INTERNATIONAL PUBLICATIONS(USA)

Communications on Applied Nonlinear Analysis
Volume 14(2007), Number 4, 77-84

On the Number of Singular Points of the Radial Projection of Polynomial Gradient Vector Fields of \mathbb{R}^{3} on the Sphere \mathbb{S}^{2}

Jaume Llibre and Adam Mahdi
Universitat Autònoma de Barcelona
Departament de Matemàtiques
08193 Bellaterra, Barcelona
Catalonia, Spain
jllibre@mat.uab.cat
mahdi@mat.uab.es
Communicated by Carmen Chicone
(Received September 2006; Accepted December 2006)

Abstract

If $r=(x, y, z)$ and H is a real homogeneous polynomial of degree $m \geq 1$ in the variables (x, y, z), then we prove that the maximum number of pairs of diametrally opposite singular points of the radial projection of the polynomial gradient vector field $\nabla H(r)$ in \mathbb{R}^{3} over the 2-dimensional sphere \mathbb{S}^{2} is $(m-1)^{2}+(m-1)+1$, of course when this number is finite. This answers a question of C. Chicone, see [?] page 51.

Key words: Polynomial gradient vector fields, singular points.
AMS Subject Classification: 34C05, 34A34, 34C14.

1 Introduction

Let H be a real homogeneous polynomial of degree $m \geq 1$ in the variables (x, y, z). In what follows and as it is usual H_{u} with $u \in\{x, y, z\}$ will denote the partial derivative of H with respect to u.

Let $r=(x, y, z)$. We consider the radial projection of the homogeneous polynomial gradient vector field

$$
\nabla_{r} H(r)=\left(H_{x}, H_{y}, H_{z}\right)
$$

of degree m - 1 in \mathbb{R}^{3} over the 2-dimensional sphere $\mathbb{S}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$; i.e. we consider the polynomial vector field \mathcal{X} of degree $m+1$ on \mathbb{S}^{2} defined by

$$
\begin{equation*}
\mathcal{X}(r)=\nabla_{r} H(r)-\left(r \cdot \nabla_{r} H(r)\right) r \tag{1}
\end{equation*}
$$

