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ON THE CENTRAL CONFIGURATIONS

OF THE n–BODY PROBLEM

JAUME LLIBRE

Abstract. We present a brief survey on some classes of central config-
urations of the n–body problem. We put special emphasis on the central
configurations of the 1 +n–body problem also called the coorbital satel-
lite problem, and on the nested central configurations formed by either
regular n–gons, or regular polyhedra. We also present some conjectures.

1. Introduction

1.1. The n–body problem. The n–body problem consists in studying the
motion of n pointlike masses, interacting among themselves through no other
forces than their mutual gravitational attraction according to Newton’s grav-
itational law.

The equations of motion of the n–body problem are

mkr
′′
k =

n∑
j=1,j 6=i

Gmjmk

r3jk
(rj − rk),

for k = 1, . . . , N , where G is the gravitational constant, rk ∈ R3 is the
position vector of the punctual mass mk in an inertial system, and rjk is the
Euclidean distance between the masses mj and mk.

The center of mass of the system formed by the n bodies satisfies

N∑
k=1

mkrk

m1 + . . .+mN
= at+ b,

where a and b are constant vectors. Without loss of generality we can
consider that the center of mass is at the origin of the inertial system, i.e.

N∑
k=1

mkrk = 0.
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A such inertial system is called inertial barycentric system. In the rest of
this paper we will work in an inertial barycentric system.

1.2. Homographic solutions of the n–body problem. Since the gen-
eral solution of the n–body problem cannot be given, from the very beginning
great importance has been dedicated to the search for particular solutions
where the n mass points fulfilled certain initial conditions.

A homographic solution of the n–body problem is a solution such that the
configuration formed by the n–bodies at the instant t (with respect to an
inertial barycentric system) remains similar to itself as t varies.

Two configurations are similar if we can pass from one to the other doing
a dilatation and/or a rotation.

The first three homographic solutions where found in 1767 by Euler [16]
in the 3–body problem. For these three solutions the configuration of the
three bodies is collinear.

In 1772 Lagrange [23] found two additional homographic solutions in the
3–body problem, the configurations formed by the three bodies at the ver-
tices of an equilateral triangle.

1.3. Central configurations of the n–body problem. At a given in-
stant t = t0 the configuration of the n–bodies is central if the gravitational
acceleration r′′k acting on every mass point mk is proportional with the
same constant of proportionality to its position rk (referred to an inertial
barycentric system); i.e.

r′′k =
n∑

j=1,j 6=k

Gmj

r3jk
(rj − rk) = λrk, for k = 1, . . . , N .

Pizzetti [36] in 1904 proved that the configuration of the n bodies in a
homographic solution is central at any instant of time.

It is important to note that homographic solutions with rotation and
eventually with a dilatation only exist for planar central configurations. For
spatial central configurations all the homographic solutions only have a di-
lation, for more details see Wintner [47].

For additional information on the central configurations of the n–body
problem see for instance Albouy and Chenciner [1], Dziobek [15], Hagihara
[20], Llibre [24], Moeckel [31, 26], Palmore [34], Saari [38, 39], Schmidt [42],
Wintner [47] and Xia [48], ...

1.4. Importance of the central configurations. Central configurations
of the n–body problem are important because:
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(1) They allow to compute all the homographic solutions, see [47].

(2) If the n bodies are going to a simultaneous collision, then the parti-
cles tend to a central configuration, see [14].

(3) If the n bodies are going simultaneously at infinity in parabolic mo-
tion (i.e. the radial velocity of each particle tends to zero as the
particle tends to infinity), then the particles tend to a central con-
figuration, see [40].

(4) There is a relation between central configurations and the bifurca-
tions of the hypersurfaces of constant energy and angular momen-
tum, see [45, 46].

(5) The Trojan asteroids are around one vertex of the equilateral triangle
having at the other two vertices the Sun and Jupiter, see [37].

(6) Central configurations provides good places for the observation in
the solar system, for instance see the SOHO project [18, 19].

(7) . . .

1.5. Classes of central configurations. If we have a central configura-
tion, a dilatation and a rotation (centered at the center of masses) of it,
provides another central configuration. We say that two central configura-
tions are related if we can pass from one to another through a dilation and a
rotation. This relation is an equivalence. In what follows we will talk about
the classes of central configurations defined by this equivalent relation.

1.6. Collinear central configurations. In 1910 Moulton [33] character-
ized the number of (classes) collinear central configurations by showing that
there exist exactly n!/2 classes of collinear central configurations of the n–
body problem for a given set of positive masses, one for each possible order-
ing of the particles modulo a rotation of π radians.

1.7. Planar and spatial central configurations. In the rest of this paper
we are only interested either in planar central configurations which are not
collinear, or spatial central configurations which are not planar.

For arbitrary masses m1, . . . ,mn the planar central configurations are in
general unknown when the number of the bodies n > 3. Numerically for
n = 4 are known, see Simó [43].

For arbitrary masses m1, . . . ,mN the spatial central configurations are in
general unknown when the number of the bodies n > 4. We note that for
n = 4 and arbitrary four masses at the vertices of a regular tetrahedron, we
have the unique spatial central configuration for n = 4.

Wintner [47] in 1941 asked: Are there finitely many classes of planar
central configurations for any choice of the masses m1, . . . ,mn when n > 3?
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This question also appears in the Smale’s list on the mathematical problems
for the XXI century, see [44].

In 2006 and for n = 4 Hampton and Moeckel [22] provided a positive
answers to Wintner’s question given an assisted proof by computer. Later
on in 2012 Albouy and Kaloshin [3] gave an analytic proof for n = 4 and
almost a proof for n = 5.

2. Central configurations of the coorbital satellite problem

Now we want to consider a restricted version of the planar central con-
figurations; i.e. we study the limit case of one large mass and n small equal
masses when the small masses tend to zero.

This problem is called the central configurations of the planar 1 + n–body
problem, or the central configurations of the coorbital satellite problem.

The (1 + n)–body problem was first considered by Maxwell [30] when he
tried to explain the stability of the motion of Saturn’s Rings in 1885.

In the (1 + n)–body problem the infinitesimal particles interact between
them under the gravitational forces, but they do not perturb the largest
mass.

Let r(ε) = (r0(ε), r1(ε), . . . , rn(ε)) be a planar central configuration of the
(1 + n)–body problem with masses m0 = 1 and m1 = . . . = mn = ε, which
depend continuously on ε when ε→ 0.

We say that r = (r0, r1, . . . , rn) with ri 6= rj if i 6= j and i, j ≥ 1, is a
central configuration of the planar (1 + n)–body problem if there exists the
limε→0 r(ε) and this limit is equal to r.

From this definition it is clear that if we know the central configurations
of the (1+n)–body problem, then we can continue them to sufficiently small
positive values of ε.

Proposition 1. The n infinitesimal bodies of a central configurations of the
planar (1 + n)–body problem lie on a circle S1 centered in the big body, i.e.
at r0.

Proposition 1 provides the reason for which the central configurations of
the (1+n)–body problem have applications to the dynamics of the coorbital
satellite systems.

Proposition 2. Let r = (r0, r1, . . . , rn) be a central configuration of the
planar (1+n)–body problem. Denoting by θi the angle defined by the position
of ri on the circle S1, we have

n∑
j=1,j 6=k

sin(θj − θk)

[
1− 1

8| sin3(θj − θk)/2|

]
= 0,
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for k = 1, . . . , n.

A proof of both propositions was given by Hall [21], see also [5].

Numerical results due to Salo and Yoder [41] provided the number of
classes of central configurations described in the next table. For the n’s of
the table they also study the linear stability of the central configurations.
But the linear stability of the central configurations of the (1 + n)–body
problem for all n was studied by Moeckel [32].

n Number of central configurations
2 2
3 3
4 3
5 3
6 3
7 5
8 3
9 1

On the other hand numerical computations (see [13]) seem to indicate
that

(i) for n ≥ 9 the number of central configurations is 1 (we know numer-
ically that this is the case for 9 ≤ n ≤ 100), and

(ii) that every known central configuration of the (1 +n)–body problem
has a straight line of symmetry.

The numerical results of the table for n = 2, 3, 4, have been proved ana-
lytically by

• Euler and Lagrange for n = 2,

• Hall for n = 3,

• Cors, Llibre and Ollé for n = 4, and

• Albouy and Fu [2] proved the existence of the line of symmetry for
n = 4.

For n ≥ 2 it is known that the regular n–gon, having the infinitesimal
particles in its vertices and with the large mass in its center, is a central
configuration, see for instance [21, 5].

Additionally for n ≥ e27000 the regular n–gon is the unique central con-
figuration, this was proved by Hall in 1988 in the unpublished paper [21].
Later on in 1994 it was proved that for n ≥ e73 the regular n–gon is the
unique central configuration, see [5].

Conjectures. For the central configurations of the (1 + n)–body problem:
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(I) the regular n–gon is the unique central configuration when n ≥ 9,
and

(II) every central configuration has a straight line of symmetry.

Note that we only need to prove conjecture (II) for 5 ≤ n ≤ 8, when
conjecture (I) be proved for 9 ≤ n ≤ e73.

3. Planar nested central configurations

We do not know who was the first in proving that the regular n–gon with
equal masses is a central configuration, but clearly in 1907 this result was
well known, see for instance the paper of LongLey [28].

For p = 2 and n = 2, 3, 4, 5, 6 in [28], and for p = 2 and n ≥ 2 Zhang
and Zhou [49] proved that there are central configurations of the 2n–body
problem where n bodies with equal mass are in the vertices of a regular n–
gon, and the remainder n bodies with equal mass but not necessarily equal
to the previous n bodies, are also in the vertices of another regular n–gon
homothetic to the first n–gon.

These previous results where extended to p nested regular n–gons with
p = 3, 4 and n ≥ 2, 3, 4 by Llibre and Mello in [25]. Finally Corbera, Delgado
and Llibre [7] proved the following result.

Theorem 3. For all p > 2 and n > 2, we prove the existence of central
configurations of the pn–body problem where the masses are at the vertices
of p nested regular n–gons with a common center. In such configurations
all the masses on the same n–gon are equal, but masses on different n–gons
could be different.

(a) Two tetraedra (b) Two octahedra (c) Two cube (d) Two icosahedra
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(e) Two dodecahedra (f) Three tetrahedra (g) Three octahedra

(h) Three regular cube (i) Three icosahedra (j) Three dodecahedra

Figure 1. Nested regular polyhedra, with two or three polyhedra.

4. Spatial nested central configurations

Cedó and Llibre in [6] proved that if we put equal masses at the vertices
of a regular polyhedra we get a central configuration. Later on Corbera and
Llibre [8] proved the next result.

Theorem 4. We consider 2n masses located at the vertices of two nested
regular polyhedra with the same number of vertices. Assuming that the
masses in each polyhedron are equal, we prove that for each ratio of the
masses of the inner and the outer polyhedron there exists a unique ratio of
the length of the edges of the inner and the outer polyhedron such that the
configuration is central. See Figure 1.

Theorem 4 was extended to 3 nested regular polyhedra in [9], see again
Figure 1.

These results were extended to p > 2 nested polyhedra, see [11].
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(a) (b) (c)

Figure 2. Three rotated tetrahedra.

Theorem 5. For all p > 2 we prove the existence of central configurations
of the pn–body problem where the masses are located at the vertices of p
nested regular polyhedra having the same number of vertices n and a common
center. In such configurations all the masses on the same polyhedron are
equal, but masses on different polyhedra could be different.

Later on these kind of nested central configurations with polyhedra were
extended to rotated p = 3 nested regular polyhedra in [10], see Figure 2.

5. On the central configurations of the 4–body problem

The planar central configurations of the 4–body problem are classified as
convex or concave. Thus a central configuration is convex if none of the
bodies is located in the interior of the triangle formed by the other three. A
central configuration is concave if one of the bodies is in the interior of the
triangle formed by the other three.

From the paper of MacMillan and Bartky [29] we have the following two
conjectures, see also Albouy and Fu [2] and Pérez-Chavela and Santoprete
[35].

Conjecture (III). The 4–body problem has a unique class of convex central
configuration.

Conjecture (IV). If the 4–body problem has a central configurations with
two pairs of equal masses located at two adjacent vertices of a convex quadri-
lateral, then this quadrilateral is an isosceles trapezoid.

Long and Sun in [27] proved that any convex central configuration with
masses m1 = m2 < m3 = m4 at the opposite vertices of a quadrilateral
and having the diagonal corresponding to the mass m1 longer than the
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one corresponding to the mass m3, is a rhombus. Pérez–Chavela [35] and
Santoprete extended this result to the case where two of the masses are
equal and at most, only one of the remaining mass is larger than the equal
masses. Furthermore, they shown that there exists only one convex central
configuration if the opposite masses are equal and it is a rhombus. Albouy,
Fu and Sun in [4] proved for the 4–body problem that a convex central
configuration is symmetric with respect to one diagonal if and only if the
masses of the two particles on the other diagonal are equal. When these two
masses are not equal, then the smallest mass is closer to the former diagonal.

Using these results on the symmetries Corbera and Llibre [12] proved
Conjectures (III) and (IV) when two pairs of the masses are equal and one
of the pairs of equals masses is sufficiently small.

Conjecture (IV) has been proved recently by Fernandes, Llibre and Mello
in [17].

Conjecture (III) remains open for arbitrary values of the four masses.
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