Contents lists available at ScienceDirect

# Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

## Bifurcation of limit cycles from a two-dimensional center inside $\mathbb{R}^n$

### Jaume Llibre<sup>a,\*</sup>, Amar Makhlouf<sup>b</sup>

<sup>a</sup> Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08913 Bellaterra, Barcelona, Spain <sup>b</sup> Department of Mathematics, Faculty of Sciences, University of Annaba, BP12, Sidi Amar, Annaba, Algeria

#### ARTICLE INFO

Article history: Received 26 March 2008 Accepted 5 August 2009

MSC: primary 34C05 34A34 34C14

Keywords: Limit cycles Bifurcation Control systems Averaging method

#### 1. Introduction

### ABSTRACT

We study the bifurcation of limit cycles from the periodic orbits of a linear differential system in  $\mathbb{R}^n$  perturbed inside a class of piecewise linear differential systems, which appears in a natural way in control theory. Our main result shows that at most one limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving this result we use the averaging theory in a form where the differentiability of the system is not needed.  $\mathbb{O}$  2009 Elsevier Ltd. All rights reserved.

Piecewise linear differential systems appear in a natural way in control theory; see for instance [1–7]. These systems can present complicated dynamical phenomena such as those exhibited by general nonlinear differential systems. Among the main ingredients in the qualitative description of the dynamical behavior of a differential system are the number and the distribution of the limit cycles.

The goal of this paper is to study, in  $\mathbb{R}^n$  for all  $n \ge 2$ , the existence of limit cycles of the control system of the form

 $\dot{x} = A_0 x + \varepsilon F(x),$ 

for  $|\varepsilon| \neq 0$  a sufficiently small real parameter, where

|       | /0 | -1 | 0 | • • • | 0/ |
|-------|----|----|---|-------|----|
|       | 1  | 0  | 0 |       | 0  |
| A. —  | 0  | 0  | 0 |       | 0  |
| 710 — | :  | :  | : | •.    | :  |
|       |    | •  | • | •     |    |
|       | 0/ | 0  | 0 | • • • | 0/ |

and  $F : \mathbb{R}^n \to \mathbb{R}^n$  is given by

$$F(x) = Ax + \varphi(k^{\mathrm{T}}x)b,$$





(1)

<sup>\*</sup> Corresponding author. Tel.: +34 935811303; fax: +34 935812790. E-mail addresses: jllibre@mat.uab.cat (J. Llibre), makhloufamar@yahoo.fr (A. Makhlouf).

<sup>0362-546</sup>X/\$ – see front matter s 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2009.08.022