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In this paper, we study the polynomial integrability of natural Hamiltonian systems with two degrees of
freedom having a homogeneous potential of degree k given either by a polynomial, or by an inverse of
a polynomial. For k = —2, —1, ..., 3, 4, their polynomial integrability has been characterized. Here,
we have two main results. First, we characterize the polynomial integrability of those Hamiltonian
systems with homogeneous potential of degree —3. Second, we extend a relation between the nontrivial
eigenvalues of the Hessian of the potential calculated at a Darboux point to a family of Hamiltonian

systems with potentials given by an inverse of a homogeneous polynomial. This relation was known
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for such Hamiltonian systems with homogeneous polynomial potentials. Finally, we present three open
problems related with the polynomial integrability of Hamiltonian systems with a rational potential.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction and statement of the main results

Ordinary differential equations in general and Hamiltonian
systems, in particular, play a very important part in many branches
of the applied sciences. The question whether a differential model
admits a first integral is of fundamental importance as first
integrals give conservation laws for the model and that enables
us to lower the dimension of the system. Moreover, knowing a
sufficient number of first integrals allows to solve the system
explicitly. Until the end of the 19th century the majority of
scientists thought that the equations of classical mechanics were
integrable and finding the first integrals was mainly a problem of
computation. In fact, integrability is a rare phenomenon and in
general it is very hard to determine whether a given Hamiltonian
system is integrable or not.

In this work, we are concerned with the polynomial integrabil-
ity of the natural Hamiltonian systems defined by the Hamiltonian
function
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where V(q1, q2) € C(q1, q2) is arational homogeneous potential of
degree k given by either a polynomial or an inverse of a polynomial.
Here C(q1, q2) as usual is the field of rational functions over C in
the variables g1, g,. To be more precise, we consider the following
system of four differential equations

. v .

pi=——, i=1,2 (2)
a4

Let A = A(q,p) and B = B(q, p) be two functions, where p =

(p1, p2) and q = (q1, g2). We define the Poisson bracket of A and B

as
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The functions A and B are in involution if {A,B} = 0. A non-
constant function F = F(q, p) is a first integral for the Hamiltonian
system (2) if it is in involution with the Hamiltonian function H,
i.e. {H,F} = 0. Since the Poisson bracket is antisymmetric, it
follows that H itselfis always a first integral. A 2-degree of freedom
Hamiltonian system (2) is completely or Liouville integrable if it has
two functionally independent first integrals H and F. As usual, H
and F are functionally independent if their gradients are linearly
independent at all points of C* except, perhaps, in a zero Lebesgue
set.
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