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a b s t r a c t

The subject of this paper concerns with the bifurcation of limit cycles and invariant cylin-
ders from a global center of a linear differential system in dimension 2n perturbed inside a
class of continuous and discontinuous piecewise linear differential systems. Our main
results show that at most one limit cycle and at most one invariant cylinder can bifurcate
using the expansion of the displacement function up to first order with respect to a small
parameter. This upper bound is reached. For proving these results we use the averaging
theory in a form where the differentiability of the system is not needed.
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1. Introduction

In control theory and in the study of electrical circuits appear in a natural way the continuous and discontinuous piece-
wise linear differential systems, see for instance [6,9] and the references therein. Such differential systems can exhibit com-
plicate dynamics such as those exhibited by general nonlinear differential systems. The limit cycles and the invariant sets by
the flow are some of the main components in the qualitative description of the dynamical behavior of a differential system.

In this paper we study the existence of limit cycles and invariant generalized cylinders for the class of control systems
represented by

_x ¼ A0xþ eFðxÞ; ð1Þ

where

(i) A0 2 M2nðRÞ with eigenvalues {±ip1/q1, . . ., ±ipn/qn} where pk and qk are positive integers for k = 1, . . . ,n and (pk,qk) = 1,
where (., .) denotes the greatest common divisor of pk and qk.

(ii) pk/qk – pl/ql for k – l.
(iii) e – 0 is a sufficiently small real parameter.
(iv) F : R2n ! R2n given by

FðxÞ ¼ Axþu0ðk
T xÞb; ð2Þ

with A 2M2nðRÞ and u0 : R! R is the discontinuous function

u0ðyÞ ¼
�1 y 2 ð�1;0Þ;
1 y 2 ð0;1Þ:

�
ð3Þ

Here the dot denotes derivative with respect to t.
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