance
Moeckel [10]. The dimension d(x) = 2 is of course the most interesting of all,
because planar central configurations give rise to physically realistic periodic orbits.
For n = 4, Dziobek [5] formulated the planar central configuration problem in terms
of mutual distances rij and obtained algebraic equations characterizing the central
configurations. His approach has been adopted and developed by Albouy [1] in
his study of the central configurations with four equal masses, see also Albouy and
Llibre [4]. The natural generalization to higher n is the case δ(x) = n−2. Following
[1] and [10] we call such central configurations Dziobek configurations.

The goal of this paper is to prove the following result.

Theorem 1. The following two statements are equivalent for the n–body problem
with n ≥ 3.

(a) Let x be a central configuration with δ(x) = n − 2 (i.e. a Dziobek central
configurations) having one mass located at the center of mass.

(b) Let x be a central configurations formed by n−1 equal masses located at the
vertices of a regular (n−2)–simplex together with an arbitrary mass located
at its barycenter.

Of course, statement (b) of Theorem 1 implies immediately statement (a). The
converse implication is proved in section 3.
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If the central configuration is not Dziobek, then the equivalence of Theorem 1
does not hold. Thus, for instance, consider a regular polygon with n− 1 > 3 equal
masses located at its vertices and an arbitrary mass located at its barycenter. This
is a non–Dziobek central configuration having one mass located at the center of
mass, and since n > 4 it is different from the configuration formed by the vertices
of a regular (n− 2)–simplex together with its barycenter.

2. Equations for the Dziobek central configurations

Since we want to study the Dziobek central configurations we consider the n–
body problem in Rn−2. To each configuration x = (x1, . . . , xn) ∈ Rn(n−2) we
associate the n× n matrix

X =

 1 · · · 1
x1 · · · xn

0 · · · 0

 .

Let Xk be the (n − 1) × (n − 1) matrix obtained delating from the matrix X its
k–th column and its last row. Then define ∆k = (−1)k+1 det(Xk) for k = 1, . . . , n.

Dziobek [5] (see also equations (8) and (16) of Moeckel [10]) reduces the equations
for the central configurations (1) of the n–body problem to the following system of

N =
n(n− 1)

2
+ n+ 2

equations and N unknowns:

(2)

1

r3ij
= c1 + c2

∆i∆j

mimj
,

ti − tj = 0,

for 1 ≤ i < j ≤ n, with

ti =
n∑

j=1, j ̸=i

∆j r
2
ij .

The N unknowns in equations (2) are the n(n − 1)/2 mutual distances rij , the n
variables ∆i, and the two constants ck.

3. Proof of Theorem 1

In order to complete the proof of Theorem 1, we must prove that statement (a)
of that theorem implies statement (b).

We assume that x = (x1, . . . , xn) ∈ Rn(n−2) is a Dziobek central configuration
having one mass located at the center of masses. Without loss of generality we can
suppose:

(i) the center of mass is at the origin of coordinates;
(ii) the mass mn is located at the center of mass, i.e. xn = 0;
(ii) the unit of mass it taken in such a way that mn−1 = 1. Then

xn−1 = −
n−2∑
i=1

mixi.
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Since x is a Dziobek central configuration it satisfies the equations (2). Easy
computations using the properties of the determinants show that

(3)

∆i∆j

mimj
= det(x1 · · ·xn−2)

2 for 1 ≤ i < j ≤ n− 1,

∆i∆n

mimn
=

M −mn

mn
det(x1 · · ·xn−2)

2 for i = 1, . . . , n− 1.

Then, the first equations of (2) become

(4)

1

r3ij
= c1 + c2 det(x1 · · ·xn−2)

2 for 1 ≤ i < j ≤ n− 1,

1

r3in
= c1 + c2

M −mn

mn
det(x1 · · ·xn−2)

2 for i = 1, . . . , n− 1.

The equations ti = tj of (2) are trivially satisfied by direct computations, but they
are not relevant in this proof.

From equations (4) we obtain that

(5)
rij = k1 for 1 ≤ i < j ≤ n− 1,

rin = k2 for i = 1, . . . , n− 1,

where k1 and k2 are constants. Therefore, from the first equations of (5) it follows
that the masses mk for k = 1, . . . , n − 1 are at the vertices of a regular (n − 2)–
simplex, and from the second equations of (5) we obtain that the mass mn is at the
barycenter of this regular (n− 2)–simplex. Moreover, since the barycenter must be
the center of mass of the n− 1 masses located at the vertices of a regular (n− 2)–
simplex, this forces that these n− 1 masses must be equal. Of course, the mass mn

located at the barycenter is arbitrary. This complets the proof of the theorem.
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prix de l’Académie Royale des Sciences de Paris, tome IX, 1772, reprinted in Ouvres, Vol. 6

(Gauthier–Villars, Paris, 1873), pp 229–324.
[9] R. Moeckel, On central configurations, Mah. Z. 205 (1990), 499–517.
[10] R. Moeckel, Generic finiteness for Dziobek configurations, Trans. Amer. Math. Soc. 353

(2001), 4673–4686.

[11] K.R. Meyer, Bifurcation of a central configuration, Cel. Mech. 40 (1987), 273–282.
[12] F.R. Moulton, The straight line solutions of n bodies, Ann. of Math. 12 (1910), 1–17.
[13] J.I. Palmore, Classifying relative equilibria II, Bull. Amer. Math. Soc. 81 (1975), 71–73.

[14] D. Saari, On the role and properties of central configurations, Cel. Mech. 21 (1980), 9–20.
[15] D.S. Schmidt, Central configurations in R2 and R3, Contemporary Math. 81 (1980), 59–76.



A NOTE ON THE DZIOBECK CENTRAL CONFIGURATIONS 5

[16] S. Smale, Topology and mechanics II: The planar n–body problem, Inventiones math. 11

(1970), 45–64.
[17] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton University Press,

1941.
[18] Z. Xia, Central configurations with many small masses, J. Differential Equations 91 (1991),

168–179.
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