
ON THE 16–HILBERT PROBLEM

JAUME LLIBRE

Abstract. We present a brief survey of recent results on the sec-
ond part of the 16–th Hilbert problem. We put special emphasis
in the algebraic limit cycles.

1. Introduction

In this brief survey we only consider differential equations in R2 of
the form

(1)
dx

dt
= P (x, y),

dy

dt
= Q(x, y),

where P and Q are polynomials of degree at most d. We recall that
a limit cycle of the differential equation (1) is a periodic orbit of this
equation isolated in the set of all periodic orbits of equation (1).

The notion of limit cycle appears in the years 1891 and 1897 in
the works of Poincaré [33]. Moreover, he proved that a polynomial
differential equation (1) without saddle connections has finitely many
limit cycles, see [33].

Hilbert [16] at the Second International Congress of Mathematicians,
celebrated in Paris in 1900, proposed a list of 23 relevant problems for
being solved during the XX century. The 16–th problem of the list is:
16. Problem of the topology of algebraic curves and surfaces

The maximum number of closed and separate branches which a plane
algebraic curve of the nth order can have has been determined by Har-
nack. There arises the further question as to the relative position of the
branches in the plane. As to curves of the 6th order, I have satisfied
myself–by a complicated process, it is true–that of the eleven branches
which they can have according to Harnack, by no means all can lie ex-
ternal to one another, but that one branch must exist in whose interior
one branch and in whose exterior nine branches lie, or inversely. A
thorough investigation of the relative position of the separate branches
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when their number is the maximum seems to me to be of very great
interest, and not less so the corresponding investigation as to the num-
ber, form, and position of the sheets of an algebraic surface in space.
Till now, indeed, it is not even known what is the maximum number of
sheets which a surface of the 4th order in three dimensional space can
really have.

In connection with this purely algebraic problem, I wish to bring for-
ward a question which, it seems to me, may be attacked by the same
method of continuous variation of coefficients, and whose answer is of
corresponding value for the topology of families of curves defined by
differential equations. This is the question as to the maximum num-
ber and position of Poincaré’s boundary cycles (cycles limites) for a
differential equation of the first order and degree of the form

dy

dx
=

Y

X
,

where X and Y are rational integral functions of the nth degree in x
and y. Written homogeneously, this is

X

(
y
dz

dt
− z

dy

dt

)
+ Y

(
z
dx

dt
− x

dz

dt

)
+ Z

(
x
dy

dt
− y

dx

dt

)
= 0,

where X, Y , and Z are rational integral homogeneous functions of the
nth degree in x, y, z, and the latter are to be determined as functions
of the parameter t.

It is clear that the 16–th Hilbert problem is formulated in two parts.
The first part is about the mutual disposition of the maximal number
of separate branches of an algebraic curve, and its extension to non-
singular real algebraic varieties. In the second part he asked for the
maximal number and relative position of the limit cycles of the differ-
ential system (1). Usually the first part of the 16–th Hilbert problem
is studied by researchers in real algebraic geometry, while the second
part is considered by mathematicians working in dynamical systems or
differential equations. Hilbert also pointed out that there exist possible
connections between these two parts. Some of these connections are
described in the survey about the 16–th Hilbert problem written by
Jibin Li, see [23].

In what follows when we talk about the 16–th Hilbert problem we
always are talking on the second part of the 16–th Hilbert problem.

In 1988 Noel Lloyd [30] observed with respect the 16–th Hilbert
problem that the striking aspect is that the hypothesis is algebraic, while
the conclusion is topological.
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Arnold in 1977 and 1983 (see [1] and [2], respectively) stated the
weakened, infinitesimal or tangential 16–th Hilbert problem which we
do not consider here, but there are excellent surveys for this mod-
ified problem, see for instance the survey of Ilyashenko [19] on the
16–th Hilbert problem, the already mentioned survey of Jibin Li, or
the book of Colin Christopher and Chengzhi Li [7], or the survey due
to Kaloshin [21], or the one of Yakovenko [40], or more recently the
work of Binyamini, Novikov and Yakovenko [4], ...

According with Smale [36] except for the Riemann hypothesis, the
second part of the 16–th Hilbert problem seems to be the most elusive
of the Hilbert’s problems. Smale states the following modern version
of the second half of 16–th Hilbert problem:

Consider the polynomial differential equation (1) in R2. Is there a
bound K on the number of limit cycles of the form K ≤ dq where d is
the maximum of the degrees of P and Q, and q is a universal constant ?

The possible distribution or topological configurations of limit cycles
mentioned as position for Hilbert has also interested to many authors.
Coleman in his work [9] on the 16–Hilbert problem said: For d > 2
the maximal number of eyes is not known, nor is it known just which
complex patterns of eyes within eyes, or eyes enclosing more than a
single critical point, can exist. Here “eye” means a nest of limit cycles.
We shall see later on that some of the questions on the possible topo-
logical configurations of limit cycles realized by polynomial differential
equations can be solved easily.

Another problem very related with the 16–th Hilbert problem is the
study of the possible bifurcations of limit cycles. Again this problem
will not be considered here, see good information about it in the survey
of Jibin Li, or the books of Christopher and Chengzhi Li, Yankian Ye
[41], Zhifen Zang et al. [43], ...

Our approach to the 16–Hilbert problem is done through the follow-
ing seven problems:

Problem 1: Is it true that a polynomial differential equation (1) has
a finite number of limit cycles ?

Problem 2: Is it true that the number of limit cycles of a polynomial
differential equation (1) is bounded by a constant depending only on the
degree of the polynomials ?

If the problem 2 has a positive answer then its bound is denoted
by H(d), and called the Hilbert number for the polynomial differential
equations (1) of degree d.
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Problem 3: If the problem 2 has a positive answer, provide an upper
bound for H(d).

Smale [36] in 1998 said that the 16–Hilbert problem looks very dif-
ficult, and that first we must consider a special class of simpler poly-
nomial differential equations, and he propose to study the 16–Hilbert
problem restricted to the Liénard polynomial differential equations, i.e.
to the polynomial differential equations of the form

(2) ẋ = y − F (x), ẏ = −x,

where F (x) is a polynomial in the variable x of degree d.
Problem 4: What about the problems 2 and 3 if we restrict the study
to the Liénard polynomial differential equations (2) ?

For the Liénard polynomial differential equations we do not talk
about the problem 1 because as we shall see the problem 1 has been
solved in positively for all polynomial differential equations (1).
Problem 5: What are the possible topological configurations of limit
cycles for the polynomial differential equations (1) ?

An algebraic limit cycle is an oval of an algebraic curve which is a
limit cycle of a polynomial differential equation (1).
Problem 6: Is it true that the number of algebraic limit cycles of a
polynomial differential equation (1) is bounded by a constant depending
only on the degree of the polynomials ?

If the problem 6 has a positive answer then its bound is denoted by
Ha(d), and we called it the algebraic Hilbert number for the polynomial
differential equation (1) of degree d.
Problem 7: If the problem 6 has a positive answer, provide an upper
bound for Ha(d).

The first four problems have considered by several authors, see for
instance the surveys of Ilyashenko and of Jibin Li. Here, we pass fast for
these first four problems, and we shall dedicate more space to the last
three problems which as far as we know there has not been considered
for the moment in any other survey.

2. Problem 1

Dulac [12] in 1923 claimed that any polynomial differential equation
(1) always has finitely many limit cycles. Ilyashenko [17] in 1985 found
an error in Dulac’s paper. Later on, two long works have appeared,
independently, providing proofs of Dulac’s assertion, one due to Écalle
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[14] in 1992 and the other to Ilyashenko [18] in 1991. As Smale men-
tioned in [36] these two papers have yet to be thoroughly digested by
the mathematical community.

Bamon [3] in 1986 proved that any polynomial differential equation
of degree 2 has finitely many limit cycles. His result uses previous
results of Ilyashenko.

From the work of Dulac [12] it follows that and if a polynomial differ-
ential equation (1) has saddle connections forming a simple homoclinic
or heteroclinic loop, then also the equation has finitely many limit
cycles, see for more details the nice work of Sotomayor [37]. Here a
homoclinic or heteroclinic loop is formed by k = 1 or k > 1 saddles
(eventually some saddles can be repeated) and k different separatrices
connecting these saddles and forming a loop (eventually some points
of this loop can be identified in a repeated saddle) in such a way that
at least in one of the two sides of the loop is defined a Poincaré return
map. Let µi < 0 < λi the eigenvalues of these saddles, if

k∏
i=1

λi

µi

̸= 1,

then the loop is called simple.

3. Problem 2

Since the polynomial differential equations of degree 1 or linear differ-
ential equations have no limit cycles, it follows that the Hilbert number
H(1) = 0.

Unfortunately we do not know if an uniform upper bound for the
maximum number of limit cycles exists for all polynomial vector fields
of degree d if d ≥ 2.

4. Problem 3

Since problem 2 remains open for degree d ≥ 2, we do not know if
the Hilbert number H(d) exist for d ≥ 2.

In 1957 Petrovskii and Landis [31] claimed that the polynomial dif-
ferential equations of degree d = 2 has at most 3 limit cycles, i.e. that
the Hilbert number H(2) = 3. Soon (in 1959) a gap was found in the
arguments of Petrovskii and Landis see [32]. Later on Lan Sun Chen
and Ming Shu Wang [5] in 1979 and Songling Shi [35] in 1982 provided
the first polynomial differential equations of degree 2 having 4 limit
cycles, and consequently showing that H(2) ≥ 4.
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Some lower bounds for H(d) have been given, mainly by Christopher
and Lloyd [8] and Jibin Li, see the survey of this last author who analyze
these lower bounds.

5. Problem 4

The study of Liénard differential equations (not necessarily polyno-
mial) has a long history and a lot of results were obtained on them, see
for example the book [43].

If F (x) = x3 − x then the Liénard differential equation (2) is the
famous van der Pol’s equation which has at most one limit cycle.

Van der Pol in 1926, Liénard in 1928 and Andronov in 1929 proved
that the periodic solution of a self–sustained oscillation in a vacuum
tube was a limit cycle in the sense defined by Poincaré. After this
observation of the existence of a limit cycle in the nature, the existence,
non–existence, uniqueness and other properties of the limit cycles have
been intensively studied not only by the mathematicians, which were
already motivated by the works of Poincaré and Hilbert, also by the
physiciens, and later on by the chemists, biologists, economists, and
many others. The limit cycles started to be important in the sciences.

For the Liénard polynomial differential equations (2) of degree d the
existence of a uniform bound for the maximum number of limit cycles
also remains unproved. But when the degree n of these systems is
odd Ilyashenko and Panov in [20] obtained an uniform upper bound
for the number of limit cycles in a subclass of systems such that the
polynomial F (x) is monic and its coefficients satisfy some estimations.

In 1977 Lins, de Melo and Pugh conjectured in [24] that the Liénard
polynomial differential equation (2) of degree d ≥ 3 has at most [(d−
1)/2] limit cycles, where [(d− 1)/2] means the largest integer less than
or equal to (d − 1)/2. Moreover, they provide Liénard polynomial
differential equations (2) for any degree d ≥ 3 having at least [(d−1)/2]
limit cycles. They also proved that the conjecture is true for d = 3. It
is not difficult to show that their conjecture also holds for the degrees
d = 1, 2.

In 2007 Dumortier, Panazzolo and Roussarie [13] gave a counterex-
ample to this conjecture for d = 7 and mentioned that it can be ex-
tended to d ≥ 7 odd. Recently, de Maesschalck and Dumortier proved
in [11] that the Liénard polynomial differential equation (2) of degree
d ≥ 6 can have [(d− 1)/2] + 2 limit cycles. In the last two papers the
results are proved using singular perturbation theory, and the authors
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work with relaxation oscillation solutions to study the number of limit
cycles.

Chengzhi Li and Llibre [22] shows in 2012 that the Lins–de Melo–
Pugh’s conjecture is true for the Liénard polynomial differential equa-
tions of degree d = 4. So at this moment only remains open the
conjecture for degree d = 5.

6. Problem 5

A topological configuration of limit cycles is a finite set C = {C1, . . .,
Cn} of disjoint simple closed curves of the plane such that Ci ∩Cj = ∅
for all i ̸= j.

Given a topological configuration of limit cycles C = {C1, . . . , Cn}
the curve Ci is primary if there is no curve Cj of C contained into the
bounded region limited by Ci.

Two topological configurations of limit cycles C = {C1, . . . , Cn} and
C ′ = {C ′

1, . . . , C
′
m} are (topologically) equivalent if there is a homeo-

morphism h : R2 → R2 such that h (∪n
i=1Ci) = (∪m

i=1C
′
i). Of course, for

equivalent configurations of limit cycles C and C ′ we have that n = m.
We say that a polynomial differential equation (1) realizes the config-

uration of limit cycles C if the set of all limit cycles of X is equivalent
to C.

In 2004 Llibre and Rodríguez [28] proved the following result.

Theorem 1. Let C = {C1, . . . , Cn} be a topological configuration of
limit cycles, and let r be its number of primary curves. Then the fol-
lowing statements hold.

(a) The configuration C is realizable by some polynomial differential
equation.

(b) The configuration C is realizable as algebraic limit cycles by
a polynomial differential equation of degree ≤ 2(n + r) − 1.
Moreover, such a polynomial differential equation has a first
integral of Darboux type.

Of course, statement (a) of Theorem 1 follows immediately from
statement (b).

Statement (a) of Theorem 1 was solved by first time by Schecter
and Singer [34] and Sverdlove [38], but they do not provide an explicit
polynomial vector field satisfying the given configuration of limit cycles,
as it was provided in the proof of statement (b) of Theorem 1.
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Christopher [6] in 2001 proved the following result. If f = f(x, y)
is a polynomial we denote its partial derivatives with respect to the
variables x and y as fx and fy, respectively.

Theorem 2. Let f = 0 be a non–singular algebraic curve of degree m,
and D a first degree polynomial, chosen so that the straight line D = 0
lies outside all bounded components of f = 0. Choose the constants α
and β so that αDx+βDy ̸= 0, then the polynomial differential equation
of degree m,

ẋ = αf −Dfy, ẏ = βf +Dfx,

has all the bounded components of f = 0 as hyperbolic limit cycles.
Furthermore, the differential equation has no other limit cycles.

Theorem 2 improves a similar result due to Winkel [39], but the
polynomial differential equation obtained by Winkel has degree 2m−1.

Given a topological configuration of n limit cycles we can consider
an equivalent topological configuration formed by circles. Then, con-
sider the algebraic curve f = 0 formed by the product of all the cir-
cles. Applying Theorem 2 to the curve f = 0, we obtain a polynomial
differential equation of degree 2n which realizes the given topological
configuration of n limit cycles with algebraic limit cycles. A difference
between the polynomial differential equations of Theorems 1 and 2, is
that the first always has a first integral, and the second, in general, has
no first integrals.

In short, both theorems show that any topological configuration of
limit cycles is realizable with algebraic limit cycles for some polynomial
differential equation, and provide the degree of such polynomial differ-
ential equations. But there are many questions which remains open, as
for instance: what are the possible topological configurations realizable
for the polynomial differential equations of a given degree? Of course
this question is strongly more difficult than the question to provide a
uniform upper bound for the maximum number of limit cycles that the
polynomial differential equations of a given degree can have.

7. Problems 6 and 7

Associated to the polynomial differential equation (1) there is the
polynomial vector field

(3) X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.
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The algebraic curve f(x, y) = 0 of R2 is an invariant algebraic curve
of the polynomial vector field X or of the polynomial differential equa-
tion (1) if for some polynomial K ∈ C[x, y] we have

(4) X f = P
∂f

∂x
+Q

∂f

∂y
= Kf.

Since on the points of an algebraic curve f = 0 the gradient (∂f/∂x,
∂f/∂y) of the curve is orthogonal to the vector field X (see (4)), the
vector field X is tangent to the curve f = 0. Hence the curve f = 0 is
formed by orbits of the vector field X . This justifies the name of in-
variant algebraic curve given to the algebraic curve f = 0 satisfying (4)
for some polynomial K, because it is invariant under the flow defined
by X .

The next well known result tell us that we can restrict our attention
to the irreducible invariant algebraic curves, for a proof see for instance
[25]. Here, as it is usual, R[x, y] denotes the ring of all polynomials in
the variables x and y and coefficients in R.

Proposition 3. We suppose that f ∈ R[x, y] and let f = fn1
1 · · · fnr

r

be its factorization in irreducible factors over R[x, y]. Then for a poly-
nomial vector field X , f = 0 is an invariant algebraic curve with co-
factor Kf if and only if fi = 0 is an invariant algebraic curve for each
i = 1, . . . , r with cofactor Kfi. Moreover Kf = n1Kf1 + . . .+ nrKfr .

Consider the space Σ′ of all real polynomial vector fields (4) of degree
d having real irreducible invariant algebraic curves. A simpler version
of the second part of the 16th Hilbert’s problem is: Is there an upper
bound on the number of algebraic limit cycles of any polynomial vector
field of Σ′? Now we cannot provide an answer to this question for
general real algebraic curves, but we give the answer for the following
class of algebraic curves.

We say that a set fj = 0, for j = 1, . . . , k, of irreducible algebraic
curves is generic if it satisfies the following five conditions:

(i) There are no points at which fj = 0 and its first derivatives all
vanish (i.e. fj = 0 is a non–singular algebraic curve).

(ii) The highest order homogeneous terms of fj have no repeated
factors.

(iii) If two curves intersect at a point in the affine plane, they are
transversal at this point.

(iv) There are no more than two curves fj = 0 meeting at any point
in the affine plane.

(v) There are no two curves having a common factor in the highest
order homogeneous terms.
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The next result was proved by Llibre, Ramírez and Sadovskaia [26]
in 2010.

Theorem 4. For a polynomial vector field X of degree d ≥ 2 having all
its irreducible invariant algebraic curves generic, the maximum number
of algebraic limit cycles is at most 1+(d−1)(d−2)/2 if d is even, and
(d− 1)(d− 2)/2 if d is odd. Moreover these upper bounds are reached.

For cubic polynomial vector fields having all their irreducible invari-
ant algebraic curves generic Theorem 4 says that one is the maximum
number of algebraic limit cycles, but there are examples of cubic poly-
nomial vector fields having two algebraic limit cycles, of course such
vector fields have non–generic invariant algebraic curves. Thus the
system

ẋ = 2y(10 + xy), ẏ = 20x+ y − 20x3 − 2x2y + 4y3,

has two algebraic limit cycles contained into the invariant algebraic
curve 2x4 − 4x2 + 4y2 + 1 = 0, see Proposition 19 of [29].

Up to now all the polynomial vector fields having non–generic in-
variant algebraic curves and more algebraic limit cycles than the upper
bounds given in Theorem 4 for the generic case have degree odd, and
at most one limit cycle than the upper bound of Theorem 4. So, in
[26] we did the following conjecture.

Conjecture 1. The algebraic Hilbert number is

Ha(d) = 1 + (d− 1)(d− 2)/2.

The easiest version of this conjecture is it restriction to the polyno-
mial vector fields of degree 2.

Conjecture 2. Ha(2) = 1.

Note that both conjectures are true when d is even and we restrict
the algebraic limit cycles to generic invariant algebraic curves.

An interesting result on the limit cycles of a C1 differential equation
in the plane is the following one due to Giacomini, Llibre and Viano
[15], see an easier proof in [28]. This result has been used in the proofs
of Theorems 1 and 4. First we need a definition.

Let U be an open subset of R2. A function V : U → R is an inverse
integrating factor of a C1 vector field X defined on U if V verifies the
linear partial differential equation

P
∂V

∂x
+Q

∂V

∂y
=

(
∂P

∂x
+

∂Q

∂y

)
V
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in U .

Theorem 5. Let X be a C1 vector field defined in the open subset U
of R2. Let V : U → R be an inverse integrating factor of X. If γ is a
limit cycle of X, then γ is contained in {(x, y) ∈ U : V (x, y) = 0}.
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