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LIMIT CYCLES BIFURCATING FROM THE PERIODIC
ANNULUS OF CUBIC HOMOGENEOUS POLYNOMIAL

CENTERS

JAUME LLIBRE, BRUNO D. LOPES, JAIME R. DE MORAES

Abstract. We obtain an explicit polynomial whose simple positive real roots

provide the limit cycles which bifurcate from the periodic orbits of any cubic

homogeneous polynomial center when it is perturbed inside the class of all
polynomial differential systems of degree n.

1. Introduction and statement of main results

One of the main goals in the qualitative theory of real planar differential systems
is the determination of their limit cycles. It is well known that perturbing the
periodic orbits of a center often produces limit cycles, see for instance [1, 2, 12].
One of the first in studying these perturbations was Pontrjagin [10]. These last
years this problem has been studied by many authors see the second part of the
book [5] and the hundreds of references quoted there.

Hilbert in 1900 was interested in the maximum number of the limit cycles that
a polynomial differential system of a given degree can have. This problem is the
well-known 16-th Hilbert problem, which together with the Riemann conjecture are
the two problems of the famous list of 23 problems of Hilbert which remain open.
See for more details [7, 13].

There exist several methods to study the number of limit cycles that bifur-
cate from the periodic annulus of a center, such as the Poincaré return map, the
Poincaré-Melnikov integrals, the Abelian integrals, the inverse integrating factor,
and the averaging theory. In the plane all of them are essentially equivalent.

There are few works trying to study this problem for homogeneous cubic poly-
nomial differential systems. Our main objetive will be to solve this problem for the
cubic homogeneous polynomial differential systems.

In [6] the authors classified all the cubic homogeneous polynomial differential sys-
tems. In [8] the authors proved that any real planar cubic homogeneous polynomial
differential system having a center can be written as

ẋ = ax3 + (b− 3αµ)x2y − axy2 − αy3 = P (x, y),

ẏ = αx3 + ax2y + (b+ 3αµ)xy2 − ay3 = Q(x, y),
(1.1)
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