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LIMIT CYCLES FOR CONTINUOUS AND
DISCONTINUOUS PERTURBATIONS OF

UNIFORM ISOCHRONOUS CUBIC CENTERS

JAUME LLIBRE1 AND JACKSON ITIKAWA1

Abstract. Let p be a uniform isochronous cubic polynomial cen-
ter. We study the maximum number of small or medium limit
cycles that bifurcate from p or from the periodic solutions sur-
rounding p respectively, when they are perturbed, either inside the
class of all continuous cubic polynomial differential systems, or in-
side the class of all discontinuous differential systems formed by
two cubic differential systems separated by the straight line y = 0.

In the case of continuous perturbations using the averaging the-
ory of order 6 we show that the maximum number of small limit
cycles that can appear in a Hopf bifurcation at p is 3, and this
number can be reached. For a subfamily of these systems using
the averaging theory of first order we prove that at most 3 medium
limit cycles can bifurcate from the periodic solutions surrounding
p, and this number can be reached.

In the case of discontinuous perturbations using the averaging
theory of order 6 we prove that the maximum number of small
limit cycles that can appear in a Hopf bifurcation at p is 5, and
this number can be reached. For a subfamily of these systems using
the averaging method of first order we show that the maximum
number of medium limit cycles that can bifurcate from the periodic
solutions surrounding p is 7, and this number can be reached.

We also provide all the first integrals and the phase portraits in
the Poincaré disc for the uniform isochronous cubic centers.

1. Introduction and Statement of the Main Results

One of the main open problems in the qualitative theory of planar
differential systems is the investigation of the limit cycles that can
bifurcate from such systems when we vary the parameters.

A classical way to investigate limit cycles is perturbing a differential
system which has a center. In this case the perturbed system displays
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limit cycles that bifurcate, either from the center (having the so-called
Hopf bifurcation), or from some of the periodic orbits around the
center, see for instance Pontrjagin [18], the second part of the book [4],
and the hundreds of references quoted there. The problem of studying
the limit cycles bifurcating from a center, or from its periodic solutions
has been exhaustively studied in the last century and is closely related
to the Hilbert’s 16th problem. Nevertheless, in spite of all efforts, there
is no general method to solve this problem.

In the last decades several works about the bifurcation of limit cycles
in planar differential systems having a uniform isochronous center have
been published see for instance [1, 9, 11]. Aside from its importance in
physical applications, isochronicity is closely related to the uniqueness
and existence of solutions for some boundary value, perturbation, or
bifurcation problems. It is also important in stability theory, since a
periodic solution of the central region is Liapunov stable if and only
if the neighboring periodic solutions have the same period. For more
details on these two last paragraphs see [5]. Moreover, the interest in
this problem has also been revived due to the proliferation of powerful
methods of computerized research, and special attention has been
dedicated to polynomial differential systems, see [3, 7] and the
bibliography therein.

Let p ∈ R2 be a center of a differential polynomial system in R2,
without loss of generality we can assume that p is the origin of
coordinates. We say that p is an isochronous center if it is a center
having a neighborhood such that all the periodic orbits in this
neighborhood have the same period. We say that p is a uniform
isochronous center if the system, in polar coordinates x = r cos θ,
y = r sin θ, takes the form ṙ = G(θ, r), θ̇ = k, k ∈ R \ {0}, for
more details see Conti [7]. The next result is well-known.

Proposition 1. Assume that a planar differential polynomial system
of degree n has a center at the origin of coordinates. Then this center is
uniform isochronous if and only if by doing a linear change of variables
and a rescaling of time the system can be written as

ẋ = −y + x f(x, y), ẏ = x+ y f(x, y),

where f(x, y) is a polynomial in x and y of degree n−1, and f(0, 0) = 0.

The following result due to Collins [6] in 1997, also obtained by
Devlin, Lloyd and Pearson [8] in 1998, and by Gasull, Prohens and
Torregrosa [11] in 2005 characterizes the uniform isochronous centers
of cubic polynomial systems.
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Theorem 2. A planar cubic differential system has a uniform
isochronous center at the origin if and only if it can be written as

(1) ẋ = −y + xf(x, y), ẏ = x+ yf(x, y),

where f(x, y) = a1x + a2y + a3x
2 + a4xy − a3y2, and satisfies a21a3 −

a22a3 + a1a2a4 = 0.

In this article a small limit cycle is one which bifurcates from a center
equilibrium point, and a medium limit cycle is one which bifurcates
from a periodic orbit surrounding a center.

We study the largest number of small and medium limit cycles for
the uniform isochronous cubic centers, when they are perturbed either
inside the class of all continuous cubic polynomial differential systems,
or inside the class of all discontinuous differential systems formed by
two cubic differential systems separated by the straight line y = 0. The
method is based on the averaging theory. For more details about the
averaging theory see the book of Sanders, Verhulst and Murdock [19].

In order to study the bifurcation phenomenon in these systems we
take into account the following result due to Collins [6].

Proposition 3. The planar cubic differential system (1) can be reduced
to either one of the following two forms.

(2) ẋ = −y + x2y, ẏ = x+ xy2,

(3) ẋ = −y + x2 + Ax2y, ẏ = x+ xy + Axy2,

where A ∈ R.

For now on we shall call (2) and (3) as Collins first form and Collins
second form, respectively.

We consider the following continuous systems

(4)

ẋ = −y + xf(x, y) +
6∑
i=1

εipi(x, y),

ẏ = x+ yf(x, y) +
6∑
i=1

εiqi(x, y),

where f(x, y) is as in Theorem 2, and the system

(5) ẋ = −y + x2y + εpK(x, y), ẏ = x+ xy2 + εqK(x, y),
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where

pj = αj1x+ αj2y + αj3x
2 + αj4xy + αj5y

2 + αj6x
3 + αj7x

2y + αj8xy
2 + αj9y

3,

qj = βj1x+ βj2y + βj3x
2 + βj4xy + βj5y

2 + βj6x
3 + βj7x

2y + βj8xy
2 + βj9y

3,

pK = α0 + p1, qK = β0 + q1.

Moreover we consider the discontinuous systems

(6)

(
ẋ
ẏ

)
= X (x, y) =

{
X1(x, y) if y > 0;
X2(x, y) if y < 0.

(7)

(
ẋ
ẏ

)
= Y(x, y) =

{
Y1(x, y) if y > 0;
Y2(x, y) if y < 0.

where

X1(x, y) =

(
−y + xf(x, y) +

∑6
i=1 ε

ipi(x, y)

x+ yf(x, y) +
∑6

i=1 ε
iqi(x, y)

)
,

X2(x, y) =

(
−y + xf(x, y) +

∑6
i=1 ε

iui(x, y)

x+ yf(x, y) +
∑6

i=1 ε
ivi(x, y)

)
,

Y1(x, y) =

(
−y + x2y + εpK(x, y)
x+ xy2 + εqK(x, y)

)
,

Y2(x, y) =

(
−y + x2y + εuK(x, y)
x+ xy2 + εvK(x, y)

)
,

uj = γj1x+ γj2y + γj3x
2 + γj4xy + γj5y

2 + γj6x
3 + γj7x

2y + γj8xy
2 + γj9y

3,

vj = δj1x+ δj2y + δj3x
2 + δj4xy + δj5y

2 + δj6x
3 + δj7x

2y + δj8xy
2 + δj9y

3,

uK = γ0 + u1, vK = δ0 + v1.

In what follows we state our main results.

Theorem 4. For |ε| 6= 0 sufficiently small the maximum number of
small limit cycles of the differential system (4) is 3 using the averaging
theory of order 6, and this number can be reached.

Theorem 4 is proved in section 3. For more details on the averaging
theory see section 2.

Theorem 5. For |ε| 6= 0 sufficiently small the maximum number of
medium limit cycles of the differential system (5) is 3 using the first
order averaging theory and this number can be reached.

Theorem 5 is proved in section 4.
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Theorem 6. For |ε| 6= 0 sufficiently small the maximum number of
small limit cycles of the discontinuous differential system (6) is 5 using
the averaging method of order 6 and this number can be reached.

Theorem 6 is proved in section 5.

Theorem 7. For |ε| 6= 0 sufficiently small the maximum number
of medium limit cycles of the discontinuous differential system (7) is
7 using the averaging method of first order and this number can be
reached.

Theorem 7 is proved in section 6.

Theorems 4 and 5 extend previous results presented in [11]. In that
work the authors studied some subfamilies of uniform isochronous cubic
centers, proving the existence of one or two limit cycles. Moreover
Theorem 7 extend the work done in [16] on the number of medium
limit cycles which can bifurcate from a family of uniform isochronous
quadratic centers perturbed by discontinuous differential systems with
the straight line of discontinuity y = 0, to the uniform isochronous
cubic centers given by the Collins first form.

In this work we also provide the phase portraits and the first integrals
for the uniform isochronous cubic centers.

Theorem 8. The first integrals H of system (1) in polar coordinates
x = r cos θ, y = r sin θ are described in what follows.

Case 1: a2
1 − a2

2 6= 0.

Subcase 1.1: a4 6= 0.

Subcase 1.1.1: 4a4 6= a2
1 − a2

2.

H = e
−2 arctan

[
R+2a4r(−a2 cos θ+a1 sin θ)

RS

]
[

a4r
2

R + r(a2 cos θ − a1 sin θ)(a2a4r cos θ − a1a4 sin θ −R)

]S
,

where R = a21 − a22, S =
√

4a4/R− 1.

In case of a negative square root, we have a complex first integral
and therefore both its real and imaginary parts are also first integrals,
if not null.

Subcase 1.1.2: 4a4 = a2
1 − a2

2.

H =
re

2
2−a2r cos θ+a1r sin θ

2− a2r cos θ + a1r sin θ
.
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Subcase 1.2: a4 = 0.

H =
r

1− a2r cos θ + a1r sin θ
.

Case 2: a2
1 − a2

2 = 0.

Subcase 2.1: a2 = a1.

Subcase 2.1.1: a1 = 0.

H =
r2

1− a4r2 cos2 θ + a3r2 sin(2θ)
.

Subcase 2.1.2: a1 6= 0, a4 = 0.

Subcase 2.1.2.1: a3(a2
1 + 4a3) 6= 0.

H =e
−2 arctan

[
a1+2a3r(cos θ−sin θ)

a1R

]
[

a3r
2(sin(2θ)− 1)

(cos θ − sin θ)2[1 + a1r(sin θ − cos θ) + a3r2(sin(2θ)− 1)]

]R
,

where R =
√
−1− 4a3/a21.

Subcase 2.1.2.2: a3 = 0.

H =
r

1− a1r(cos θ − sin θ)
.

Subcase 2.1.2.3: a3 = −a2
1/4.

H =
2re

2
2−a1r(cos θ−sin θ)

2− a1r(cos θ − sin θ)
.

Subcase 2.2: a2 = −a1.

Subcase 2.2.1: a1 = 0. This case becomes the subcase 2.1.1.

Subcase 2.2.2: a1 6= 0, a4 = 0.

Subcase 2.2.2.1: a3(4a3 − a2
1) 6= 0.

H =
e

1
R

[
−2 arctan

(
a1+2a3r(sin θ+cos θ)

a1R

)
+R arctanh(tan θ)

]
a3r

2(sec(2θ) + tan(2θ))

1 + a1r(sin θ + cos θ) + a3r2(1 + sin(2θ))
,

where R =
√

4a3/a21 − 1.

Subcase 2.2.2.2: a3 = 0.

H =
r

1− a1r(cos θ − sin θ)
.
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Subcase 2.2.2.3: a3 = a2
1/4.

H =
r

e1+
1
2
a1r(cos θ+sin θ)

(
1 + 1

2
a1r(cos θ + sin θ)

) .
Theorem 8 is proved in section 7.

We say that two polynomial vector fields X and Y on R2 are
topologically equivalent if there exists a homeomorphism on the Poincaré
sphere S2 preserving the infinity S1 carrying orbits of the flow induced
by the Poincaré compactified vector field of X into orbits of the flow
induced by the the Poincaré compactified vector field of Y preserving
or reversing simultaneously the sense of all orbits. For more details on
the Poincaré compactification see Chapter 5 of [10].

Theorem 9. The global phase portrait in the Poincaré disc of the
differential system (1) is topologically equivalent to one of the three
phase portraits presented in Figure 1.

Figure 1. Phase portraits of cubic uniform isochronous centers

More precisely, the global phase portrait of (1) is topologically equivalent
to the phase portrait (a) of Figure 1 if one of the following conditions
holds

� a1a2 6= 0, and a4(a
2
1 − a22) > 0, and a4 ≤ (a21 − a22)/4;

� a2 = −a1 6= 0, and 0 < a3 ≤ a21/4, and a4 = 0;
� a2 = a1 6= 0, and −a21/4 ≤ a3 < 0, and a4 = 0;
� a1 = 0, and a2 6= 0, and −a22/4 ≤ a4 < 0;
� a1 6= 0, and a2 = 0, and 0 < a4 ≤ a21/4;

the phase portrait (b) if one of the following conditions holds

� a1a2 6= 0, and a4(a
2
1 − a22) > 0, and a4 > (a21 − a22)/4;

� a2 = −a1 6= 0, and a3 > a21/4, and a4 = 0;
� a2 = a1 6= 0, and a3 < −a21/4, and a4 = 0;
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� a1 = 0, and a2 6= 0 and a4 < −a22/4;
� a1 6= 0, and a2 = 0 and a4 > a21/4;

the phase portrait (c) if one of the following conditions holds

� a1a2 6= 0, and a4(a
2
1 − a22) < 0;

� a2 = −a1 6= 0, and a3 < 0, and a4 = 0;
� a2 = a1 6= 0, and a3 > 0, and a4 = 0;
� a1 = 0, and a2 6= 0, and a4 > 0;
� a1 6= 0, and a2 = 0, and a4 < 0;
� a1 = a2 = 0.

The cases where a3 = a4 = 0 are omitted in Theorem 9 because
in such cases system (1) is a quadratic polynomial differential system,
which has already been exhaustively studied, see for instance system
S2 at p.38 of [3].

Theorem 9 is proved in section 8.

Collins [6] presented the phase portraits and first integrals for the
uniform isochronous cubic centers, but he applied the forms (2) and
(3) in order to obtain the results and therefore one needs to change the
differential systems to such forms before getting the phase portraits
and first integrals. Our results present the first integrals in terms of
all the parameters of the uniform isochronous centers. Moreover, the
phase portrait for the case A = 1/4, Figure 2-d, pp. 347 of [6] is not
correct, because it presents two saddle-nodes at infinity which do not
exist.

The rest of the paper is organized as follows. In section 2 we present
some results on the averaging theory and technical propositions used
in our study. The next four sections are dedicated to prove our main
results. More precisely in those sections we present the proofs of
Theorems 4, 5, 6 and 7, respectively. Finally, in sections 7 and 8 we
respectively provide the proofs of Theorems 8 and 9. All calculations
were performed with the assistance of the software Mathematica.

2. Preliminary results

In this section we introduce some preliminary results on the averaging
theory that we shall use in our study of the uniform isochronous cubic
centers.

The following result is due to Llibre, Novaes and Teixeira [15].
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Consider the general differential system

(8) ẋ(t) =
k∑
i=0

εiFi(t, x) + εk+1R(t, x, ε),

where Fi : R×I → Rn for i = 1, 2, . . . , k and R : R×I×(−ε0, ε0)→ Rn

are continuous functions and T-periodic in the first variable, I being
an open subset of Rn.

Moreover, let L be a positive integer, x = (x1, x2, . . . , xn) ∈ I, t ∈
R and yj = (yj1, yj2, . . . , yjn) ∈ Rn, j = 1, . . . , L. Given F : R ×
I → Rn a sufficiently smooth function, for each (t, x) ∈ R × I we
denote by ∂LF (t, x) a symmetric L-multilinear map which is applied

to a ‘product’ of L vectors of Rn, which we denote as
⊙L

j=1 yj ∈ RnL.
The definition of such L-multilinear map is

(9) ∂LF (t, x)
L⊙
j=1

yj =
n∑

i1,...,iL=1

∂LF (t, x)

∂xi1 , . . . , ∂xiL
y1i1 · · · yLiL .

We define ∂0 as the identity functional. Given a positive integer b and
a vector y ∈ Rn we also denote yb =

⊙b
j=1 y ∈ Rnb.

Let ϕ(·, z) : [0, tz] → Rn be the solution of the unperturbed system
ẋ(t) = F0(t, x) such that ϕ(0, z) = z. For i = 1, . . . , k we define the
averaged function fi : I → Rn of order i as

(10) fi(z) =
yi(T, z)

i!
,

where yi : R× I → Rn, i = 1, . . . , k − 1 are defined recurrently by the
following integral equation.

(11)

yi(t, z) = i!

∫ t

0

[
Fi(s, ϕ(s, z))

+
i∑
l=1

∑
Sl

1

b1!b2!2!b2 · · · bl!l!bl
∂LFi−l(s, ϕ(s, z))

l⊙
j=1

yj(s, z)
bj

]
ds,

where Sl is the set of all l-tuples of non-negative integers (b1, b2, . . . , bl)
satisfying b1 + 2b2 + . . . lbl = l and L = b1 + b2 + . . . + bl. Observe
that if F0 = 0 then ϕ(t, z) = z for each t ∈ R. Therefore y1(t, z) =∫ t
0
F1(s, z)ds and f1(t, z) =

∫ T
0
F1(t, z)dt as usual in averaging theory.

Theorem 10. Suppose F0 = 0. In addition, for the functions of (8)
we assume the following conditions.

(i) For each t ∈ R, Fi(t, ·) ∈ Ck−i, i = 1, . . . , k, ∂k−iFi is locally
Lipschitz in the second variable for i = 1, . . . , k and R is a
continuous function locally Lipschitz in the second variable;
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(ii) Assume that fi = 0, i = 1, . . . , r− 1 and fr 6= 0, r ∈ {1, . . . , k}
(here we are taking f0 = 0). Moreover, suppose that for some
a ∈ I with fr(a) = 0 there exists a neighborhood V ⊂ I of a
such that fr(z) 6= 0,∀z ∈ V̄ \{a} and dB(fr(z), V, 0) 6= 0.

Then, for sufficiently small |ε| > 0 there exists a T-periodic solution
x(·, ε) of (8) such that x(0, ε)→ a when ε→ 0.

The proof of this theorem can be found in section 3 of [15].
The next result provides a method to write a perturbed differential

system under the form (8) for k = 1 and F0 = 0 which can be used to
apply the averaging theory of first order.

Theorem 11. Consider the unperturbed system ẋ = P (x, y), ẏ =
Q(x, y), where P,Q : R2 → R are continuous functions, and assume
that this system has a continuous family of period solutions {Γh} ⊂
{(x, y) : H(x, y) = h, h1 < h < h2}, where H is a first integral of the
system. For a given first integral H assume that xQ(x, y)− yP (x, y) 6=
0 for all (x, y) in the period annulus formed by the ovals {Γh}. Let
ρ : (
√
h1,
√
h2)× [0, 2π)→ [0,∞) be a continuous function such that

H(ρ(R, θ) cos θ, ρ(R, θ) sin θ) = R2

for all R ∈ (
√
h1,
√
h2) and all θ ∈ [0, 2π). Then the differential

equation which describes the dependence between the square root of
the energy R =

√
h and the angle θ for the perturbed system ẋ =

P (x, y) + εp(x, y), ẏ = Q(x, y) + εq(x, y), where p, q : R2 → R are
continuous functions is

(12)
dR

dθ
= ε

µ(x2 + y2)(Qp− Pq)
2R(Qx− Py)

+O(ε2)

where µ = µ(x, y) is the integrating factor corresponding to the first
integral H of the unperturbed system and x = ρ(R, θ) cos θ, y = ρ(R, θ)
sin θ.

For more details see [2]. We also need the next results. The first one
can be found in Proposition 1 of [17] and the latter in [12].

Proposition 12. Let f0, . . . , fn be analytic functions defined on an
open interval I ⊂ R. If f0, . . . , fn are linearly independent then there
exists s1, . . . , sn ∈ I and λ0, . . . , λn ∈ R such that for every j ∈

{1, . . . , n} we have
n∑
i=0

λifi(sj) = 0.

We say that the functions (f0, . . . , fn) defined on the interval I form
an Extendend Chebyshev system or ET-system on I, if and only if, any
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nontrivial linear combination of these functions has at most n zeros
counting their multiplicities and this number is reached. The functions
(f0, . . . , fn) are an Extendend Complete Chebyshev system or an ECT-
system on I if and only if for any k ∈ {0, 1, . . . , n}, (f0, . . . , fk) form
an ET-system.

Theorem 13. Let f0, . . . , fn be analytic functions defined on an open
interval I ⊂ R. Then (f0, . . . , fn) is an ECT-system on I if and only
if for each k ∈ {0, 1, . . . , n} and all y ∈ I the Wronskian

W (f0, . . . , fk)(y) =

∣∣∣∣∣∣∣∣∣
f0(y) f1(y) · · · fk(y)
f ′0(y) f ′1(y) · · · f ′k(y)

...
...

. . .
...

f
(k)
0 (y) f

(k)
1 (y) · · · f

(k)
k (y)

∣∣∣∣∣∣∣∣∣
is different from zero.

The next result follows easily from Lemma 2.13 of [13].

Proposition 14. Consider g(t) = f(t − λ)f(λ − t), for λ ∈ R+ and
f : R→ R, C∞, defined by

f(t) =

{
e−1/t if t > 0;
0 if t ≤ 0.

Clearly g is C∞, nonnegative and g(t) > 0 ⇔ t ∈ (−λ, λ). Then the
function h defined by

h(t) = 2

∫ t
−∞ g(s)ds∫∞
−∞ g(s)ds

− 1

is C∞ and h(t) = −1 for t ≤ −λ, h(t) = 1 for t ≥ λ and −1 < h(t) < 1
otherwise.

3. Proof of Theorem 4

We use the Collins first and second forms, respectively systems (2)
and (3) in this article to prove Theorem 4. We were able to apply up
to the averaging theory of order 6.

Collins first form
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Consider system (4) with f(x, y) = xy, that is, the unperturbed
system is the Collins first form.

(13)

ẋ = −y + x2y +
6∑
i=1

εipi(x, y),

ẏ = x+ xy2 +
6∑
i=1

εiqi(x, y).

In order to analyze the Hopf bifurcation for system (13), applying
Theorem 10, we introduce a small parameter ε doing the change of
coordinates x = εX, y = εY . After that we perform the polar change
of coordinatesX = r cos θ, Y = r sin θ, and by doing a Taylor expansion
truncated at the 6th order in ε we obtain an expression for dr/dθ similar
to (8) with F0 = 0, k = 6. The explicit expression is quite large so we
omit it.

System (13) is a polynomial system. The functions Fi(θ, r), i =
1, . . . , 6 and R(θ, r, ε) of system (13) are analytic, and since the variable
θ appears through sinus and cosinus, they are 2π−periodic. Hence the
assumptions of Theorem 10 are satisfied. We take I of Theorem 10
as I = {r : 0 < r < 1} because the Collins first form has the period
annulus of the center in the band −1 < x < 1.

Applying Theorem 10 we obtain the averaging function of first order

f1(r) = πr(α1
1 + β1

2).

Clearly f1(r) has no solution in I. Thus there is no small limit cycle
which bifurcates from the uniform isochronous center at the origin by
the averaging method of first order. Setting β1

2 = −α1
1 we obtain

f1(r) = 0. So we can apply the averaging theory of second order using
Theorem 10, obtaining the averaging function of second order.

f2(r) = πr(α2
1 + β2

2).

Since f2(r) has no solution in I, there is no small limit cycle which
bifurcates from the uniform isochronous center at the origin applying
the averaging method of second order. Doing β2

2 = −α2
1 we get f2(r) =

0, and then we can apply the averaging method of third order obtaining

f3(r) = r(A3r
2 + A1),

where

A3 =
π

4
(4α1

1 + 3α1
6 + α1

8 + β1
7 + 3β1

9), A1 = π(α3
1 + β3

2).

Thus f3(r) has one solution in I if 0 < −A1/A3 < 1. Hence applying
the averaging theory of third order it is proved that at most 1 small
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limit cycle can bifurcate from the uniform isochronous center at the
origin and this number can be reached.

In order to apply the averaging method of fourth order, we need to
have f3(r) = 0 so we set β3

2 = −α3
1 and β1

7 = −(4α1
1 + 3α1

6 + α1
8 + 3β1

9).
The resulting averaging function of fourth order is

f4(r) = r(B3r
2 +B1),

where

B3 =
π

4
(4α1

1α
1
2 + 2α1

1α
1
7 + 2α1

1β
1
8 + 3β1

1β
1
9 + α1

2α
1
8 + 3α1

2β
1
9 − 2α1

3β
1
3

+ α1
3α

1
4 − β1

3β
1
4 + α1

4α
1
5 − β1

4β
1
5 + 2α1

5β
1
5 + β1

1α
1
8 + 4α2

1 + 3α2
6

+ β2
7 + α2

8 + 3β2
9),

B1 =π(α4
1 + β4

2).

Then f4(r) has one solution in I if 0 < −B1/B3 < 1. Hence we can
show that at most 1 small limit cycle can bifurcate from the uniform
isochronous center and this number can be reached. Solving B1 = 0
for β4

2 and B3 = 0 for β2
7 , we obtain f4(r) = 0 so we can apply the

averaging theory of order 5, and its corresponding averaging function
is

f5(r) = r(C5r
4 + C3r

2 + C1),

where

C5 =
π

4
(2α1

1 + 2α1
6 + α1

8 + β1
9),

C3 =
π

4
(4α1

1(α
1
2)

2 + 2α1
1α

1
2α

1
7 + 2α1

1α
1
2β

1
8 + 2α1

1(α
1
3)

2 − α1
1α

1
3β

1
4

+ β1
1β

1
3β

1
4 + 2α1

1α
1
3α

1
5 − 2α1

1β
1
3β

1
5 + α1

1(α
1
4)

2 − α1
1(β

1
4)2 − α1

1β
1
3α

1
4

+ α1
1α

1
4β

1
5 − 2α1

1(β
1
5)2 + α1

1β
1
4α

1
5 + 4α1

1α
2
2 + 2α1

1α
2
7 + 2α1

1β
2
8

+ 3β1
1β

2
9 + (α1

2)
2α1

8 + 3(α1
2)

2β1
9 + 3β1

1α
1
2β

1
9 + α1

2α
1
3α

1
4 + 2α1

2α
1
4α

1
5

− α1
2β

1
4β

1
5 + 4α1

2α
1
5β

1
5 + β1

1α
1
2α

1
8 + 4α1

2α
2
1 + α1

2α
2
8 + 3α1

2β
2
9

+ 2β1
1α

1
3β

1
3 − 2α1

3β
2
3 + α1

3α
2
4 − β1

3β
2
4 + β1

1α
1
4α

1
5 + α1

4α
2
3 − β1

4β
2
3

+ α1
4α

2
5 − β1

4β
2
5 + 2β1

1α
1
5β

2
5 + α1

5α
2
4 − β1

5β
2
4 + 2α1

5β
2
5 + 2α1

7α
2
1

+ α1
8β

2
1 + α1

8α
2
2 + 3β1

9β
2
1 + 2β1

8α
2
1 + 3β1

9α
2
2 − 2β1

3α
2
3 + 2β1

5α
2
5

+ β1
1α

2
8 + 4α3

1 + 3α3
6 + β3

7 + α3
8 + 3β3

9),

C1 =π(α5
1 + β5

2).

The averaging function of fifth order f5(r) can have at most 2 solutions
in I. Thus applying the averaging method of order 5 it is proved that
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at most 2 small limit cycles can bifurcate from the uniform isochronous
center at the origin and this number can be reached.

In order to apply the averaging theory of order 6 we solve C1 = 0 for
β5
2 , C3 = 0 for β3

7 and C5 for β1
9 , resulting that f5(r) = 0. Calculating

the averaging function of sixth order we have

f6(r) = r(D5r
4 +D4r

3 +D3r
2 +D1),

where

D5 = − 1

384
π(45α1

1α
1
2 + 192α1

6α
1
2 − 112α1

3α
1
4 − 112α1

4α
1
5 − 192α1

1α
1
7

+ 96α1
1α

1
9 + 288α1

6α
1
9 + 96α1

8α
1
9 − 192α2

1 − 192α2
6 − 96α2

8

+ 192α1
6β

1
1 + 288α1

3β
1
3 + 64α1

5β
1
3 − 16β1

3β
1
4 + 320α1

3β
1
5 + 96α1

5β
1
5

+ 237α1
1β

1
1 − 16β1

4β
1
5 + 288α1

1β
1
6 + 288α1

6β
1
6 + 96α1

8β
1
6 − 96β2

9),

D4 = −1

8
α1
1π(α1

2 + β1
1)(α1

4 + β1
3 + 2β1

5),

D3 = − 1

512
π(108α1

2(α
1
1)

3 + 36β1
1(α1

1)
3 − 384α1

3α
1
4(α

1
1)

2

+ 72α2
1(α

1
1)

2 + 256α1
3β

1
3(α1

1)
2 + 128β1

3β
1
4(α1

1)
2 − 256α1

5β
1
5(α1

1)
2

+ 384β1
4β

1
5(α1

1)
2 + 319(α1

2)
3α1

1 − 27(β1
1)3α1

1 − 256α1
2(α

1
3)

2α1
1

− 256α1
2(α

1
4)

2α1
1 + 9α1

2(β
1
1)2α1

1 + 128α1
2(β

1
4)2α1

1 − 128β1
1(β1

4)2α1
1

− 128α1
4α

1
5(α

1
1)

2 + 512α1
2(β

1
5)2α1

1 − 512α1
2α

1
3α

1
5α

1
1 − 256α1

5α
2
3α

1
1

+ 572α1
2α

2
2α

1
1 − 256α1

7α
2
2α

1
1 − 512α1

3α
2
3α

1
1 − 256(α1

2)
2α1

7α
1
1

− 256α1
4α

2
4α

1
1 − 256α1

3α
2
5α

1
1 − 256α1

2α
2
7α

1
1 + 256α3

2α
1
1 − 256α3

7α
1
1

+ 867(α1
2)

2β1
1α

1
1 + 256(α1

3)
2β1

1α
1
1 + 828α2

2β
1
1α

1
1 + 128α1

2α
1
4β

1
3α

1
1

+ 128α2
4β

1
3α

1
1 − 128α1

4β
1
1β

1
3α

1
1 + 128α1

2α
1
3β

1
4α

1
1 − 256α1

2α
1
5β

1
4α

1
1

+ 128α2
3β

1
4α

1
1 − 128α2

5β
1
4α

1
1 − 128α1

3β
1
1β

1
4α

1
1 − 256α1

2α
1
4β

1
5α

1
1

− 128α2
4β

1
5α

1
1 + 256α1

2β
1
3β

1
5α

1
1 − 256β1

1β
1
3β

1
5α

1
1 − 256(α1

2)
2β1

8α
1
1

− 256α2
2β

1
8α

1
1 + 828α1

2β
2
1α

1
1 + 60β1

1β
2
1α

1
1 + 128α1

4β
2
3α

1
1

+ 256β1
5β

2
3α

1
1 + 128α1

3β
2
4α

1
1 − 128α1

5β
2
4α

1
1 + 256β1

4β
2
4α

1
1

− 128α1
4β

2
5α

1
1 + 256β1

3β
2
5α

1
1 + 512β1

5β
2
5α

1
1 − 256α1

2β
2
8α

1
1

+ 768β3
1α

1
1 − 256β3

8α
1
1 + 30α2

1(β
1
1)2 + 128α2

1(β
1
4)2

+ 256α2
1(β

1
5)2 − 128(α1

2)
2α1

3α
1
4 − 384(α1

2)
2α1

4α
1
5 + 768(α1

2)
3α1

6

+ 256(α1
2)

3α1
8 − 482(α1

2)
2α2

1 − 256(α1
3)

2α2
1 − 128(α1

4)
2α2

1

− 256α1
3α

1
5α

2
1 − 256α1

2α
1
7α

2
1 − 128α1

3α
1
4α

2
2 − 256α1

4α
1
5α

2
2
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+ 1536α1
2α

1
6α

2
2 + 512α1

2α
1
8α

2
2 − 512α2

1α
2
2 − 128α1

2α
1
4α

2
3

− 128α1
2α

1
3α

2
4 − 256α1

2α
1
5α

2
4 − 128α2

3α
2
4 − 256α1

2α
1
4α

2
5

− 128α2
4α

2
5 − 256α2

1α
2
7 − 128(α1

2)
2α2

8 − 128α2
2α

2
8 − 512α1

2α
3
1

− 256α1
7α

3
1 + 768α1

6α
3
2 + 256α1

8α
3
2 − 128α1

4α
3
3 − 128α1

3α
3
4

− 128α1
5α

3
4 − 128α1

4α
3
5 − 128α1

2α
3
8 − 512α4

1 − 384α4
6 − 128α4

8

− 256α1
2α

1
4α

1
5β

1
1 + 768(α1

2)
2α1

6β
1
1 + 256(α1

2)
2α1

8β
1
1 + 60α1

2α
2
1β

1
1

+ 768α1
6α

2
2β

1
1 + 256α1

8α
2
2β

1
1 − 128α1

5α
2
4β

1
1 − 128α1

4α
2
5β

1
1

− 128α1
2α

2
8β

1
1 − 128α3

8β
1
1 + 256α1

3(β
1
1)2β1

3 + 128α1
4α

2
1β

1
3

+ 256α3
3β

1
3 − 256α2

3β
1
1β

1
3 + 128α1

3α
2
1β

1
4 − 128α1

5α
2
1β

1
4

+ 128(β1
1)2β1

3β
1
4 − 768(α1

2)
2α1

5β
1
5 − 128α1

4α
2
1β

1
5 − 512α1

5α
2
2β

1
5

− 512α1
2α

2
5β

1
5 − 256α3

5β
1
5 − 512α1

2α
1
5β

1
1β

1
5 − 256α2

5β
1
1β

1
5

+ 256α2
1β

1
3β

1
5 + 128(α1

2)
2β1

4β
1
5 + 128α2

2β
1
4β

1
5 − 256α1

2α
2
1β

1
8

− 256α3
1β

1
8 − 128α1

4α
1
5β

2
1 + 768α1

2α
1
6β

2
1 + 256α1

2α
1
8β

2
1 − 128α2

8β
2
1

− 256α1
3β

1
3β

2
1 − 128β1

3β
1
4β

2
1 − 256α1

5β
1
5β

2
1 + 256α2

3β
2
3 − 256α1

3β
1
1β

2
3

− 128β1
1β

1
4β

2
3 − 128β1

1β
1
3β

2
4 + 128α1

2β
1
5β

2
4 + 128β2

3β
2
4 − 512α1

2α
1
5β

2
5

− 256α2
5β

2
5 − 256α1

5β
1
1β

2
5 + 128α1

2β
1
4β

2
5 + 128β2

4β
2
5 − 256α2

1β
2
8

− 384(α1
2)

2β2
9 − 384α2

2β
2
9 − 384α1

2β
1
1β

2
9 − 384β2

1β
2
9 + 768α1

6β
3
1

+ 256α1
8β

3
1 + 256α1

3β
3
3 + 128β1

4β
3
3 + 128β1

3β
3
4 + 128β1

5β
3
4

− 256α1
5β

3
5 + 128β1

4β
3
5 − 384α1

2β
3
9 − 384β1

1β
3
9 − 128β4

7 − 384β4
9),

D1 =π(α6
1 + β6

2).

Therefore f6(r) can have 3 solutions in I according to Proposition 12.
By Theorem 13 (r, r3, r4, r5) is an ECT-system because W1(z) = z,
W2(z) = 2z3, W3(z) = 6z5, W4(z) = 48z7, where Wj(z), j = 1, 2, 3
denotes the Wronskian of the first j functions in (r, r3, r4, r5), are
nonzero in I. Moreover D1, D3, D4 and D5 are linearly independent
functions. In fact only D5 presents the coefficients α1

9 and α2
6, only D3

has the coefficient α2
2, and D1 is the only one with the coefficients α6

1

and β6
2 . We claim that D4 is also linearly independent of the other

coefficients. Suppose that this is false. Then there exist real numbers
k, l,m not all zero such that D4 = kD1+lD3+mD5. But D1 is the only
one with the variables α6

1 and β6
2 , so in order to D4 does not present

these variables we must set k = 0. Since the other two functions D3

and D5 also have variables which uniquely appears in their respective
expressions, the same argument holds so l = m = 0. But then D4 ≡ 0,
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which is a contradiction. Therefore D1, D3, D4 and D5 are linearly
independent functions. Hence applying the averaging theory of order
6 we can show that at most 3 small limit cycle can bifurcate from
the uniform isochronous center at the origin and this number can be
reached.

Now we perform similar calculations to the Collins second form.

Collins second form
Consider system (4) with f(x, y) = x+ Axy.

(14)

ẋ = −y + x2 + Ax2y +
6∑
i=1

εipi(x, y),

ẏ = x+ xy + Axy2 +
6∑
i=1

εiqi(x, y),

where A ∈ R\{0}, since for A = 0 system (14) is a quadratic system,
which has been exhaustively studied.

Similarly to the previous procedures applied in the Collins first form,
in order to analyze the Hopf bifurcation for system (14), applying
Theorem 10, we introduce a small parameter ε doing the change of
coordinates x = εX, y = εY . After that we perform the polar change
of coordinatesX = r cos θ, Y = r sin θ, and by doing a Taylor expansion
truncated at the 6th order in ε we obtain an expression for dr/dθ similar
to (8) with F0 = 0, k = 6. Using the same arguments as in the proof
of the Collins first form the differential equation dr/dθ = . . . satisfies
the assumptions of Theorem 10. We take I = {r : 0 < r < r0 < 1},
where the unperturbed system has periodic solutions passing through
the point (r < r0, θ = 0).

Applying Theorem 10 we obtain the averaging function of first order

f1(r) = πr(α1
1 + β1

2).

Clearly f1(r) has no solution in I. Setting β1
2 = −α1

1 we obtain f1(r) =
0. So we can apply the averaging theory of order 2 using Theorem 10,
obtaining

f2(r) = πr(α2
1 + β2

2)

Again f2(r) has no solution in I. Doing β2
2 = −α2

1 we get f2(r) = 0.
Then we can apply the averaging method of third order

f3(r) = r(A3r
2 + A1),

where

A3 =
π

4
(4Aα1

1 + α1
4 + 3α1

6 + α1
8 − 3β1

3 − β1
5 + β1

7 + 3β1
9),
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A1 =π(α3
1 + β3

2).

Thus f3(r) can have one solution in I if 0 < −A1/A3 < r0. In order to
apply the averaging method of forth order, we need to have f3(r) = 0.
We set β3

2 = −α3
1 and β1

7 = −(4Aα1
1 +α1

4 + 3α1
6 +α1

8− 3β1
3 − β1

5 + 3β1
9).

The resulting averaging function of fourth order is

f4(r) = r(B3r
2 +B1),

where

B3 =
π

4
(4Aα1

1α
1
2 + 4Aα2

1 + 3α1
1α

1
3 + 3β1

1β
1
3 − 3α1

1β
1
4 + 3α1

1α
1
5 + 2α1

1α
1
7

+ 2α1
1β

1
8 + 3β1

1β
1
9 + α1

2α
1
4 − α1

2β
1
5 + α1

2α
1
8 + 3α1

2β
1
9 − 2α1

3β
1
3

+ α1
3α

1
4 − β1

3β
1
4 + α1

4α
1
5 − β1

4β
1
5 + 2α1

5β
1
5 + β1

1α
1
8 − 3β2

3 + α2
4

− β2
5 + 3α2

6 + β2
7 + α2

8 + 3β2
9),

B1 =π(α4
1 + β4

2).

Then f4(r) has one solution in I if 0 < −B1/B3 < r0. Solving B1 = 0
for β4

2 , and B3 = 0 for β2
7 , we obtain f4(r) = 0, and we can apply the

averaging theory of order 5. Its corresponding averaging function is

f5(r) = r(C5r
4 + C3r

2 + C1),

where

C5 =
π

24
(12A2α1

1 + 18Aα1
1 − 17Aβ1

3 + 7Aα1
4 − 19Aβ1

5 + 12Aα1
6 + 6Aα1

8

+ 6Aβ1
9 − 12β1

3 + 6α1
4 − 6β1

5 + 18α1
6 + 12α1

8 + 18β1
9),

C3 =
π

4
(4Aα1

1(α
1
2)

2 + 4Aα1
1α

2
2 + 4Aα1

2α
2
1 + 4Aα3

1 − 3(α1
1)

2β1
3 − 3(β1

1)2β1
3

+ 3(α1
1)

2α1
4 − 3(α1

1)
2β1

5 + 3β1
1α

1
1β

1
4 + 3α1

1α
1
2α

1
3 − 3α1

1α
1
2β

1
4 + β3

7

+ 6α1
1α

1
2α

1
5 + 2α1

1α
1
2α

1
7 + 2α1

1α
1
2β

1
8 + 2α1

1(α
1
3)

2 − 3β1
1α

1
1α

1
3 + α3

8

− α1
1α

1
3β

1
4 + β1

1β
1
3β

1
4 + 2α1

1α
1
3α

1
5 − 2α1

1β
1
3β

1
5 + α1

1(α
1
4)

2 − α1
1(β

1
4)2

− α1
1β

1
3α

1
4 + α1

1α
1
4β

1
5 − 2α1

1(β
1
5)2 + α1

1β
1
4α

1
5 + α1

8α
2
2 + 2β1

5α
2
5 + 3β3

9

− 3α1
1β

2
4 + 3α1

1α
2
5 + 2α1

1α
2
7 + 2α1

1β
2
8 + 3β1

1β
2
9 + (α1

2)
2α1

4 − (α1
2)

2β1
5

+ (α1
2)

2α1
8 + 3(α1

2)
2β1

9 + 3β1
1α

1
2β

1
9 + α1

2α
1
3α

1
4 + 2α1

2α
1
4α

1
5 + β1

1α
2
8

− α1
2β

1
4β

1
5 + 4α1

2α
1
5β

1
5 + β1

1α
1
2α

1
8 + α1

2α
2
4 − α1

2β
2
5 + α1

2α
2
8 + 3α1

2β
2
9

+ 2β1
1α

1
3β

1
3 + 3α1

3α
2
1 + 3β1

3β
2
1 − 2α1

3β
2
3 + α1

3α
2
4 − β1

3β
2
4 + β1

1α
1
4α

1
5

+ α1
4α

2
2 + α1

4α
2
3 − β1

4β
2
3 + α1

4α
2
5 − β1

4β
2
5 + 2β1

1α
1
5β

1
5 − 3β3

3 + 3β1
1β

2
3

+ 3α1
5α

2
1 + α1

5α
2
4 − β1

5β
2
4 + 2α1

5β
2
5 + 2α1

7α
2
1 + α1

8β
2
1 + 3α1

1α
2
3 + α3

4

+ 3β1
9β

2
1 − 3β1

4α
2
1 + 2β1

8α
2
1 − β1

5α
2
2 + 3β1

9α
2
2 − 2β1

3α
2
3 − β3

5 + 3α3
6),
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C1 =π(α5
1 + β5

2).

The averaging function f5(r) has at most 2 solutions in I. In order
to apply the averaging method of order 6 we solve C1 = 0 for β5

2 ,
C3 = 0 for β3

7 , and C5 = 0 for β1
9 , resulting f5(r) = 0. We remark that

these expressions only hold for A 6= −3. The results for A = −3 are
presented later on. Calculating the averaging function of sixth order
we obtain

f6(r) = r(D5r
4 +D3r

2 +D1).

where the expressions of Di for i = 1, 3, 5 are very long and we do not
give them here.

Therefore f6(r) has at most 2 solutions in I. Using the same
arguments than in the proof of the Collins first form for f6(r) we can
show that at most 2 small limit cycles can bifurcate from the uniform
isochronous center at the origin and this number can be reached.

Now we analyze the bifurcation of small limit cycles for the center of
(14) in the case A = −3. We remark that until the averaging method
of order 5 the respective averaging functions for this special case can
be obtained by plugging A = −3 in the equations of the general case,
so we do not explicit them. Hence we solve C1 = 0 for β5

2 , C3 = 0 for
β3
7 , and C5 = 0 for α1

8, and we get f5(r) = 0 when A = −3. Calculating
the averaging function of sixth order we obtain

f6(r) = r(D5r
4 +D4r

3 +D3r
2 +D1),

where again we do not provide the explicit expressions of Dj for j =
1, 3, 4, 5 because they are too much long.

Therefore f6(r) has at most 3 solutions in I. Using similar arguments
as those applied in the proof of the Collins first form for f6(r) it is
proved that at most 3 small limit cycles can bifurcate from the uniform
isochronous center at the origin and this number can be reached.

This completes the proof of Theorem 4.

4. Proof of Theorem 5

A first integral H and its corresponding integrating factor µ for
system (2) are H(x, y) = (x2 + y2)/(1 − x2) and µ = −2/(x2 − 1)2.
When h ∈ (0, 1) then H(x, y) = h are periodic solutions around the
center (0, 0) contained in the open disc of radius 1 centered at the
origin. For proving Theorem 5 we shall use Theorem 11. Therefore
applying the notation of Theorem 11 we have h1 = 0, h2 = 1 and
ρ(R, θ) = R/(R2 cos2 θ + 1) for all 0 < R < 1 and θ ∈ [0, 2π). Then
all the hypotheses of Theorem 11 are satisfied for system (2). Using
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Theorem 11 we transform the perturbed differential system (5) into the
form

(15)
dR

dθ
= ε

∑5
i=0Mi(θ, α, β)Ri

1 +R2 cos2 θ
+O(ε2)

where

M0(θ, α, β) =−
√

1 +R2 cos2 θ(α0 cos θ + β0 sin θ),

M1(θ, α, β) =− α1 cos2 θ − (α2 + β1) cos θ sin θ − β2 sin2 θ,

M2(θ, α, β) =(−1/4
√

2)
√

2 +R2 +R2 cos(2θ)((7α0 + 3α3 + α5

+ β4) cos θ + (α0 + α3 − α5 − β4) cos(3θ) + 2(α4

+ β0 + β3 + β5 + (α4 + β0 + β3 − β5) cos(2θ)) sin θ),

M3(θ, α, β) =− (2α1 + α6) cos4 θ − (2α2 + α7 + β1 + β6) cos3 θ sin θ

− (α1 + α8 + β2 + β7) cos2 θ sin2 θ − (α2 + α9 + β8)

cos θ sin3 θ − β9 sin4 θ,

M4(θ, α, β) =(−1/2
√

2) cos θ
√

2 +R2 +R2 cos(2θ)(α0 + α3 + α5

+ (α0 + α3 − α5) cos(2θ) + α4 sin(2θ)),

M5(θ, α, β) =(−1/4) cos θ((3(α1 + α6) + α8) cos θ + (α1 + α6 − α8)

cos 3θ + 2(α2 + α7 + α9 + (α2 + α7 − α9) cos 2θ) sin θ),

where α = (α0, . . . , α9) and β = (β0, . . . , β9).
We must study the zeros of the averaged function f : (0, 1) → R

defined by

f(R) =

∫ 2π

0

∑5
i=0Mi(θ, α, β)Ri

1 +R2 cos2 θ
dθ.

By computing the previous integral, we obtain

f(R) = π(α6 − α1 − 3α8 − β2 − β7 + 3β9)g0 − π(α1 + α6 + α8)g1

+ 2π(α8 − β9)g2 + 2π(α6 − α8 − β7 + β9)g3,(16)

where

g0 = R, g1 = R3, g2 = R
√

1 +R2, g3 = (1−
√

1 +R2)/R.

In order to find the maximum number of simple zeros of the function f
we need to prove that the four functions gi : (0, 1)→ R, i ∈ {0, . . . , 3}
given in (16) are an ECT-system and according to Theorem 13 this is
the case if each Wronskian Wj(g0, . . . , gj) 6= 0, j ∈ {0, . . . , 3}. More
precisely

W0 =R, W1 = 2R3, W2 = −2R6/(1 +R2)3/2
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W3 =12R2(8 + 12R2 + 4R4 − 8(1 +R2)3/2 −R4
√

1 +R2)/(1 +R2)7/2.

For R ∈ (0, 1) we have that all the Wronskians above are nonzero.
Moreover the rank of the Jacobian matrix of the coefficients of gi, i =
0, . . . , 3 in f(R) in the variables α1, α6, α8, β2, β7, β9 is 4. Thus applying
the averaging theory of first order and Theorem 13 it is proved that at
most 3 medium limit cycles can bifurcate from the periodic solutions
surrounding the cubic uniform isochronous center of the Collins first
form and this number can be reached. This completes the proof of
Theorem 5.

5. Proof of Theorem 6

We use the Collins first and second forms to prove Theorem 6. We
shall apply to them the averaging theory of order 6.

Collins first form
In order to analyze the Hopf bifurcation for system (6) with f(x, y) =

xy we introduce a small parameter ε doing the change of coordinates
x = εX, y = εY . After that we perform the polar change of coordinates
X = r cos θ, Y = r sin θ and by doing a Taylor expansion truncated at
the 5th order in ε we obtain an expression for dr/dθ similar to (8) with
F0 = 0, k = 6 . The explicit expression is quite large so we omit it.

In addition, to fulfill the conditions of Theorem 10 we apply the
regularization theory. For this purpose we take the function h(τ) and
λ > 0 of Proposition 14 and transform system (6) with f(x, y) = xy in
the C∞−system

X̄ =
X1 +X2

2
+ h(τ)

X1 −X2

2
,

where X1 and X2 are given in (6) with f(x, y) = xy. For τ < −λ
this system is equal to X2, for τ > λ it is X1 and it is a smooth
differential system otherwise. When λ→ 0 it tends to system (6) with
f(x, y) = xy. We shall have I of Theorem 10 as I = {r : 0 < r < 1}.
Now we have all the assumptions of Theorem 10 satisfied and applying
it we obtain the averaging function of first order

f1(r) = πr(α1
1 + β1

2 + γ11 + δ12).

Clearly f1(r) has no solution in I. Thus there is no small limit cycles
bifurcating from the uniform isochronous center at the origin by the
averaging theory of first order. Now setting γ11 = −(α1

1 + β1
2 + δ12)

we obtain f1(r) = 0. So we can apply the averaging theory of second
order, obtaining

f2(r) = r(A2r + A1),



UNIFORM ISOCHRONOUS CUBIC CENTERS 21

where

A2 =
2

3
(α1

4 − γ14 + β1
3 + 2β1

5 − δ13 − 2δ15),

A1 =
π

4
(α1

1α
1
2 + 2α2

1 + 2π(α1
1)

2 − α1
1γ

1
2 + 2γ21 − α1

1β
1
1 + α1

2β
1
2 + 4πα1

1β
1
2

− γ12β1
2 − β1

1β
1
2 + 2π(β1

2)2 + 2β2
2 + α1

1δ
1
1 + β1

2δ
1
1 + 2δ22).

Thus f2(r) has one solution in I if 0 < −A1/A2 < 1. Therefore applying
the averaging theory of order 2 it is proved that at most 1 small limit
cycle can bifurcate from the uniform isochronous center at the origin
and this number can be reached. To apply the averaging method of
third order we need that f2(r) = 0. Thus we solve A1 = 0 for γ14 and
A2 = 0 for γ21 from these coefficients. Calculating the next averaging
function we have

f3(r) = r(B3r
2 +B2r +B1),

where

B3 =
1

8
π(−4β1

2 + 3α1
6 + β1

7 + α1
8 + 3β1

9 − 4δ12 + δ17 + 3δ19 + 3γ16 + γ18),

B2 =
2

9
(α1

1α
1
3 − 3β1

1β
1
3 + 6πα1

1β
1
3 − α1

1β
1
4 + 6πα1

1α
1
4 + 2α1

1α
1
5 + 12πα1

1β
1
5

− α1
1δ

1
4 + α1

1γ
1
3 + 2α1

1γ
1
5 + 6πβ1

2β
1
3 + 3α1

2α
1
4 − 4β1

2β
1
4 + 6α1

2β
1
5

+ 12πβ1
2β

1
5 − β1

2δ
1
4 − 5β1

2α
1
3 + 6πβ1

2α
1
4 − 3α1

4γ
1
2 + 2β1

2α
1
5 + 3β2

3

+ 3α2
4 + 6β2

5 + 3δ11δ
1
3 + 3δ12δ

1
4 − 3β1

3γ
1
2 − 6β1

5γ
1
2 + 3δ13γ

1
2 + β1

2γ
1
3

+ 6δ12γ
1
3 + 2β1

2γ
1
5 − 3δ23 − 3γ24 − 6δ25),

B1 =
1

16
π(10π2(α1

1)
3 − 8πβ1

1(α1
1)

2 + 30π2(α1
1)

2β1
2 − 4(α1

1)
2β1

2

+ 8π(α1
1)

2α1
2 + 3(β1

1)2β1
2 + 4π(α1

1)
2δ11 − 4(α1

1)
2δ12 − 4π(α1

1)
2γ12

+ 3(β1
1)2α1

1 − 16πβ1
1α

1
1β

1
2 − 2β1

1α
1
1δ

1
1 + 3α1

1(α
1
2)

2 + 30π2α1
1(β

1
2)2

− 4α1
1(β

1
2)2 − 8πβ1

1(β1
2)2 − 2β1

1α
1
1α

1
2 + 16πα1

1α
1
2β

1
2 + 2α1

1α
1
2δ

1
1

+ 8πα1
1β

1
2δ

1
1 − 2β1

1β
1
2δ

1
1 − 8α1

1β
1
2δ

1
2 − 2α1

1α
1
2γ

1
2 − 4α1

1β
2
1

+ 16πα1
1α

2
1 + 4α1

1α
2
2 + 16πα1

1β
2
2 − 4β1

1β
2
2 − α1

1(δ
1
1)2

− 4α1
1(δ

1
2)2 − α1

1(γ
1
2)2 + 2β1

1α
1
1γ

1
2 − 8πα1

1β
1
2γ

1
2 − 2α1

1δ
1
1γ

1
2

+ 4α1
1δ

2
1 − 4α1

1γ
2
2 + 10π2(β1

2)3 + 3(α1
2)

2β1
2 + 4π(β1

2)2δ11

− 4(β1
2)2δ12 − 2β1

1α
1
2β

1
2 + 8πα1

2(β
1
2)2 + 2α1

2β
1
2δ

1
1 + 4α1

2α
2
1

− 4β1
2β

2
1 + 4α1

2β
2
2 + 16πβ1

2β
2
2 − β1

2(δ11)2 − 4β1
2(δ12)2

− 2α1
2β

1
2γ

1
2 + 4β1

2δ
2
1 − 4β1

1α
2
1 + 16πβ1

2α
2
1 + 4α2

1δ
1
1
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− 4α2
1γ

1
2 + 4β1

2α
2
2 + 4β2

2δ
1
1 + 8α3

1 + 8β3
2 − β1

2(γ12)2 + 2β1
1β

1
2γ

1
2

− 4π(β1
2)2γ12 − 2β1

2δ
1
1γ

1
2 − 4β2

2γ
1
2 − 4β1

2γ
2
2 + 8γ31 + 8δ32).

Since f3(r) can have at most 2 solutions in I, we conclude that at most
2 small limit cycles can bifurcate from the uniform isochronous center
at the origin and this number can be reached. In order to apply the
averaging theory of order 4 we need that f3(r) = 0, so we vanish its
coefficients B1, B2 and B3 by conveniently isolating δ32, δ25 and δ19 from
these coefficients. The resulting averaging function of fourth order is

f4(r) = r(C4r
3 + C3r

2 + C2r + C1),

where the expressions of Cj for j = 1, . . . , 4 are too long and we do not
provide them here.

Of course f4(r) can have at most 3 solutions in I, so at most 3 small
limit cycles can bifurcate from the uniform isochronous center at the
origin and this number can be reached. In order to apply the averaging
method of order 5 we must have that f4(r) = 0. Thus we solve C1 = 0,
C2 = 0, C3 = 0 and C4=0 isolating β4

2 , β3
5 , β2

9 and β1
5 respectively.

Now we can apply the averaging theory of order 5, and its averaging
function is

f5(r) = r(D5r
4 +D4r

3 +D3r
2 +D2r +D1),

where again we do not provide the explicit expressions of Dj for j =
1, . . . , 5. Hence f5(r) has at most 4 solutions in I. Doing analogous
arguments than in the proof of Theorem 4 it is proved that at most 4
small limit cycles can bifurcate from the uniform isochronous center at
the origin using the averaging theory of order 5, and this number can
be reached.

To apply the averaging theory of order 6 we solve D1 = 0 for δ52,
D2 = 0 for δ45, D3 = 0 for δ39, D4 for δ23, and D5 = 0 for γ16 , so we get
f5(r) = 0. Calculating the averaging function of order 6 we obtain

f6(r) = r(E6r
5 + E5r

4 + E4r
3 + E3r

2 + E2r + E1).

We do not provide the expressions of Ei for i = 1, . . . , 6 because they
are too long. Thus f6(r) has at most 5 solutions in I. Doing analogous
arguments than in the proof of Theorem 4 we can show that at most 5
small limit cycles can bifurcate from the uniform isochronous center at
the origin using the averaging theory of order 6, and this number can
be reached.

Collins second form
Similarly to the previous arguments used in the Collins first form

case, to study the Hopf bifurcation for system (6) with f(x, y) =
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x + Axy we introduce a small parameter ε by doing the change of
coordinates x = εX, y = εY and then the standard polar change
of coordinates X = r cos θ, Y = r sin θ. Doing a Taylor expansion
truncated at the 5th order in ε we obtain an expression for dr/dθ similar
to (8) with F0 = 0. The explicit expression is very large so we omit
it. We shall have I of Theorem 10 as I = {r : 0 < r < r0 < 1},
where the unperturbed system has periodic solutions passing through
the point (r < r0, θ = 0). Moreover we also apply the regularization
theory to fulfill the other conditions of Theorem 10 as previously done
for the Collins first form. Hence, applying Theorem 10 we obtain the
averaging function of first order

f1(r) =
1

2
πr(α1

1 + β1
2 + δ12 + γ11).

Therefore f1(r) has no solution in I. Setting γ11 = −(α1
1 + β1

2 + δ12)
we have f1(r) = 0. So we can apply the averaging theory of order 2
obtaining

f2(r) = r(A2r + A1),

where

A2 =
2

3
(−3β1

2 + β1
3 + α1

4 + 2β1
5 + 3δ12 − δ13 − 2δ15 − γ14),

A1 =
π

4
(2π(α1

1)
2 + α1

1(−β1
1 + α1

2 + 4πβ1
2 + δ11 − γ12)− β1

1β
1
2 + 2π(β1

2)2

+ α1
2β

1
2 + β1

2δ
1
1 + 2α2

1 + 2β2
2 − β1

2γ
1
2 + 2γ21 + 2δ22).

Thus f2(r) can have one solution in I if 0 < −A1/A2 < r0, i.e. applying
the averaging theory of order 2 we can show that at most 1 small limit
cycle can bifurcate from the uniform isochronous center at the origin
and this number can be reached. To apply the averaging theory of
order 3 we solve A1 = 0 and A2 = 0 isolating γ14 and γ21 respectively.
Calculating the next averaging function we have

f3(r) = r(B3r
2 +B2r +B1),

where

B3 =
π

8
(−4Aβ1

2 − 4Aδ12 − 3β1
2 − 2β1

3 + 2α1
4 + β1

5 + 3α1
6 + β1

7 + α1
8 + 3β1

9

+ 3δ12 − 4δ13 − 3δ15 + δ17 + 3δ19 + 3γ16 + γ18),

B2 = +
2

9
(9β1

1β
1
2 − 18πα1

1β
1
2 + α1

1α
1
3 − 3β1

1β
1
3 + 6πα1

1β
1
3 − α1

1β
1
4

+ 6πα1
1α

1
4 + 2α1

1α
1
5 + 12πα1

1β
1
5 − α1

1δ
1
4 + α1

1γ
1
3 + 2α1

1γ
1
5 − 18π(β1

2)2

+ 6πβ1
2β

1
3 − 4β1

2β
1
4 + 3α1

2α
1
4 + 12πβ1

2β
1
5 + 6α1

2β
1
5 − β1

2δ
1
4 − 5β1

2α
1
3

+ 6πβ1
2α

1
4 − 3α1

4γ
1
2 + 2β1

2α
1
5 − 9β2

2 + 3β2
3 + 3α2

4 + 6β2
5 − 9δ11δ

1
2
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+ 3δ11δ
1
3 + 3δ12δ

1
4 + 9β1

2γ
1
2 − 3β1

3γ
1
2 − 6β1

5γ
1
2 + 3δ13γ

1
2 − 9α1

2β
1
2

+ β1
2γ

1
3 + 6δ12γ

1
3 + 2β1

2γ
1
5 + 9δ22 − 3γ23 − 3γ24 − 6δ25),

B1 = +
π

16
(10π2(α1

1)
3 − 8πβ1

1(α1
1)

2 + 30π2(α1
1)

2β1
2 − 4(α1

1)
2β1

2

+ 8π(α1
1)

2α1
2 + 3(β1

1)2β1
2 + 4π(α1

1)
2δ11 − 4(α1

1)
2δ12 − 4π(α1

1)
2γ12

− 16πβ1
1α

1
1β

1
2 − 2β1

1α
1
1δ

1
1 + 3α1

1(α
1
2)

2 + 30π2α1
1(β

1
2)2 − 4α1

1(β
1
2)2

− 8πβ1
1(β1

2)2 − 2β1
1α

1
1α

1
2 + 16πα1

1α
1
2β

1
2 + 2α1

1α
1
2δ

1
1 + 8πα1

1β
1
2δ

1
1

− 2β1
1β

1
2δ

1
1 − 8α1

1β
1
2δ

1
2 − 2α1

1α
1
2γ

1
2 − 4α1

1β
2
1 + 16πα1

1α
2
1 + 4α1

1α
2
2

+ 16πα1
1β

2
2 − 4β1

1β
2
2 − α1

1(δ
1
1)2 − 4α1

1(δ
1
2)2 − α1

1(γ
1
2)2

+ 2β1
1α

1
1γ

1
2 − 8πα1

1β
1
2γ

1
2 − 2α1

1δ
1
1γ

1
2 + 4α1

1β
3
1 − 4α1

1γ
2
2 + 10π2(β1

2)3

+ 3(α1
2)

2β1
2 + 4π(β1

2)2δ11 − 4(β1
2)2δ12 − 2β1

1α
1
2β

1
2 + 8πα1

2(β
1
2)2

+ 2α1
2β

1
2δ

1
1 + 4α1

2α
2
1 − 4β1

2β
2
1 + 4α1

2β
2
2 + 16πβ1

2β
2
2 − β1

2(δ11)2

− 4β1
2(δ12)2 − 2α1

2β
1
2γ

1
2 + 4β1

2δ
2
1 − 4β1

1α
2
1 + 16πβ1

2α
2
1

+ 4α2
1δ

1
1 − 4α2

1γ
1
2 + 4β1

2α
2
2 + 4β2

2δ
1
1 + 8α3

1 + 8β3
2 + 3(β1

1)2α1
1

− β1
2(γ12)2 + 2β1

1β
1
2γ

1
2 − 4π(β1

2)2γ12 − 2β1
2δ

1
1γ

1
2 − 4β2

2γ
1
2

− 4β1
2γ

2
2 + 8γ31 + 8δ32).

Then f3(r) has at most 2 solutions in I, i.e. applying the averaging
theory of order 3 it is proved that at most 2 small limit cycles can
bifurcate from the uniform isochronous center at the origin and this
number can be reached. To apply the averaging method of order 4 we
solve B1 = 0, B2 = 0 and B3 = 0 isolating δ32, δ25, δ19 respectively. The
next averaging function is

f4(r) = r(C4r
3 + C3r

2 + C2r + C1).

We do not provide the expressions of Cj for j = 1, . . . , 4 because they
are too long.

Of course f4(r) has at most 3 solutions in I, that is, applying the
averaging theory of order 4 we can show that at most 3 small limit
cycles can bifurcate from the uniform isochronous center at the origin
and this number can be reached. To apply the averaging method of
order 5 we solve C1 = 0, C2 = 0, C3 = 0 and C4 = 0 isolating β4

2 , β3
5 ,

β2
9 and β1

9 respectively. The next averaging function is

f5(r) = r(D5r
4 +D4r

3 +D3r
2 +D2r +D1),

where again we do not give the expressions of Dj for j = 1, . . . , 5.
Hence f5(r) has at most 4 solutions in I. Using analogous arguments
than in the proof of Theorem 4 we can show that at most 4 small limit
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cycles can bifurcate from the uniform isochronous center at the origin
and this number can be reached.

In order to apply the averaging theory of order 6 we solve D1 = 0
for δ52, D2 = 0 for δ45, D3 = 0 for δ39, D4 for δ29, and D5 = 0 for γ16 , so we
get f5(r) = 0. Calculating the averaging function of order 6 we obtain

f6(r) = r(E6r
5 + E5r

4 + E4r
3 + E3r

2 + E2r + E1).

We do not provide the expressions of Ei for i = 1, . . . , 6 because they
are too long. Thus f6(r) has at most 5 solutions in I. Doing analogous
arguments than in the proof of Theorem 4 it follows that at most 5
small limit cycles can bifurcate from the uniform isochronous center at
the origin using the averaging theory of order 6, and this number can
be reached.

This ends the proof of Theorem 6.

6. Proof of Theorem 7

We proceed as in the proof of Theorem 5 in section 4 since the
unperturbed system (2) is the same. Hence a first integral H, its
corresponding integrating factor µ, and a function ρ satisfying the
hypotheses of Theorem 11 are H(x, y) = (x2 + y2)/(1 − x2), µ =
−2/(x2 − 1)2, and ρ(R, θ) = R/(R2 cos2 θ + 1) for all 0 < R < 1
and θ ∈ [0, 2π).

Applying Theorem 11 we transform the perturbed differential system
(7) into the form

(17)
dR

dθ
=


ε

∑5
i=0Mi(θ, α, β)Ri

1 +R2 cos2 θ
+O(ε2) if y > 0,

ε

∑5
i=0Ni(θ, γ, δ)R

i

1 +R2 cos2 θ
+O(ε2) if y < 0,

where the functions Mi(θ, α, β) coincide with the ones given in system
(15), andNi(θ, γ, δ) = Mi(θ, γ, δ) for i = 0, . . . , 5, with γ = (γ0, . . . , γ9),
δ = (δ0, . . . , δ9).

The discontinuous differential system (17) is under the assumptions
of Theorem 11. Hence we must study the zeros of the averaged function
f : (0, 1)→ R

f(R) =

∫ π

0

∑5
i=0Mi(θ, α, β)Ri

1 +R2 cos2 θ
dθ +

∫ 2π

π

∑5
i=0Ni(θ, γ, δ)R

i

1 +R2 cos2 θ
dθ

We compute these integrals obtaining

f(R) =π(α6 − α8 − β7 + β9 + γ6 − γ8 − δ7 + δ9)g0 + π/2(α6

− α1 − 3α8 − β2 − β7 + 3β9 − γ1 + γ6 − 3γ8 − δ2 − δ7
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+ 3δ9)g1 − π/2(α1 + α6 + α8 + γ1 + γ6 + γ8)g2 + (β5(18)

− α4 − β0 − β3 + γ4 + δ0 + δ3 − δ5)g3 + π(α8 − β9 + γ8

− δ9)g4 + (γ4 − α4)g5 + (α4 − β0 + β3 − β5 − γ4 + δ0

− δ3 + δ5)g6 + (α4 − 2β5 − γ4 + 2δ5)g7,

where

g0 =(1−
√

1 +R2)/R, g1 = R, g2 = R3,

g3 =
√

1 +R2, g4 = R
√

1 +R2, g5 = R2
√

1 +R2,

g6 =(arcsinhR)/R, g7 = R arcsinhR.

In order to find the maximum number of simple zeros of function f we
need to prove that the eight functions gi : (0, 1) → R, i ∈ {0, . . . , 7}
given in (18) form an ECT-system and according to Theorem 13 this
is the case if each Wronskian Wj(g0, . . . , gj) 6= 0, j ∈ {0, . . . , 7}. More
precisely

W0 =(1−K)/R, W1 = (2K − 2−R2)/(RK),

W2 =2K−3(1− 6K2 + 8K3 − 3K4),

W3 =6R−3K−7(8− 8K + 4R6K +R4(16− 7K) + 4R2(6− 5K)),

W4 =− 36R−2K−10(4R6K +R2(76− 56K) +R4(40− 17K)

− 40(K − 1)),

W5 =1080R−5K−15(24(K − 1) +R2(R2K(3R2 − 5) + 4(4K − 7))),

W6 =25920R−7K−20(64(1−K) +R2(R2K(6R2 − 17) + 32(7− 6K))

+ 105R3 arcsinhR),

W7 =1244160R−8K−26(4R8 − 515R4 − 12R6 − 256(K − 1) +R2(896K

− 243) + 105RK(2R2 − 5) arcsinhR),

where K =
√

1 +R2. For 0 < R < 1 we have that all the Wronskians
above are nonzero. Moreover the rank of the Jacobian matrix of the
coefficients of gi for i ∈ {0, . . . , 7} in (18) in the variables α1, α4, α6, α8,
β0, β2, β3, β5, β7, β9, γ1, γ4, γ6, γ8, δ0, δ2, δ3, δ5, δ7, δ9 is 8. Hence applying
the averaging theory of first order and Theorem 13 it is proved that at
most 7 medium limit cycles can bifurcate from the periodic solutions
of the cubic uniform isochronous center of the Collins first form and
this number can be reached. This completes the proof of Theorem 7.
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7. Proof of Theorem 8

We analyze each distinct case in order to compute the first integrals,
considering the condition

(19) a21a3 − a22a3 + a1a2a4 = 0.

presented in Theorem 2.

Case 1: a2
1 − a2

2 6= 0. The condition (19) can be expressed as

(20) a3 = − a1a2a4
a21 − a22

,

and in polar coordinates the system can be written as

(21)

dr

dθ
=r2(a1 cos θ + a2 sin θ)

+
a4r

3(−a2 cos θ + a1 sin θ)(a1 cos θ + a2 sin θ)

a21 − a22
.

Subcase 1.1: a4 6= 0.

Subcase 1.1.1: a4 6= a2
1 − a2

2. It is easy to verify that the H presented
in this subcase is a first integral of system (21).

Subcase 1.1.2: a4 = a2
1 − a2

2. In polar coordinates system (1) is
written as

dr

dθ
= Ar3 +Br2.

where A = 1/4(a1a2 sin2 θ + (a21 − a22) sin θ cos θ − a1a2 cos2 θ, B =
a1 cos θ + a2 sin θ. This is an Abel differential equation satisfying

dA(θ)

dθ
B(θ)− A(θ)

dB(θ)

dθ
= aB(θ)3,

with a = 1/4. Therefore the H given in this subcase is a first integral
for this system, for more details see [14].

Subcase 1.2: a4 = 0. System (21) is reduced to

dr

dθ
= r2(a1 cos θ + a2 sin θ),

and the H given in this subcase is a first integral for this system.

Case 2: a2
1 − a2

2 = 0,

Subcase 2.1: a2 = a1. The expression (19) is reduced to a21a4 = 0.
Therefore we have the following possibilities.
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Subcase 2.1.1: a1 = 0. Applying the condition a1 = a2 = 0 in system
(1), we obtain in polar coordinates

dr

dθ
= r3(a3 cos2 θ + a4 sin θ cos θ − a3 sin2 θ).

The expression of H in this subcase is a first integral of this system.

Subcase 2.1.2: a1 6= 0, a4 = 0. Under this condition, system (1) is
expressed in polar coordinates as follows

dr

dθ
= r2a1(cos θ + sin θ) + r3[a3(cos2 θ − sin2 θ)].

Subcase 2.1.2.1: a3(a2
1 + 4a3) 6= 0. It is easy to check that the H

given in this subcase is a first integral of the system.

Subcase 2.1.2.2: a3 = 0. In this case system (1) becomes in polar
coordinates

dr

dθ
= r2a1(cos θ + sin θ),

and the H given in this subcase is a first integral for this system.

Subcase 2.1.2.3: a3 = −a2
1/4. In polar coordinates system (1) is

written as

dr

dθ
= −1

4
a1r

2[a1 cos(2θ)r − 4(cos θ + sin θ)].

Applying the same arguments as in subcase 1.1.2 we have that this
is an Abel differential equation with A(θ) = (−1/4)a21 cos(2θ), B(θ) =
a1(cos θ + sin θ) and a = 1/4. Therefore the H given in this subcase is
a first integral for this system, , see [14].

Subcase 2.2: a2 = −a1.

Subcase 2.2.2: a1 6= 0, a4 = 0. In polar coordinates system (1)
becomes

dr

dθ
= r2a1(cos θ − sin θ) + r3[a3(cos2 θ − sin2 θ)].

Subcase 2.2.2.1: a3(4a3 − a2
1) 6= 0. The expression of H presented

in this subcase is a first integral of the system.

Subcase 2.2.2.2: a3 = 0. System (1) becomes in in polar coordinates

dr

dθ
= r2a1(cos θ − sin θ).

and the expression of H in this subcase is a first integral of this system.
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Subcase 2.2.2.3: a3 = a2
1/4. In polar coordinates system (1) can be

written as

dr

dθ
= a1r

2(cos θ − sin θ) +
1

4
[a21r

3 cos(2θ)].

Applying the same arguments as in subcase 1.1.2 we have that this
is an Abel differential equation with A(θ) = 1/4(a21 cos(2θ)), B(θ) =
a1(cos θ − sin θ) and a = 1/4. Using the results presented in [14], we
conclude that the H given in this subcase is a first integral for the
system, see [14].

8. Proof of Theorem 9

We provide all the possible phase portraits for the planar cubic
differential systems with a uniform isochronous center at the origin,
in the Poincaré disc, by studying the finite and infinite singular points
of such systems.

Finite singular points
In polar coordinates a planar cubic differential system with a uniform

isochronous center at the origin can always be written as ṙ = rf(r cos θ,

r sin θ), θ̇ = 1. Hence, since θ̇ = 1 there are no finite singular points
except at the origin.

Infinite singular points
For studying the infinite singular points in the Poincaré disc, we use

the definitions and notations given in Chapter 5 of [10].
We perform the analysis of the vector field at infinity. In the chart

U1 the differential system (1) becomes

(22) u̇ = (1 + u2)v2, v̇ = (−a3 − a4u+ a3u
2 − a1v − a2uv + uv2)v,

and therefore (u, 0), for all u ∈ R is an infinite singular point of the
differential system (1) in U1, which means that the equator of S2 is
formed by singularities. In order to obtain the phase portraits, we
perform a change of coordinates of the form dt = vds, and system (22)
becomes

(23) u′ = (1 + u2)v, v′ = −a3 − a4u+ a3u
2 − a1v − a2uv + uv2,

where the prime denotes derivative with respect to s.

In the chart U2 system (1) becomes

u̇ = −(1 + u2)v2, v̇ = (a3 − a4u− a3u2 − a2v − a1uv − uv2)v.
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We only need to study the point (0, 0) of U2. By performing a change
of coordinates of the form dt = vds we obtain the system

(24) u′ = −(1 + u2)v, v′ = a3 − a4u− a3u2 − a2v − a1uv − uv2.
In order to study the singular points at infinity of systems (23) and
(24), we have to consider several cases. We apply Theorems 2.15, 2.19
and 3.15 of [10] for the characterization of the local phase portraits at
each singular point.

Case I: a2
1 − a2

1 6= 0. The condition (19) is written as (20). If a4 =
0, then a3 = 0, and hence system (1) degenerates to a quadratic
differential system, which has already been exhaustively studied, as
previously mentioned in this article. Therefore, we are going to omit
the cases in which a4 = 0.

Subcase I.1: a1a2 6= 0. The expression (23) for our system in U1

becomes

(25)
u′ = (1 + u2)v,

v′ =
a1a2a4
a21 − a22

− a4u−
a1a2a4
a21 − a22

u2 − a1v − a2uv + uv2.

The singular points at the infinity are p1 = (−a1/a2, 0) and p2 =
(a2/a1, 0). The linear parts of system (25) at p1 and p2 are, respectively 0

(
a1
a2

)2

(a21 + a22)a4
a21 − a22

0

 ,

 0

(
a2
a1

)2

−(a21 + a22)a4
a21 − a22

−a
2
1 + a22
a1

 .

These singularities are studied later on. For U2 the expression (24)
becomes

u′ = −(1 + u2)v,

v′ = − a1a2a4
a21 − a22

− a4u+
a1a2a4
a21 − a22

u2 − a2v − a1uv − uv2.

Since we are assuming a1a2 6= 0, the origin of U2 is not a singular point.

Subcase I.1.1: a4(a2
1 − a2

2) > 0.

Subcase I.1.1.1: a4 ≤
a2
1 −A2

4
.

Subcase I.1.1.1.1: a1 > 0. p1 is a saddle and p2 is a stable node.

Subcase I.1.1.1.2: a1 < 0. p1 is a saddle and p2 is an unstable node.

Subcase I.1.1.2: a4 >
a2
1 −A2

4
. p1 is a saddle and p2 is a focus.
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Subcase I.1.2: a4(a2
1 −A2) < 0. p1 is a focus/center and p2 is saddle.

Subcase I.2: a1 = 0. In chart U1, we have

(26) u′ = (1 + u2)v, v′ = −a4u− a2uv + uv2,

and therefore the only infinite singular point is the origin, which we
will designate by OU1 . Similarly, in chart U2 we have the origin OU2

as the unique infinite singular point, since the expression of the vector
field becomes

(27) u′ = −(1 + u2)v, v′ = −a4u− a2v − uv2.
The linear parts of systems (26) and (27) at the origin are respectively(

0 1
−a4 0

)
,

(
0 −1
−a4 −a2

)
.

Hence we have the following cases.

Subcase I.2.1: a4 > 0. OU1 is a focus/center and OU2 is a saddle.

Subcase I.2.2: −a2
2

4
≤ a4 < 0.

Subcase I.2.2.1: a2 > 0. OU1 is a saddle and OU2 is a stable node.

Subcase I.2.2.2: a2 < 0. OU1 is a saddle and OU2 is an unstable node.

Subcase I.2.3: a4 < −
a2
2

4
. OU1 is a saddle and OU2 is a focus.

Subcase I.3: a2 = 0. In chart U1, we have

(28) u′ = (1 + u2)v, v′ = −a4u− a1v + uv2,

and therefore the only infinite singular point is the origin, which we
will designate by OU1 . Similarly, in chart U2 we have the origin OU2

as the unique infinite singular point, since the expression of the vector
field becomes

(29) u′ = −(1 + u2)v, v′ = −a4u− a1uv − uv2.
The linear parts of systems (28) and (29) at the origin are respectively(

0 1
−a4 −a1

)
,

(
0 −1
−a4 0

)
.

Hence we have the following cases.

Subcase I.3.1: a4 < 0. OU1 is a saddle and OU2 is a focus/center.

Subcase I.3.2: 0 < a4 ≤
a2
1

4
.

Subcase I.3.2.1: a1 > 0. OU1 is a stable node and OU2 is a saddle.
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Subcase I.3.2.2: a1 < 0. OU1 is an unstable node and OU2 is a saddle.

Subcase I.3.3: a4 >
a2
1

4
. OU1 is a focus and OU2 is a saddle.

Case II: a2
1 − a2

2 = 0. The condition (19) is simplified to a1a2a4 = 0
and therefore the following cases might occur.

Subcase II.1: a1 = a2 = 0 and a4 6= 0.
Subcase II.1.1: a3 6= 0. p1 is a focus/center and p2 is a saddle. In
fact the expression (23) for our system in U1 becomes

(30) u′ = (1 + u2)v, v′ = −a3 − a4u+ a3u
2 + uv2.

The singular points at the infinity are p1,2 = ((a4∓
√

4a23 + a24)/2a3, 0).
The linear parts of system (30) at p1 and p2 are, respectively 0 2 +

a4(a4 −
√

4a23 + a24)

2a23
−
√

4a23 + a24 0

 ,

 0 2 +
a4(a4 +

√
4a23 + a24)

2a23√
4a23 + a24 0

 .

It is easy to see that p1 is a focus/center and p2 is a saddle.

For U2 the expression (24) becomes

u′ = −(1 + u2)v, v′ = a3 − a4u− a3u2 − uv2.

The singular points at the infinity are p3,4 = ((−a4 ∓
√

4a23 + a24)/2a3,

0). Since −a4 ∓
√

4a23 + a24 6= 0 for all a3, a4 ∈ R\{0}, the origin of U2

is not a singular point and hence, the only infinite singular points are
p1 and p2.

Subcase II.1.2: a3 = 0. The expression (23) for our system in U1

becomes

(31) u′ = (1 + u2)v, v′ = −a4u+ +uv2,

and therefore the origin OU1 is the unique infinite singular point in U1.
Similarly, in the chart U2 the origin OU2 is an infinite singular point
because system (24) becomes

(32) u′ = −(1 + u2)v, v′ = −a4u− uv2.
The linear parts of systems (31) and (32) at the origin are respectively(

0 1
−a4 0

)
,

(
0 −1
−a4 0

)
.
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Hence we have the following cases.

Subcase II.1.2.1: a4 < 0. OU1 is a saddle and OU2 is a focus/center.

Subcase II.1.2.2: a4 > 0. OU1 is a focus/center and OU2 is a saddle.

Subcase II.2: a2 = −a1 6= 0 and a4 = 0. We are only interested in
the cases that a3 6= 0, because as previously mentioned, when a3 =
a4 = 0 system (1) becomes a quadratic differential system, which has
already been exhaustively studied.

The expression (23) for our system in U1 becomes

(33) u′ = (1 + u2)v, v′ = −a3 − a1v + a3u
2 + a1uv + uv2.

The singular points at the infinity are p1,2 = (∓1, 0). The linear
parts of system (33) at p1 and p2 are, respectively(

0 2
−2a3 −2a1

)
,

(
0 2

2a3 0

)
.

For U2 the expression (24) becomes

u′ = −(1 + u2)v, v′ = a3 + a1v − a3u2 − a1uv − uv2.
The singular points at infinity are p3,4 = (∓1, 0). The origin of U2 is
not a singular point and hence, the only infinite singular points are p1
and p2. These singularities are studied in what follows.

Subcase II.2.1: a3 < 0. p1 is a saddle and p2 is a focus/center.

Subcase II.2.2: 0 < a3 ≤ a2
1/4.

Subcase II.2.2.1: a1 > 0. p1 is a stable node and p2 is a saddle.

Subcase II.2.2.2: a1 < 0. p1 is an unstable node and p2 is a saddle.

Subcase II.2.3: a3 > a2
1/4. p1 is a focus and p2 is a saddle.

Subcase II.3: a2 = a1 6= 0 and a4 = 0. Again we are only interested
in the cases that a3 6= 0.

The expression (23) for our system in U1 becomes

(34) u′ = (1 + u2)v, v′ = −a3 − a1v + a3u
2 − a1uv + uv2.

The singular points at infinity are p1,2 = (∓1, 0). The linear parts of
system (34) at p1 and p2 are, respectively(

0 2
−2a3 0

)
,

(
0 2

2a3 −2a1

)
.

These singularities are studied later on.
For U2 the expression (24) becomes

(35) u′ = −(1 + u2)v, v′ = a3 + a1v − a3u2 − a1uv − uv2.
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The singular points at infinity for (35) are p3,4 = (∓1, 0). The origin
of U2 is not a singular point.

Subcase II.3.1: a3 > 0. p1 is a focus/center and p2 is a saddle.

Subcase II.3.2: −a2
1/4 ≤ a3 < 0.

Subcase II.3.2.1: a1 > 0. p1 is a saddle and p2 is a stable node.

Subcase II.3.2.2: a1 < 0. p1 is a saddle and p2 is an unstable node.

Subcase II.3.3: a3 < −a2
1/4. p1 is a saddle and p2 is a focus.

Subcase II.4: a1 = a2 = a4 = 0. Again we are only interested in the
cases that a3 6= 0. In this case system (1) has the particular form

ẋ = −y + a3x
3 − a3xy2, ẏ = x+ a3x

3 − a3xy2.
The expression (23) for our system in U1 becomes

(36) u′ = (1 + u2)v, v′ = −a3 + a3u
2 + uv2.

The singular points at the infinity are p1,2 = (∓1, 0). The linear parts
of system (34) at p1 and p2 are, respectively(

0 2
−2a3 0

)
,

(
0 2

2a3 0

)
.

These singularities are studied in the next subcases.
For U2 the expression (24) becomes

u′ = −(1 + u2)v, v′ = a3 − a3u2 −−uv2.
The singular points at infinity are p3,4 = (∓1, 0). The origin of U2 is
not a singular point.

Subcase II.4.1: a3 > 0. p1 is a focus/center and p2 is a saddle.

Subcase II.4.2: a3 < 0. p1 is a saddle and p2 is a focus/center.

Finally, the global phase portraits for the uniform isochronous cubic
polynomial systems are obtained using the study of the finite and
infinite singular points in the local phase portraits and the first integrals
calculated in Theorem 8. Hence Theorem 9 is proved.
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[17] J. Llibre and G. Świrszcz, On the limit cycles of polynomial vector fields,
Dynamics of Continuous, Discrete and Impulsive Systems, Serie A 18 (2011),
203–214.
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