pp. 3363-3374

BRIEF SURVEY ON THE TOPOLOGICAL ENTROPY

JAUME LLIBRE

Departament de Matemàtiques Universitat Autònoma de Barcelona Bellaterra, 08193, Barcelona, Catalonia, Spain

ABSTRACT. In this paper we give a brief view on the topological entropy. The results here presented are well known to the people working in the area, so this survey is mainly for non-experts in the field.

CONTENTS

1. Introduction	3363
2. The topological entropy	3364
3. Part I. Topological entropy in one-dimensional spaces	3364
3.1. Entropy of piecewise monotone interval maps	3364
3.2. Entropy and horseshoes for interval maps	3365
3.3. Continuity properties of the entropy	3365
3.4. Semiconjugacy to constant slope maps	3366
3.5. Entropy for circle maps	3366
3.6. Entropy for graph maps	3367
4. Part II. Topological entropy in spaces of dimension > 1	3369
4.1. Entropy and volume growth	3369
4.2. Entropy and periodic points	3370
4.3. Entropy conjecture	3370
4.4. Volume growth and the spectral radius	3372
Acknowledgments	3372
REFERENCES	3372

1. Introduction. We do not try to be exhaustive on all the result about the topological entropy, thus here we do not consider or do not put too much attention on its relation with the metric entropy, the local entropy, Lyapunov exponents, etc, and we do not say anything about flows or other actions, nor about generic situations. Also in the case of surfaces there are more results available, because one can use Nielsen–Thurston theory for the study of the global dynamics of homeomorphism, see for example [17], [18], but we want to keep our survey short and relatively easy to read, and covering all these other aspects we shall need another survey. The results will be presented without proofs, but providing explicit references about them.

The paper has two parts well separated.

The first is dedicated to the topological entropy in one-dimensional spaces, more precisely on the interval, the circle and a graph. For this part the main reference

²⁰¹⁰ Mathematics Subject Classification. Primary: 37E25, 37B40.

Key words and phrases. Topological entropy, interval map, graph map, compact manifold.