
BRIEF SURVEY ON THE TOPOLOGICAL ENTROPY

JAUME LLIBRE

Abstract. In this paper we give a brief view on the topological
entropy. The results here presented are well known to the people
working in the area, so this survey is mainly for non–experts in the
field.
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1. Introduction

We do not try to be exhaustive on all the result about the topological
entropy, thus here we do not consider or do not put too much attention
on its relation with the metric entropy, the local entropy, Lyapunov
exponents, etc, and we do not say anything about flows or other actions,
nor about generic situations. Also in the case of surfaces there are
more results available, because one can use Nielsen–Thurston theory for
the study of the global dynamics of homeomorphism, see for example
[17], [18], but we want to keep our survey short and relatively easy to
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read, and covering all these other aspects we shall need another survey.
The results will be presented without proofs, but providing explicit
references about them.

The paper has two parts well separated.

The first is dedicated to the topological entropy in one–dimensional
spaces, more precisely on the interval, the circle and a graph. For
this part the main reference for completing the results here mentioned,
additionally to the original papers where they are proved by first time,
is the book [4].

In the second part we consider the topological entropy in spaces of
dimension larger than one, and for going further in this part see the
survey [34] where you can find examples and open questions and it is
more detailed the relation of the topological entropy with other dynam-
ical invariants. For more information about the topological entropy see
the good surveys [19, 24, 31, 32, 34, 47, 53, 57], or for the holomorphic
case [22].

2. The topological entropy

Let X be a metric compact Hausdorff topological space, and let
f : X → X a continuous map. By iterating this map we obtain a
dynamical system. How to measure its complicated dynamics? How
many very different orbits it has? How fast it “mixes” together various
sets, etc. This can be measured by the topological entropy.

There are several definitions of topological entropy. The classical
definition is due to Adler, Konheim and McAndrew [1]. Here we shall
use the definition of Bowen [14] because it is shorter to introduce. For
equivalent definitions and properties of the topological entropy see for
instance the book of Hasselblatt and Katok [26].

We will also consider the topological entropy of f , defined as follows.
First define the metric dn on M by

dn(x, y) = max
0≤i≤n

d(f i(x), f i(y)), ∀x, y ∈ M.

A finite set S is called (n, ε)–separated with respect to f if for any
different x, y ∈ S we have dn(x, y) > ε. The maximal cardinality of an
(n, ε)–separated set is denoted Sn. Define

h(f, ε) = lim sup
n→∞

1

n
log Sn.

Then the topological entropy of f is

h(f) = lim
ε→0

h(f, ε).
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Some basic properties of the topological entropy are given in the next
two lemmas.

Lemma 1. We have

h(fn) = n · h(f).

Lemma 2. Let X and Y be compact Hausdorff spaces, f : X → X,
g : Y → Y and φ : X → Y be continuous maps such that t g◦φ = φ◦f .

(a) If φ is injective then h(f) ≤ h(g).
(b) If φ is surjective then h(f) ≥ h(g).
(c) If φ is bijective then h(f) = h(g).

Lemmas 1 and 2 are well known; for a proof see for instance [4].

3. Part I. Topological entropy in one–dimensional spaces

3.1. Entropy of piecewise monotone interval maps. Let I be a
closed interval. A continuous map f : I → I will be called an interval
map.

We say that an interval map f : I → I is piecewise (strictly) mono-
tone if there exists a finite partition of I into intervals such that on
each element of this partition f is (strictly) monotone.

Theorem 3. Assume f is piecewise strictly monotone. Let cn be the
number of pieces of monotonicity of fn. Then

lim
n→∞

1

n
log cn = h(f),

and (1/n) log cn ≥ h(f) for any n.

Theorem 3 was proved independently by Rothschild [49], Misiurewicz
and Szlenk [44] and Young [58].

3.2. Entropy and horseshoes for interval maps. If f : I → I is an
interval map and s ≥ 2, then an s-horseshoe for f is an interval J ⊂ I
and a partition of J into s closed subintervals Jk such that J ⊂ f(Jk)
for k = 1, . . . , s.

Proposition 4. If f has an s-horseshoe then

h(f) ≥ log s.

Proposition 4 follows from the computations of Adler and McAndrew
in [2].



4 JAUME LLIBRE

Theorem 5. Assume that the interval map f has positive entropy.
Then there exist sequences (kn)

∞
n=1 and (sn)

∞
n=1 of positive integers such

that limn→∞ kn = ∞, for each n the map fkn has an sn-horseshoe and

lim
n→∞

1

kn
log sn = h(f).

We shall say that f has a constant slope s if on each of its pieces of
monotonicity it is affine with the slope coefficient of absolute value s.

Corollary 6. Assume that f is piecewise strictly monotone and has a
constant slope s. Then h(f) = max(0, log s).

Another corollary to Theorem 5 is the following.

Theorem 7. If f : I → I is an interval map, then

lim sup
n→∞

1

n
log Card{x ∈ I : fn(x) = x} ≥ h(f).

Theorems 5 and 7 were proved by Misiurewicz and Szlenk [44] for
piecewise monotone maps, and by Misiurewicz [39], [40] in the general
case.

Corollary 6 was proved independently by Misiurewicz and Szlenk
[44], Young [56] and Milnor and Thurston [38].

3.3. Continuity properties of the entropy. A real valued function
φ is called lower (respectively upper) semi-continuous if for each point
x we have

lim inf
y→x

φ(y) ≥ φ(x) respectively lim sup
y→x

φ(y) ≤ φ(x)).

Of course a function is continuous if and only if it is both lower and
upper semi-continuous.

Theorem 8. The function h(·) is lower semi-continuous.

Theorem 8 is due to Misiurewicz and Szlenk [44] for the piecewise
monotone case and due to Misiurewicz [39] for the general case.

Corollary 9. On the space of all C1 piecewise strictly monotone maps
with a given number of pieces of monotonicity, with the C1 topology,
the topological entropy is continuous.

Corollary 9 is due to Milnor and Thurston [38].

Corollary 10. On the space of all Cr piecewise monotone maps (where
r ≥ 2) with the Cr topology, the topological entropy is continuous at
all f for which the critical points are non-degenerate (i.e. there are no
points at which both f ′ and f ′′ vanish simultaneously) and no critical
point is an endpoint of I.
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Corollary 10 is due to Bowen [15].

Theorem 11. The topological entropy, as a function from the space of
all unimodal maps with the topology of uniform convergence is contin-
uous at all points at which it is positive.

Theorem 11 is due to Misiurewicz [42].

3.4. Semiconjugacy to constant slope maps.

Theorem 12. If f is piecewise strictly monotone and h(f) = log β > 0
then f is semiconjugate to some map g : [0, 1] → [0, 1] with constant
slope β via a non–decreasing map.

Theorem 12 was proved by Milnor and Thurston [38] for piecewise
strictly monotone maps, see a different proof in [4].

Let X be a metric space and let f : X → X a continuous map. The
map f is called (topologically) transitive if for every pair of open sets
U and V in X, there is a positive integer n such that fn(U) ∩ V ̸= ∅.
Corollary 13. If an interval map f is transitive, then h(f) > 0.

Corollary 13 was stated in Blokh [9] without a proof, for a proof see
Block and Coven [7].

Corollary 14. If f is piecewise strictly monotone and transitive, then
f is conjugate to some map g : [0, 1] → [0, 1] with constant slope β,
where β = exp(h(f)).

Corollary 14 is due to Parry [48].

3.5. Entropy for circle maps. Let S1 be the circle and f : S1 → S1

be a continuous map of degree one, i.e. a circle map. Let F : R → R
denote a lifting of f , i.e. a map such that f ◦e = e◦F , where e denotes
the natural projection from R to S1 given by e(X) = exp(2niX). We
note that F is not determined uniquely, that is if F and F ′ are two
liftings of f , then F = F ′ + m with m ∈ Z. Since the degree of f is
one, we have F (X + 1) = F (X) + 1 for all X ∈ R. For x ∈ S1, the lim
supn→∞(F n(X) − X)/n exists for all X ∈ e−1(x) and is independent
of X (Newhouse, Palis and Takens [45]). We shall call this limit the
rotation number ρF (x) of x. We denote by R(f) the set of all rotation
numbers of f . From Misiurewicz [41] and Ito [27] we know that R(f)
is a non–empty closed interval on R (sometimes degenerated to one
point) and, from now on, we shall call it the rotation interval of f .

Let f ∈ S have degree one and rotation interval [c, d]. For c < d and
t > 1, we define

Rc,d(t) =
∑

t−q,
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where the sum is taken over all pairs of integers (p, q) such that q > 0
and c < p/q < d not necessarily coprime. Let βc,d be the largest root
of the equation Rc,d(t) = 1/2.

Theorem 15. If the circle map f of degree 1 has rotation interval
[c, d] with c < d, then h(f) ≥ log βc,d. Moreover, for every pair c, d
with c < d there is a circle map f of degree 1 with a rotation interval
[c, d] and topological entropy log βc,d.

Theorem 15 when c or d is zero is proved in [5], and in the general
case in [3] .

Theorem 16. If the circle map f has degree d, then h(f) ≥ log |d|.

Theorem 16 is proved by Block, Guckenheimer, Misiurewicz and
Young in [8].

Theorem 17. Let f be a transitive circle map. Then either h(f) > 0
or f is conjugate to an irrational rotation (via a homeomorphism of
degree 1).

Theorem 17 is proved in [4].

3.6. Entropy for graph maps. A graph G is a connected compact
space, which is the union of finitely many subsets homeomorphic to
the interval [0, 1], called edges, with pairwise disjoint interiors. The
endpoints of the edges are called vertices. A continuous map f : G → G
is called a graph map.

3.6.1. Entropy and periodic orbits. In this subsection we relate the
topological entropy of a graph map with its periodic orbits. A point
x ∈ G is a fixed point for f if f(x) = x. A point x ∈ G is a periodic
point of f of (least) period n if fn(x) = x and fk(x) ̸= x for 1 ≤ k < n.

Theorem 18. Let f be a graph map with positive topological entropy.
Then

lim sup
n→∞

1

n
logαn ≥ h(f),

where αn denotes the number of periodic orbits of f of period n.

For k ∈ N we denote by god(k) the greatest odd divisor of k. For a
set S ⊂ N, the set of gods of S (that is, {god(k) : k ∈ S}) will be called
the pantheon of S and ρ(S) will denote the upper density of S which is
defined by

ρ(S) = lim sup
n→∞

1

n
Card{k ∈ S : k ≤ n}.
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Clearly, if S is finite then ρ(S) = 0. Also, for s ∈ N we set

Γs =
∏
p

E(log(2s)/ log(p/2)) + 1,

where the product ranges over all odd prime numbers p ≤ 4s.

We denote by Per(f) the set of all periods of the periodic points of a
map f .

Theorem 19. Let G be a graph and let f be a graph map. If G has
s edges and the cardinality of the pantheon of Per(f) is larger than sΓs

then h(f) > 0.

The estimate of sΓs to assure positive topological entropy is not the
best possible. Up to now the minimal number of gods that the set of
periods of a map must have in order that it has positive topological
entropy is unknown. But if the graph under consideration is the interval
or the circle then this number is two.

Theorem 20. Let f be a graph map. Then the following statements
are equivalent:

(a) h(f) > 0.
(b) There is an m ∈ N such that {mn : n ∈ N} ⊂ Per(f).
(c) ρ(Per(f)) > 0.
(d) The pantheon of Per(f) is infinite.

Theorems 18 and 20 have been proved in [33]. Theorem 20 was
actually proved by Blokh [12] by using the spectral decomposition for
graph maps described in the same paper. The proof in [33] is more
direct, it uses Theorem 5.

A branching point is a vertex which is the endpoint of at least three
edges (if an edge has both endpoints at that vertex, we count the edge
twice).

Theorem 21. Let f be a graph map on the graph G with e endpoints,
s edges, v vertexes and at least one branching point, which keeps all
branching points fixed. Then h(f) > 0 if and only if god(n) > e+2s−
2v + 2 for some period n of f .

Theorem 21 is proved in [34].

3.6.2. Transitive graph maps. Let X be a metric space and let f :
X → X continuous. The map f will be called totally transitive if f s is
transitive for all integers s ≥ 1.

Let (X,µ) be a metric space (with more than one point). A con-
tinuous map f : X → X has the specification property if for any
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ε > 0 there exists M(ε) ∈ N such that for any collection of k ≥ 2
points x1, x2, . . . , xk ∈ X, for any collection of non-negative integers
a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk such that ai − bi−1 ≥ M(ε) and for
any p ∈ N such that p ≥ M(ε) + bk − a1, there exists a point y ∈ X
such that f p(y) = y and µ(fn(y), fn(xi)) ≤ ε for all ai ≤ n ≤ bi, 1 ≤
i ≤ k. This means that if a map has the specification property, then
any set of pieces of orbits can be approximated by one periodic orbit,
provided that the times for “connections” between leaving one piece
and coming close to the next one are sufficiently long.

The next theorem characterizes dynamically the transitive graph
maps.

Theorem 22. Let f be a graph map on the graph G. Then the following
statements hold.

(a) If f is transitive and Per(f) is empty, then G = S1 and f is
conjugate to an irrational rotation of the circle. Consequently,
h(f) = 0.

(b) If f is totally transitive and Per(f) is not empty, then f has the
specification property. Consequently, h(f) > 0.

Statement (a) of Theorem 22 was proved by Auslander and Katznel-
son [6] and Statement (b) by Blokh [11] and [10].

3.6.3. Graph maps and Lefschetz numbers. Let G be a graph. A circuit
of G is a subset of G homeomorphic to a circle. Letf : G → G be a
graph map. The rational homology groups of a graph G are well–
known. Thus we have that H0(G;Q) ≈ Q and H1(G;Q) ≈ Qc, where c
is the number of independent circuits of G in the sense of the homology.
Let f∗1 : H1(G;Q) → H1(G;Q) be the endomorphism induced by f on
the first rational homology group of G. In fact, f∗1 is a c × c matrix
with integer entries. Given a matrix A we denote its spectral radius by
sp(A), and its trace by Tr(A).

The Lefschetz number of a graph map f is defined to be

L(f) = 1− Tr(f∗1).

If L(f) ̸= 0 then f has a fixed point by the Lefschetz fixed point
theorem.

The Moebius function is defined by

µ(m) =


1 if m = 1,

0 if k2 divides m for some k ∈ N,
(−1)r if m is a product of r distinct prime factors.
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Let f be a graph map of the graph G. For every m ∈ N we define
the Lefschetz number of period m as follows

l(fm) =
∑

d∈N, d|m

µ(d)L(fm/d).

Therefore

L(fm) =
∑

d∈N, d|m

l(fd).

The asymptotic Lefschetz number L∞(f) is defined to be the growth
rate of the Lefschetz number of the iterates of f :

L∞(f) = max

{
1, lim sup

m→∞

∣∣L(fm)
∣∣1/m} .

The asymptotic Lefschetz number allows to obtain a lower bound for
the topological entropy of a continuous graph map.

Theorem 23. Let f : G → G be a graph map.

(a) L∞(f) = max{1, sp(|f∗1|)}.
(b) The topological entropy of f satisfies h(f) ≥ logL∞(f).

Statement(a) of Theorem 23 is proved in [25], and statement (b) is
due to Jiang [29, 28].

4. Part II. Topological entropy in spaces of dimension > 1

4.1. Entropy and volume growth. Suppose that there is a Rie-
mannian metric on the manifold M . If D ⊂ M is a C1 disk inside the
manifold M and f is at least C1, then the volume growth of D under
f is

v(D, f) = lim sup
n→∞

1

n
log Vol(fn(D)),

where the volume Vol is with respect to the Riemannian metric on M .
For 1 ≤ r ≤ ∞, the supremum of all the volume growths over all the
Cr disks in M is the r–volume growth of f , i.e.

vr(f) = sup
D⊂M Cr disk

v(D, f).

For 1 ≤ r1 < r2 we clearly have that vr1(f) ≥ vr2(f).

For Cr maps, with r > 1, the volume growth is greater that the
topological entropy.

Theorem 24. If f is Cr on the compact Riemannian manifold M ,
with r > 1, then vr(f) ≥ h(f).
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The proof of Theorem 24 is due to Newhouse [46], it is based on
Pesin Theory, this is why the map is required to be Cr, with r > 1.

The volume growth can also be bounded from above in terms of the
topological entropy.

Theorem 25. Suppose that f is Cr on the compact Riemannian man-
ifold M , with r ≥ 1. Denote by

R(f) = lim
n→∞

1

n
log(sup

x∈M
∥dfnx∥).

Then vr(f) ≤ h(f) + m
r
R(f).

Theorem 25 is due to Yomdin, see [55], [56] and [23].

Corollary 26. If f is C∞ on the compact Riemannian manifold M ,
then v∞(f) = h(f).

This corollary is proved by Yomdim in [56].

4.2. Entropy and periodic points. Let M be an m–dimensional
compact connected Riemannian manifold and f : M → M a continuous
map. We say that f satisfies the hypothesis (H1) if the fixed points of
fn are isolated for all positive integers n.

Hypothesis (H1) holds for Cr generic maps, r ≥ 1. Here we say that
a property is Cr generic, r ≥ 0, if the property holds for a residual
subset of Cr maps, considered with the Cr topology.

If f satisfies the hypothesis (H1), then we denote by CardFix(fn)
the number of fixed points of fn (this is the number of periodic points
of periods divisors of n). Then one can define the rate of growth of
periodic points to be the rate of growth of these numbers with respect
to n, i.e.

Per∞(f ) = lim sup
n→∞

(max{CardFix(f n), 1})
1
n .

The rate of growth of periodic points is again a bit more complicated,
and it cannot be related in general to the topological entropy and the
volume growth. For a C1 map the volume growth is always finite, and
for a Lipschitz map the topological entropy is finite, but the rate of
growth of periodic points may be infinite for Cr maps, with r ≥ 2.

Theorem 27. There exist an open set of Cr diffeomorphisms, with
r ≥ 2, which contains a residual set of maps with super–exponential
growth of periodic points, so in this case Per∞(f) = ∞.

Theorem 27 is due to Kaloshin [30].

For Axiom A diffeomorphisms Bowen in [13] proved that the entropy
is equal to the logarithm of the rate of growth of periodic points.
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Theorem 28. If f is an Axiom A diffeomorphism on the compact
manifold M , then h(f) = logPer∞(f).

4.3. Entropy conjecture. The map f induces an action on the ho-
mology groups ofM , which we denote f∗,k : Hk(M,Q) → Hk(M,Q), for
k ∈ {0, 1, . . . ,m}. The spectral radii of these maps are denoted sp(f∗,k)
and they are equal to the largest modulus of all the eigenvalues of the
linear map f∗,k. The spectral radius of f∗ is

sp(f∗) = max
k=0,...,m

sp(f∗,k).

If we assume thatM is oriented, then the top homology groupHm(M,Q)
is homeomorphic to Q and f∗,m is just the multiplication by an integer
deg(f) which is called the degree y of f .

Conjecture 29 (Entropy conjecture). If f is a C1 map on a compact
manifold M , then the topological entropy is greater than or equal to the
logarithm of the spectral radius of f :

(1) log(sp(f∗)) ≤ h(f).

This conjecture is due to Shub [52], see also [31], and [20] for a slight
generalization.

Inequality (1) is not true for Lipschitz maps, see [52] and [23].

The entropy conjecture seems very difficult, but there are some par-
tial results. Thus a weaker version of the conjecture is known to be
true if we add a smoothness assumption on f , we require it to be C∞.

Theorem 30. If f is C∞ on the compact manifold M , then the entropy
conjecture is true, i.e. log(sp(f∗)) ≤ h(f).

Theorem 30 is due to Yomdin [55].

Some weaker versions of the entropy conjecture are obtained by re-
placing the spectral radius of f by some of the other global invariants
mentioned in Section 3. For example the logarithm of the degree is
smaller than or equal to the topological entropy for C1 maps.

Theorem 31. If f is C1 on the compact oriented manifold M , then
log(deg(f)) ≤ h(f).

Theorem 31 is due to Misiurewicz and Przytycki [43].

Again Theorem 31 is not true for Lipschitz maps, see for instance
[34].

Theorem 32. If f is C0 andM is a compact manifold, then log(sp(f∗,1)) ≤
h(f).
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Theorem 32 is due to Manning [35].

Fix p ∈ M and a path α joining p with f(p). We denote by π1(M, p)
the fundamental group of the space M at the point p. Define the
endomorphism fα

∗ : π = π1(M, p) → π by fα
∗ (γ) = αf(γ)α−1. Let

Γ = {γ1, γ2, . . . , γs} be a set of generators of π and define the length of
an element γ ∈ π as

L(γ,Γ) = min

{
l∑

j=1

|ij| : γ = γi1
s1
γi2
s2
. . . γil

sl
, l ≥ 1, 1 ≤ s1, . . . , sl ≤ s

}
.

The fundamental–group entropy of f is

h∗(f) = lim sup
n→∞

1

n
log

(
max
1≤i≤s

L((fα
∗ )

n(γi),Γ)

)
.

It can be proved that h∗(f) is well defined and independent of Γ, p and
α. For more about this see for example [26] or [16] (in Bowen’s paper
the fundamental–group entropy is called the logarithm of the growth
rate of f∗ on π1(M)).

Bowen in [16] extended the result of Manning to the fundamental
group of M :

Theorem 33. If f is C0 and M is a compact manifold, then h∗(f) ≤
h(f).

Katok in [31] proposed another version for the entropy conjecture:

Conjecture 34. If f is a continuous self-map on a compact manifold
M with the universal cover homeomorphic to an Euclidean space, then
log(sp(f∗)) ≤ h(f).

On one hand this is weaker than Shub’s entropy conjecture because
there are some restrictions on the manifold M , but on the other hand
it is stronger because it only requires that f is continuous.

In [36] Marzantowicz and Przytycki showed that the entropy conjec-
ture is true for continuous self-maps on nilmanifolds, and in [37] they
obtained the following generalization:

Theorem 35. If f is a continuous self-map of a compact K(π, 1) man-
ifold M , with the fundamental group π torsion free and virtually nilpo-
tent, then log(sp(f∗)) ≤ h(f).

Another way to obtain versions of the entropy conjecture is to add
some restrictions on the dynamics of f . Shub and Williams [54] and
Ruelle and Sullivan [50] proved that the entropy conjecture is true for
Axiom A plus no–cycle condition diffeomorphisms:
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Theorem 36. If f is a diffeomorphism on M which satisfies Axiom A
and the no–cycle condition, then log(sp(f∗)) ≤ h(f).

The entropy conjecture holds for partially hyperbolic diffeomorphisms
with one–dimensional center, see Saghin and Xia [51]:

Theorem 37. If f is a partially hyperbolic diffeomorphism on the com-
pact manifold M and the center bundle of f is one–dimensional, then
log(sp(f∗)) ≤ h(f).

The entropy conjecture holds also when the map f is C1 and it has
a finite chain–recurrent set, see Fried and Shub [21]:

Theorem 38. If f is a C1 diffeomorphism on the compact manifold
M and the chain–recurrent set of f is finite, then log(sp(f∗)) ≤ h(f).

4.4. Volume growth and the spectral radius. The relation be-
tween the topological entropy and the volume growth was studied in
section 4.1. In section 4.3 we considered the relation between the topo-
logical entropy and the spectral radius of the homology. The next
proposition shows the well known fact, see for instance [55], that for a
C1 map the volume growth is greater than or equal to the logarithm
of the spectral radius, and in particular of the logarithm of the degree.

Proposition 39. If f is C1 on the compact manifold M , then for all
1 ≤ r ≤ ∞ we have log(sp(f∗)) ≤ vr(f), and consequently log(deg(f)) ≤
vr(f).
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