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In the analytic case we prove the conjecture of Maciejewski and Przybylska
[J. Math. Phys. 46(6), 062901 (2005)] regarding Hamiltonian systems with a ho-
mogeneous polynomial potential of degree 4. The proof of the conjecture completes
the characterization of all the analytic integrable Hamiltonian system with a homo-
geneous polynomial potential of degree 4. C© 2011 American Institute of Physics.
[doi:10.1063/1.3544473]

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

We consider C4 as a symplectic linear space with canonical variables q = (q1, q2) and
p = (p1,p2). We are interested in Hamiltonian systems defined by the Hamiltonian function:

H = 1

2

2∑
i=1

p2
i + V (q), (1)

where V (q) = V (q1, q2) is a homogeneous polynomial of degree k. To be more precise, we consider
the following system of four differential equations:

q̇i = pi , ṗi = −∂V

∂qi
, i = 1,2. (2)

Let A = A(q,p) and B = B(q,p) be two functions. Then their Poisson bracket {A,B} is given by

{A,B} =
2∑

i=1

(
∂ A

∂qi

∂ B

∂pi
− ∂ A

∂pi

∂ B

∂qi

)
.

We say that functions A and B commute or that they are in involution if {A,B} = 0. We say that a
non-constant function F = F(q,p) is a first integral for the Hamiltonian system (2) if it commutes
with the Hamiltonian function H , i.e., {H,F} = 0. Since the Poisson bracket is antisymmetric, it
is clear that H itself is always a first integral. We will say that a 2–degree of freedom Hamiltonian
system (2) is completely or Liouville integrable if it has two functionally independent first integrals:
H , and an additional one F , which are in involution.

In the beginning of 1980’s, all integrable Hamiltonian systems (1) with a homogeneous poly-
nomial potential of degree at most 5 and having a second polynomial first integral up to degree 4
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