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LIMIT CYCLES BIFURCATING FROM THE PERIODIC

ORBITS OF THE WEIGHT–HOMOGENEOUS

POLYNOMIAL CENTERS OF WEIGHT–DEGREE 3

JAUME LLIBRE 1, BRUNO D. LOPES 2 AND JAIME R. DE MORAES 3

Abstract. In this paper we obtain two explicit polynomials, whose
simple positive real roots provide the limit cycles which bifurcate from
the periodic orbits of a family of polynomial differential centers of or-
der 5, when this family is perturbed inside the class of all polynomial
differential systems of order 5, whose average function of first order is
not zero. Then the maximum number of limit cycles that bifurcate from
these periodic orbits is 6 and it is reached.

The family of centers studied completes the study about the limit
cycles which can bifurcate from the periodic orbits of all centers of the
weight–homogeneous polynomial differential systems of weight–degree
3, when we perturb them inside the class of all polynomial differential
systems having the same degree, and whose average function of first
order is not zero.

1. Introduction and Statement of the Main Results

One of the main goals in the qualitative theory of real planar polynomial
differential systems is the determination of their limit cycles. The problem
to study the number of limit cycles of a polynomial differential system is
strongly motivated by the 16–th Hilbert’s problem (1900). For more details,
see [8] and [13].

Many authors have studied the number of limit cycles which can bifurcate
from the periodic orbits of a center of a polynomial differential system when
it is perturbed up to first order in the parameter of the perturbation. This
problem is well known as the weak Hilbert’s problem. Look for example the
references [1, 3].

There exist many tools for studying the maximum number of limit cycles
that bifurcate from the periodic annulus of a center. Among them we have
the Poincaré return map, the Poincaré–Melnikov integrals, the Abelian in-
tegrals, and the averaging theory. The last three methods are equivalent at
first order, see for instance [7]. Many authors studied the weak Hilbert’s
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problem, see for example the second part of the book [6] and the hundreds
of references quoted there.

Here we consider polynomial differential systems given by

(1)
ẋ = P (x, y),
ẏ = Q(x, y),

where P and Q are polynomials with real coefficients. The degree of the
system is the maximum of the degrees of the polynomials P and Q .

We say that system (1) is weight–homogeneous if there exist (s1, s2) ∈ N
2

and d ∈ N such that for any λ ∈ R
+ = {λ ∈ R : λ > 0} we have

P (λs1x, λs2y) = λs1−1+dP (x, y), Q(λs1x, λs2y) = λs2−1+dQ(x, y).

The vector (s1, s2) is called the weight–exponent of system (1) and d is called
weight–degree with respect to the weight–exponent (s1, s2).

There are few works trying to study the weak Hilbert’s problem for
weight–homogeneous polynomial differential systems. Our main goal is to
solve the weak Hilbert’s problem for the weight–homogeneous polynomial
differential systems of weight–degree 3.

The classification of all centers of a planar weight–homogeneous poly-
nomial differential systems has been made in [11] up to weight–degree 4.
Particularly they provide two families of weight–homogeneous polynomial
differential systems having centers with weight–degree 3. The first family
can be written as

(2)
ẋ = ax3 + (b− 3αµ)x2y − axy2 − αy3,
ẏ = αx3 + ax2y + (b+ 3αµ)xy2 − ay3,

with α ∈ {−1, 1}, a, b, µ ∈ R and µ > −1/3, after doing an affine change of
variables and a rescaling of the time. The weight–exponent of this family is
(s1, s2) = (1, 1).

The second family is given by

(3)
ẋ = ax3 + by = P (x, y),
ẏ = cx5 + dx2y = Q(x, y),

with bc 6= 0, 3a + d = 0 and 12(bc − ad) < 0. The weight–exponent of this
family is (s1, s2) = (1, 3).

In [10] we provide a polynomial whose real positive simple zeros give
exactly the number of limit cycles that bifurcate from the periodic orbits of
system (2) when it is perturbed inside the class of all polynomial differential
systems of degree n, and the first order average function is non-zero. In
particular the maximum number of limit cycles obtained is exactly [(n −
1)/2], where [x] denotes the integer part function of x.

In this paper we give two explicit polynomials whose real positive simple
zeros provide the number of limit cycles which bifurcate from the periodic
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orbits of the center of the weight–homogeneous polynomial differential sys-
tem (3), when the first order average function is non-zero. The maximum
number of limit cycles is reached when the parameter d 6= 0.

More precisely here we consider the polynomial differential system

(4)
ẋ = −dfracd3x3 + by + εp(x, y),
ẏ = cx5 + dx2y + εq(x, y),

where

(5) p(x, y) =

5
∑

k=0

pk(x, y), q(x, y) =

5
∑

i=0

qk(x, y),

pk(x, y) =
k
∑

i=0

ck−i i xk−iyi, qk(x, y) =
k
∑

i=0

dk−i i xk−iyi,

and ε is a small parameter.

In [9] the authors found an upper bound for the maximum number of
limit cycles of system (4). Looking at statement (c) of Theorem A of [9]
with n = 5, p = 3 and q = 1 the upper bound for the number of limit cycles
of system (4) with ε sufficiently small coming from the periodic orbits of the
center (3) is 8. Here we prove that the maximum number of limit cycles that

system (4) can have is exactly 6 and it is reached. See Corollary 3.

In what follows we state our main results where the functions fi(θ), for
i = 0, 1, ..., 9, W (θ), g1(θ) and k(θ) are given in Section 3 and the functions
f∗

i (θ), for i = 0, 1, ..., 9, W ∗(θ), g∗1(θ) and k∗(θ) are given in Section 4. We
do not provide these functions here due to their length.

Theorem 1. Suppose that d 6= 0. Let r0,s be a positive simple root of the

polynomial

(6) r0F(r0) =
1

2π

7
∑

k=1

r2k−3
0

∫ 2π

0

A2k+1(θ)dθ,

where

Ai(θ) =
W (θ)fi(θ)k(θ)

i−5

g1(θ)2
.

Then for |ε| > 0 sufficiently small parameter the perturbed systems (4) have
a limit cycle bifurcating from the periodic orbit r(θ, r0,s) = k(θ)r0,s of the

period annulus of the center (3) if the first order average function is non-

zero. In particular, the polynomial (6) has at most 6 positive simple real

roots and they are reached.

Theorem 2. Suppose that d = 0. Let r0,s be a positive simple root of the

polynomial

(7) r0F∗(r0) =
1

2π

(

5
∑

k=1

r2k−3
0

∫ 2π

0

A∗

2k+1(θ)dθ + r110

∫ 2π

0

A∗

15(θ)dθ

)

,
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where

A∗

i (θ) =
W ∗(θ)f∗

i (θ)k
∗(θ)i−5

g∗1(θ)
2

.

Then for |ε| > 0 sufficiently small the perturbed systems (4) have a limit

cycle bifurcating from the periodic orbit r(θ, r0,s) = k∗(θ)r0,s of the period

annulus of the center (3) if the first order average function is non-zero. In

particular, the polynomial (7) has at most 5 positive simple real roots and

they are reached.

Theorem 1 is proved in Section 3 and Theorem 2 is proved in Section 4.
In Section 5 we provide two examples that illustrate Theorems 1 and 2 with
the maximum number of limit cycles.

It follows of Theorems 1 and 2 the next result.

Corollary 3. For |ε| sufficiently small the perturbed system (4) has at most

6 limit cycles bifurcating from the periodic orbits of the center (3) using the

averaging theory of first order and they are reached.

2. Preliminaries

In this section we give some well known results that we shall need for
proving Theorem 1.

Consider a system given by

(8) ẋ = F0(t, x) + εF1(t, x) +O(ε2),

where ε 6= 0 is sufficiently small and the functions F0, F1 : R × Ω → R
n

and F2 : R × Ω × (−ε0, ε0) → R
n are C2 functions, T−periodic in the first

variable and Ω is an open subset of Rn. We suppose that the unperturbed
system

(9) ẋ = F0(t, x)

has a submanifold of periodic solutions of dimension n.

Let x(t, z, ε) be the solution of system (9) such that x(0, z, ε) = z. The
linearization of the u nperturbed system along a periodic solution x(t, z, 0)
is

(10) ẏ = DxF0(t, x(t, z, 0))y.

In what follows we denote by Mz(t) the fundamental matrix of the lin-
earized system (10) such that Mz(0) is the identity matrix.

We assume that there is an open set U with Cl(U) ⊂ Ω such that for each
z ∈ Cl(U), x(t, z, 0) is T−periodic, where x(t, z, 0) denotes the solution of
the unperturbed system (9). We denote by Cl(U) the closure of U . The set
Cl(U) is isochronous for system (9), i.e. it is formed only by periodic orbits
with period T .

The following result is the a version of averaging theorem for studying the
bifurcation of T−periodic solutions of system (8) from the periodic solutions
x(t, z, 0) contained in Cl(U) of system (9) when |ε| > 0 is sufficiently small.
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See [4] for a proof. For more details on the averaging theory see [5] and the
book [12].

Theorem 4 (Perturbations of an isochronous set). We assume that there ex-

ists an open and bounded set U with Cl(U) ⊂ Ω such that for each z ∈ Cl(U),
the solution x(r, z, 0) is T−periodic. Consider the function F : Cl(U) → R

n

(11) F(z) =
1

T

∫ T

0

M−1
z (t)F1(t, x(t, z, 0))dt.

Then if there exists a ∈ U with F(a) = 0 and det((∂F/∂z)(a)) 6= 0 then

there exists a T−periodic solution x(t, ε) of system (8) such that x(0, ε) → a

when ε → 0.

In fact, if x(t, z, ε) denotes the solution of the differential system (8) such
that x(0, z, ε) = z, then the average function satisfies that x(T, z, ε) − z =
εF(z) + O(ε2), see for more details [4, 7]. Then, by the Implicit Function
Theorem it follows that if F(z) 6= 0, then the simple zeros of the function
F(z) provide limit cycles of the differential system (8).

The following result is the generalized Descartes Theorem about the num-
ber of zeros of a real polynomial. See [2] for a proof.

Theorem 5. Consider the real polynomial p(x) = ai1x
i1+ai2x

i2+...+airx
ir

with 0 ≤ i1 < i2 < ... < ir and aij 6= 0 real constants for j ∈ {1, 2, ..., r}.
When aijaij+1

< 0, we say that aij and aij+1
have a variation of sign. If the

number of variations of signs is m, then p(x) has at most m positive real

roots. Moreover, it is always possible to choose the coefficients of p(x) in

such a way that p(x) has exactly r − 1 positive real roots.

3. Proof of Theorem 1

Suppose that d 6= 0. We apply the affine change of variables

x̃ = αx, ỹ =
α3b

d
y, t̃ =

d

α2
t,

with α 6= 0 and system (3) becomes

ẋ = P (x, y) = −1

3
x3 + y,

ẏ = Q(x, y) = a1x
5 + x2y,

where a1 = −(4+b2)/12 and b 6= 0. In the case b = 0 working in a similar way
we also can reach the previous differential system. The perturbed system
corresponding to the previous system is given by

(12)
ẋ = −1

3
x3 + y + εp(x, y),

ẏ = a1x
5 + x2y + εq(x, y),
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We write system (12) in the generalized polar coordinates x = r cos θ, y =
r3 sin θ, and we obtain the differential equation

(13)
dr

dθ
= F0(r, θ) + εF1(r, θ) +O(ε2),

in the standard form for applying the averaging theory of first order de-
scribed in Section 2, where

F0(r, θ) =
h1(θ)

g1(θ)
r,

F1(r, θ) =
144(cos2 θ + 3 sin2 θ)

r7g1(θ)2

(

Q(r cos θ, r3 sin θ)p(r cos θ, r3 sin θ)

−P (r cos θ, r3 sin θ)q(r cos θ, r3 sin θ)

)

,

h1(θ) = cos θ
((

b2 + 4
)

sin θ cos4 θ − 6 sin θ(sin(2θ) + 2) + 4 cos3 θ
)

,

g1(θ) = (4 + b2) cos6 θ − 24 cos3 θ sin θ + 36 sin2 θ.

Note that the differential equation (13) satisfies the assumptions of The-
orem 4. Consider r(θ, r0) the periodic solution of the differential equation

dr

dθ
= r

h1(θ)

g1(θ)
,

such that r(0, r0) = r0. By solving the previous differential equation we get

r(θ, r0) = k(θ)r0,

where

k(θ) =
25/6(4 + b2)1/6

B(θ)
,

with

B(θ) =
(

3
(

5b2 − 172
)

cos(2θ) + 6
(

b2 + 4
)

cos(4θ) +
(

b2 + 4
)

cos(6θ) + 10b2

−192 sin(2θ)− 96 sin(4θ) + 616
)1/6

.

Solving the variational equation (10) for our differential equation (13) we
obtain that the fundamental matrix M(θ) is (k(θ)). Using the polynomials
p and q given in (5) and system (3) we have that the integrant of the integral
(11) for the differential equation (13) is

M−1(θ)F1(θ, r(θ, r0)) =

17
∑

i=0

W (θ)fi(θ)

g1(θ)2M(θ)
r(θ, r0)

i−4

=

17
∑

i=0

ri−4
0

W (θ)fi(θ)k(θ)
i−5

g1(θ)2

=

17
∑

i=0

ri−4
0 Ai(θ),
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where

f0(θ) = 4d00 cos
3 θ − 12d00 sin θ,

f1(θ) = 4d10 cos
4 θ − 12d10 sin θ cos θ,

f2(θ) = cos5 θ
(

−b2c00 − 4c00 + 4d20
)

+ 12(c00 − d20) sin θ cos
2 θ,

f3(θ) = cos6 θ
(

−b2c10 − 4c10 + 4d30
)

+ 4 sin θ cos3 θ(3c10 + d01 − 3d30)

−12d01 sin
2 θ,

f4(θ) = cos7 θ
(

−b2c20 − 4c20 + 4d40
)

+ 4 sin θ cos4 θ(3c20 + d11 − 3d40)

−12d11 sin
2 θ cos θ,

f5(θ) = sin θ cos5 θ
(

−b2c01 − 4c01 + 12c30 + 4d21 − 12d50
)

+cos8 θ
(

−b2c30 − 4c30 + 4d50
)

+ 12(c01 − d21) sin
2 θ cos2 θ,

f6(θ) = sin θ cos6 θ
(

−b2c11 − 4c11 + 12c40 + 4d31
)

−
(

b2 + 4
)

c40 cos
9 θ

+4 sin2 θ cos3 θ(3c11 + d02 − 3d31)− 12d02 sin
3 θ,

f7(θ) = sin θ cos7 θ
(

−b2c21 − 4c21 + 12c50 + 4d41
)

−
(

b2 + 4
)

c50 cos
10 θ

+4 sin2 θ cos4 θ(3c21 + d12 − 3d41)− 12d12 sin
3 θ cos θ,

f8(θ) = sin2 θ cos5 θ
(

−b2c02 − 4c02 + 12c31 + 4d22
)

−
(

b2 + 4
)

c31 sin θ cos
8 θ + 12(c02 − d22) sin

3 θ cos2 θ,

f9(θ) = sin2 θ cos6 θ
(

−b2c12 − 4c12 + 12c41 + 4d32
)

−
(

b2 + 4
)

c41 sin θ cos
9 θ + 4 sin3 θ cos3 θ(3c12 + d03 − 3d32)

−12d03 sin
4 θ,

f10(θ) = −
(

b2 + 4
)

c22 sin
2 θ cos7 θ + 4(3c22 + d13) sin

3 θ cos4 θ

−12d13 sin
4 θ cos θ,

f11(θ) = sin3 θ cos5 θ
(

−b2c03 − 4c03 + 12c32 + 4d23
)

−
(

b2 + 4
)

c32 sin
2 θ cos8 θ + 12(c03 − d23) sin

4 θ cos2 θ,

f12(θ) = −
(

b2 + 4
)

c13 sin
3 θ cos6 θ + 4(3c13 + d04) sin

4 θ cos3 θ

−12d04 sin
5 θ,

f13(θ) = −
(

b2 + 4
)

c23 sin
3 θ cos7 θ + 4(3c23 + d14) sin

4 θ cos4 θ

−12d14 sin
5 θ cos θ,

f14(θ) = 12c04 sin
5 θ cos2 θ −

(

b2 + 4
)

c04 sin
4 θ cos5 θ,

f15(θ) = −
(

b2 + 4
)

c14 sin
4 θ cos6 θ + 4(3c14 + d05) sin

5 θ cos3 θ

−12d05 sin
6 θ,

f16(θ) = 0,

f17(θ) = 12c05 sin
6 θ cos2 θ −

(

b2 + 4
)

c05 sin
5 θ cos5 θ,

W (θ) = 12
(

3 sin2 θ + cos2 θ
)

.
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Computing the integral (11) we obtain

F(r0) =
1

2π

∫ 2π

0

M−1(θ)F1(θ, r(θ, r0))dθ =
1

2π

17
∑

i=0

ri−4
0

∫ 2π

0

Ai(θ)dθ,

where the function Ai(θ) is defined in the statement of Theorem 1.

If i is even then it is easy to check that fi(θ) = −fi(θ+π), for i = 0, ..., 17,
and θ ∈ [π, 3π/2] ∪ [3π/2, π]. Since that k(θ) = k(θ + π), g1(θ) = g1(θ + π)
and W (θ) = W (θ + π), for θ ∈ [π, 3π/2] ∪ [3π/2, π] we can easily show that

∫ 3π
2

π
Ai(θ)dθ =

∫ 3π
2

π

fi(θ)W (θ)k(θ)i−5

g1(θ)2
dθ

=

∫ π
2

0

fi(θ + π)W (θ + π)k(θ + π)i−5

g1(θ + π)2
dθ

=

∫ π
2

0

−fi(θ)W (θ)k(θ)i−5

g1(θ)2
dθ

= −
∫ π

2

0

Ai(θ)dθ,

∫ 2π

3π
2

Ai(θ)dθ =

∫ 2π

3π
2

fi(θ)W (θ)k(θ)i−4

g1(θ)2M(θ)
dθ

=

∫ π

π
2

fi(θ + π)W (θ + π)k(θ + π)i−4

g1(θ + π)2M(θ + π)
dθ

=

∫ π

π
2

−fi(θ)W (θ)k(θ)i−4

g1(θ)2M(θ)
dθ

= −
∫ π

π
2

Ai(θ)dθ.

Thus if i is even we conclude that

∫ 2π

0

Ai(θ)dθ = 0.

The coefficients A1 and A17 are

A1 = [768 22/3d10 cos θ(cos(2θ)− 2)(−12 sin θ + 3cos θ + cos(3θ))]/L,

A17 = [3× 222
(

b2 + 4
)2

c05 sin
5 θ cos2 θ(cos(2θ)− 2)M ]/N,
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where

L =
(

b2 + 4
)2/3

(

3
(

5b2 − 172
)

cos(2θ) + 6
(

b2 + 4
)

cos(4θ)

+
(

b2 + 4
)

cos(6θ) + 10b2 − 192 sin(2θ)− 96 sin(4θ) + 616

)4/3

,

M =
(

b2 + 4
)

cos3 θ − 12 sin θ,

N =

(

3
(

5b2 − 172
)

cos(2θ) + 6
(

b2 + 4
)

cos(4θ) +
(

b2 + 4
)

cos(6θ)

+10b2 − 192 sin(2θ)− 96 sin(4θ) + 616

)4

.

Computing the integrals of the coefficients A1 and A17 in the variable θ,
in the interval [0, 2π] we obtain that both are zero.

Claim: For i = 3, 5, 7, 9, 11, 13 or 15 we can choose the parameters that

appear in Ai such that

∫ 2π

0

Ai(θ)dθ 6= 0.

Proof. The proof of this claim follows from Example 1. �

In summary the function F defined in (11) can be written as

(14) F(r0) =
1

2π

7
∑

k=1

r2k−3
0

∫ 2π

0

A2k+1(θ)dθ.

Note that the coefficients A2k+1(θ) in (14) are linearly independent for
k = 1, .., 7. Thus by the generalized Descartes Theorem, the average function
F has at most 6 positive simple zeros which provide limit cycles of system
(4), when the average function is non-zero.

4. Proof of Theorem 2

Suppose that d = 0. We take the affine change of coordinates

x̃ = x, ỹ = y
√

−b/c, t̃ = t
√
−bc,

and system (3) becomes ẋ = −y, ẏ = x5. We write system (4) in the
generalized polar coordinates x = r cos θ, y = r3 sin θ, and we obtain the
differential equation

(15)
dr

dθ
= F0(r, θ) + εF1(r, θ) +O(ε2),
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in the standard form for applying the averaging theory of first order de-
scribed in Section 2, where

F0(r, θ) =
r
(

sin θ cos5 θ − sin θ cos θ
)

cos6 θ − 3 cos2 θ + 3
,

F1(r, θ) = − cos(2θ)− 2

r4
(

3 sin2 θ + cos6 θ
)2

(

r2 cos5 θ p
(

r cos θ, r3 sin θ
)

+sin θ q
(

r cos θ, r3 sin θ
)

)

.

Denote by g∗1(θ) = cos6 θ − 3 cos2 θ + 3. Note that the differential equation
(15) satisfies the assumptions of Theorem 4. Consider r(θ, r0) the periodic
solution of the differential equation ṙ = F0(r, θ) such that r(0, r0) = r0. For
solving this differential equation we take z = cos2 θ in g∗1(θ), and we obtain
a polynomial of degree 3 in z which can be factorized in the form

g∗1(z) = (z − z1)(z − z2)(z − z3),

where the coefficients of g∗2(z) = (z − z1) and g∗3(z) = (z − z2)(z − z3) are
reals, and zi are the roots of g∗1 , for i = 1, ..., 3 given by

z1 = −2 + 3
√
2
(

3−
√
5
)2/3

22/3
3
√

3−
√
5

,

z2,3 =
2 3
√
2
(

1∓ i
√
3
)

+
(

1± i
√
3
) (

6− 2
√
5
)2/3

4
3
√

3−
√
5

.

Thus the differential equation (15) with ε = 0 can be rewritten into the form

(16)
dr

dθ
= r

(

C1

cos θ sin θ

−z3 + cos2 θ
+ C2

cos θ sin θ

−z1 + cos2 θ
+ C3

cos θ sin θ

−z2 + cos2 θ

)

,

where

C1 =
z23 − 1

(z3 − z1)(z3 − z2)
, C2 =

z21 − 1

(z1 − z2)(z1 − z3)
, C3 =

z22 − 1

(z2 − z1)(z2 − z3)
.

The solution of differential equation (16) with initial condition r(0, r0) =
r0 is

r(θ, r0) = r0k
∗(θ),

where

k∗(θ) = r0(1− z3)
C1/2(1− z1)

C2/2(1− z2)
C3/2

(

cos2 θ − z3
)

−C1/2

(

cos2 θ − z1
)

−C2/2 (cos2 θ − z2
)

−C3/2 .

Solving the variational equation (10) for our differential equation (15) we
get that the fundamental matrix is the function M∗(θ) = (k∗(θ)). Note
that M∗(θ) does not depend on r0. Using the polynomials p and q given in
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(5) and system (3) we have that the integrant of the integral (11) for the
differential equation (15) is

M∗−1(θ)F1(θ, r(θ, r0)) =

17
∑

i=0

W ∗(θ)f∗

i (θ)

g∗1(θ)
2M∗(θ)

r(θ, r0)
i−4

=

17
∑

i=0

ri−4
0

W ∗(θ)f∗

i (θ)k
∗(θ)i−5

g∗1(θ)
2

=

17
∑

i=0

ri−4
0 A∗

i (θ),

where

f∗

0 (θ) = d00 sin θ,

f∗

1 (θ) = d10 sin θ cos θ,

f∗

2 (θ) = c00 cos
5 θ + d20 sin θ cos

2 θ,

f∗

3 (θ) = c10 cos
6 θ + d01 sin

2 θ + d30 sin θ cos
3 θ,

f∗

4 (θ) = c20 cos
7 θ + d11 sin

2 θ cos θ + d40 sin θ cos
4 θ,

f∗

5 (θ) = (c01 + d50) sin θ cos
5 θ + c30 cos

8 θ + d21 sin
2 θ cos2 θ,

f∗

6 (θ) = c11 sin θ cos
6 θ + c40 cos

9 θ + d02 sin
3 θ + d31 sin

2 θ cos3 θ,

f∗

7 (θ) = c21 sin θ cos
7 θ + c50 cos

10 θ + d12 sin
3 θ cos θ + d41 sin

2 θ cos4 θ,

f∗

8 (θ) = c02 sin
2 θ cos5 θ + c31 sin θ cos

8 θ + d22 sin
3 θ cos2 θ,

f∗

9 (θ) = c12 sin
2 θ cos6 θ + c41 sin θ cos

9 θ + d03 sin
4 θ + d32 sin

3 θ cos3 θ,

f∗

10(θ) = c22 sin
2 θ cos7 θ + d13 sin

4 θ cos θ,

f∗

11(θ) = c03 sin
3 θ cos5 θ + c32 sin

2 θ cos8 θ + d23 sin
4 θ cos2 θ,

f∗

12(θ) = c13 sin
3 θ cos6 θ + d04 sin

5 θ,

f∗

13(θ) = c23 sin
3 θ cos7 θ + d14 sin

5 θ cos θ,

f∗

14(θ) = c04 sin
4 θ cos5 θ,

f∗

15(θ) = c14 sin
4 θ cos6 θ + d05 sin

6 θ,

f∗

16(θ) = 0,

f∗

17(θ) = c05 sin
5 θ cos5 θ,

W ∗(θ) = 3 sin2 θ + cos2 θ.

Computing the integral (11) we obtain

F∗(r0) =
1

2π

∫ 2π

0

(M∗)−1(θ)F1(θ, r(θ, r0))dθ =
1

2π

17
∑

i=0

ri−4
0

∫ 2π

0

A∗

i (θ)dθ,

where the function A∗

i (θ) is defined in the statement of Theorem 4.
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Analogously as in the proof of Theorem 1 we can show that if i is even
then

∫ 2π

0

A∗

i (θ)dθ = 0.

The coefficients A∗

1, A
∗

13 and A∗

17 are given by

A∗

1 = −d10
2

55

9

(

7− 3
√
5
)4/9

sin(2θ)(cos(2θ)− 2)
(

3−
√
5
)8/9

(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)4/3
,

A∗

13 = −2
4

3

(

2 +
√
5
)4/9

sin3 θ cos θ(cos(2θ)− 2)
(

c23 cos
6 θ + d14 sin

2 θ
)

(

1 +
√
5
)4/3

(cos6 θ − 3 cos2 θ + 3)4/3
(

3 sin2 θ + cos6 θ
)2

,

A∗

17 = −c05
32 sin5 θ cos5 θ(cos(2θ)− 2)

R(θ)
,

where

R(θ) =
3

√

47 + 21
√
5

(

2
3
√
2 cos4 θ + 4 3

√

3

(

2 + 22/3
3

√

3−
√
5 + 22/3

3

√

3 +
√
5

)

cos2 θ +
(

2
(

3 +
√
5
))2/3

+
(

6− 2
√
5
)2/3

+ 4
3
√
2

)(

−2
(

3−
√
5
)2/3

cos4 θ +

(

2
3

√

6− 2
√
5− 22/3

(√
5− 3

)

)

cos2 θ +
3

√

30
√
5− 50

+2
(

3−
√
5
)2/3

− 3
3

√

6− 2
√
5− 2 22/3

)2
(

3 sin2 θ + cos6 θ
)2

.

The integrals of the coefficients A∗

1, A
∗

13 and A∗

17 in the variable θ, in the
interval [0, 2π] are zero because A∗

1, A
∗

13 and A∗

17 are odd functions.

Claim: For i = 3, 5, 7, 9, 11 or 15 we can choose the parameters that appear

in A∗

i such that

∫ 2π

0

A∗

i (θ)dθ 6= 0.

Proof. The proof of this claim follows from Example 2. �

In short the function F defined in (11) can be written as

(17) F∗(r0) =
1

2π

(

5
∑

k=1

r2k−3
0

∫ 2π

0

A∗

2k+1(θ)dθ + r110

∫ 2π

0

A∗

15(θ)dθ

)

.

Note that the coefficients A∗

2k+1(θ) in (17) are linearly independent for
k = 1, 2, 3, 4, 5, 7. Thus by the generalized Descartes Theorem, the average
function F∗ has at most 5 positive simple zeros which provide limit cycles
of system (4), when the average function is non-zero.
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5. Examples

Example 1. Consider the cubic polynomial differential system with a center
at the origin

ẋ = −1

3
x3 + y, ẏ = − 5

12
x5 + x2y,

with the perturbation

(18) ẋ = ẋ = −1

3
x3 + y, ẏ = − 5

12
x5 + x2y + εq(x, y),

where

q(x, y) = d01y + d21x
2y + d12xy

2 + d03y
3 + d23x

2y3 + d14xy
4 + d05y

5.

Writing system (18) in the coordinates x = r cos θ and y = r3 sin θ and

taking the quotient ṙ/θ̇ we get the following system in the standard form of
Theorem 4 for applying the averaging theory

(19)
dr

dθ
= F0(r, θ) + εF1(r, θ) +O(ε2),

where

F0(r, θ) =
r cos θ

(

−6 sin θ(sin(2θ) + 2) + 4 cos3 θ + 5 sin θ cos4 θ
)

36 sin2 θ + 5cos6 θ − 24 sin θ cos3 θ
,

F1(r, θ) = −48C(θ)E(θ)
q
(

r cos θ, r3 sin θ
)

r4
(

36 sin2 θ + 5cos6 θ − 24 sin θ cos3 θ
)2
,

with C(θ) = cos(2θ)− 2, and E(θ) = cos3 θ − 3 sin θ. Thus for system (19)

we have M(θ) = (k(θ)) = ((160/G(θ))1/6), where

G(θ) = −192 sin(2θ)−96 sin(4θ)−501 cos(2θ)+30 cos(4θ)+5 cos(6θ)+626,

and the integrant of the integral (11) of system (19) is

7
∑

1

r2k−3
0 A2k+1(θ),
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with

A3(θ) = −d01
3072 3

√

2
5
sin θ C(θ)(−12 sin θ + 3cos θ + cos(3θ))

T (θ)5/3
,

A5(θ) = −d21
48 sin θ cos2 θ C(θ)E(θ)

(

36 sin2 θ + 5cos6 θ − 24 sin θ cos3 θ
)2
,

A7(θ) = −d12
98304 22/3 3

√
5 sin2 θ cos θ C(θ)E(θ)

T (θ)7/3
,

A9(θ) = −d03
393216 3

√
2 52/3 sin3 θ C(θ)E(θ)

T (θ)8/3
,

A11(θ) = −d23
7864320 sin3 θ cos2 θ C(θ)E(θ)

T (θ)3
,

A13(θ) = −d14
15728640 22/3 3

√
5 sin4 θ cos θ C(θ)E(θ)

T (θ)10/3
,

A15(θ) = −d05
62914560 3

√
252/3 sin5 θ C(θ)E(θ)

T (θ)11/3
,

and

T (θ) = −192 sin(2θ)−96 sin(4θ)−501 cos(2θ)+30 cos(4θ)+5 cos(6θ)+626.

Computing numerically the integral (11) for system (19) we obtain

F(r0) =
1

r0

(

− 4.2608.. d01 − 2.0944.. d21r
2
0 − 1.2770.. d12r

4
0 − 1.2427.. d03r

6
0

− 1.0908.. d23r
8
0 − 0.7348.. d14r

10
0 − 0.5419.. d05r

12
0

)

.

Taking

d01 = − 720

4.2608..
, d21 =

1764

2.0944..
, d12 = − 1624

1.2770..
,

d03 =
735

1.2427..
, d23 = − 175

1.0908..
, d14 =

21

0.7348..
, d05 = − 1

0.5419..
.

The function F becomes

F(r0) =
r120 − 21r100 + 175r80 − 735r60 + 1624r40 − 1764r20 + 720

r0
=

1

r0

6
∏

i=1

(r20−i).

Thus we have that F has 6 positive simple zeros given by r0,i =
√
i, for

i = 1, . . . , 6 which by Theorem 4, provide 6 limit cycles of the perturbed
system (18) for ε 6= 0 sufficiently small.

Example 2. Consider the cubic polynomial differential system with a center
at the origin

ẋ = −y, ẏ = x5,
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with the perturbation

(20) ẋ = ẋ = −y + εp(x, y), ẏ = x5 + εq(x, y),

where

p(x, y) = c30x
3 + c50x

5 + c14xy
4,

q(x, y) = d01y + d03y
3 + d23x

2y3.

Writing system (20) in the coordinates x = r cos θ and y = r3 sin θ and

taking the quotient ṙ/θ̇ we obtain the following system in the standard form
of Theorem 4 for applying the averaging theory

(21)
dr

dθ
= F0(r, θ) + εF1(r, θ) +O(ε2),

with F0(r, θ) given in the proof of Theorem 1 and

F1(r, θ) = − cos(2θ)− 2

r
(

3 sin2 θ + cos6 θ
)2

[

r6 sin4 θ
(

c14r
6 cos6 θ + d03 + d23r

2 cos2 θ
)

+r2 cos8 θ
(

c30 + c50r
2 cos2 θ

)

+ d01 sin
2 θ

]

.

The functions k∗(θ) and M∗(θ) for system (21) are given also in the proof
of Theorem 1 and the integrant of the integral (11) of system (21) is

5
∑

k=1

r2k−3
0 A∗

2k+1(θ) + r110 A∗

15(θ),

where

A∗

3(θ) = −d01
256

(

6− 2
√
5
)2/9

sin2 θ(cos(2θ)− 2)
9
√

7− 3
√
5(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)5/3

,

A∗

5(θ) = −c30
cos8 θ(cos(2θ)− 2)
(

3 sin2 θ + cos6 θ
)2

,

A∗

7(θ) = −c50
cos10 θ(cos(2θ)− 2)

3
√
cos6 θ − 3 cos2 θ + 3

(

3 sin2 θ + cos6 θ
)2
,

A∗

9(θ) = −d03
2

40

3 sin4 θ(cos(2θ)− 2)

(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)8/3
,

A∗

11(θ) = −d23
2

43

3

(√
5− 1

)4/3
sin4 θ cos2 θ(cos(2θ)− 2)

(

3−
√
5
)2/3

(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)3
,

A∗

15(θ) = −c14
2

55

3 sin4(θ) cos6 θ(cos(2θ)− 2)

(−33 cos(2θ) + 6 cos(4θ) + cos(6θ) + 58)11/3
,
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Computing numerically the integral (11) for system (21) we obtain

F∗(r0) =
1

r0

(

2.1033.. d01 + 1.8138.. c30r
2
0 + 1.6169.. c50r

4
0 + 0.6310.. d03r

6
0

+ 0.1512.. d23r
8
0 + 0.0394.. c14r

12
0

)

.

Taking

d01 = − 1800

2.1033..
, c30 =

3990

1.8138..
, c50 = − 3101

1.6169..
,

d03 =
1050

0.6310..
, d23 = − 140

0.1512..
, c14 =

1

0.0394..
.

The function F∗ is now given by

F∗(r0) =
r120 − 140r80 + 1050r60 − 3101r40 + 3990r20 − 1800

r0
=

r20 + 15

r0

5
∏

i=1

(r20−i).

Thus we have that F∗ has 5 positive simple zeros given by r0,i =
√
i, for

i = 1, . . . , 5 which by Theorem 4, provide 5 limit cycles of the perturbed
system (20) with ε 6= 0 sufficiently small.
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