Physics Letters A 375 (2011) 3509-3511

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Centers on center manifolds in the Lü system

Adam Mahdi^a, Claudio Pessoa^b, Douglas S. Shafer^{a,*}

^a Mathematics Department, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
 ^b Universidade Estadual Paulista, IBILCE-UNESP, Av. Cristovão Colombo, 2265 15.054-000, S.J. Rio Preto, SP, Brazil

A R T I C L E I N F O

ABSTRACT

Article history: Received 11 March 2011 Received in revised form 3 August 2011 Accepted 8 August 2011 Available online 17 August 2011 Communicated by A.P. Fordy

Keywords: Center problem Center manifold Integrability We confirm a conjecture of Mello and Coelho [Phys. Lett. A 373 (2009) 1116] concerning the existence of centers on local center manifolds at equilibria of the Lü system of differential equations on \mathbb{R}^3 . Our proof shows that the local center manifolds are algebraic ruled surfaces, and are unique. © 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Lü system is the system of nonlinear ordinary differential equations on \mathbb{R}^3 given by

$$\dot{x} = P(x, y, z) = a(y - x),
\dot{y} = Q(x, y, z) = cy - xz,
\dot{z} = R(x, y, z) = -bz + xy,$$
(1)

where *a*, *b*, and *c* are real parameters. This system has an equilibrium at the origin for all values of the parameters and a pair of symmetrically located equilibria $Q_{\pm} = (\pm \sqrt{bc}, \pm \sqrt{bc}, c)$ when bc > 0. For parameter values in the surface $S = \{(a, b, c): ab > 0, c = (a + b)/3\}$ the matrix of first partial derivatives of the right-hand sides of (1) at Q_{+} and Q_{-} has two purely imaginary eigenvalues and one real eigenvalue, which has opposite sign from a + b. It was shown in [1] that for parameter values in the straight line $C = \{(a, b, c): a \neq 0, b = 2c, c = a\}$ in *S* the first three Lyapunov quantities at Q_{\pm} are zero, which led the authors of that letter to conjecture the following result, which they described as unexpected.

Conjecture. (See [1].) For parameter values in C satisfying $a + b \neq 0$ the equilibria Q_{\pm} are nonlinear centers for the flow of system (1) restricted to the local center manifolds.

Corresponding author.
 E-mail addresses: adam.mahdi@uncc.edu (A. Mahdi), pessoa@ibilce.unesp.br
 (C. Pessoa), dsshafer@uncc.edu (D.S. Shafer).

In this Letter we prove that Conjecture is true and in the process unfold some of the structure of the local center manifolds.

2. Proof of Conjecture

System (1) is invariant under the involution $(x, y, z) \rightarrow (-x, -y, z)$, so we may confine our attention to Q_+ . By the Center Manifold Theorem (see for example [2]) there is a two-dimensional invariant manifold W^c in a neighborhood of Q_+ that is tangent to the center eigenspace at Q_+ and contains all the local recurrent behavior. But although system (1) is polynomial, a priori W^c need not be even C^{∞} , and it need not be unique. Our first attempt at a proof of Conjecture is to try to avoid the center manifold altogether by means of the following theorem of Lyapunov [3]. A proof may be found in [4, §13].

Theorem (Lyapunov Center Theorem). Suppose U is an open neighborhood of the origin in \mathbb{R}^3 , $\mathbf{f} : U \to \mathbb{R}^3$ is a real analytic mapping, and that $d\mathbf{f}(\mathbf{0})$ has one non-zero and two pure imaginary eigenvalues. By an invertible linear change of coordinates and a possibly negative rescaling of time place the system of differential equations $\dot{\mathbf{u}} = \mathbf{f}(\mathbf{u})$ in the form

$$\dot{u} = P(u, v, w) = -\omega v + P(u, v, w),$$

$$\dot{v} = Q(u, v, s) = \omega u + \widetilde{Q}(u, v, w),$$

$$\dot{w} = R(u, v, w) = -\lambda w + \widetilde{R}(u, v, w),$$
(2)

where ω and λ are positive real numbers. Let $\mathfrak X$ denote the corresponding vector field

^{0375-9601/\$ –} see front matter $\,\, \textcircled{\sc c}$ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.physleta.2011.08.022