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PERIODIC SOLUTIONS FOR PERIODIC
SECOND-ORDER DIFFERENTIAL EQUATIONS WITH

VARIABLE POTENTIALS

JAUME LLIBRE1 AND AMMAR MAKHLOUF 2

Abstract. We provide sufficient conditions for the existence of
periodic solutions of the second-order differential equation with
variable potentials −(px′)′(t)− r(t)p(t)x′(t)+ q(t)x(t) = f(t, x(t)),
where the functions p(t) > 0, q(t), r(t) and f(t, x) are C2 and
T–periodic in the variable t.

1. Introduction and statement of the main result

We want to study the periodic solutions of the second-order differ-
ential equation with variable potentials given by

(1) −(px′)′(t)− r(t)p(t)x′(t) + q(t)x(t) = f(t, x(t)),

where the functions p(t) > 0, q(t), r(t) and f(t, x) are T–periodic. Here
the prime denotes derivative with respect to the time t.

The T–periodic differential equation (1) has been considered by sev-
eral authors Thus Liu, Ge and Gui [6] (see also [2]) studied it with
r(t) = 0. Graef, Kong and Wang [5] give an extensive analysis when
the functions p(t), q(t) and r(t) are constant. More recently, Ander-
son and Avery [3] also studied the periodic solutions of the differential
equation (1) with p(t) > 0, q(t) > 0 and r(t) ≥ 0.

Here we study the periodic solutions of the differential equation (1)
with the unique basic assumption that the functions p(t) > 0, q(t), r(t)
and f(t, x) are C2 and T–periodic in the variable t .
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Instead of working with the T–periodic second-order differential equa-
tion (1) we shall work with the following equivalent T–periodic differ-
ential system of first-order

(2)

x′ = y,

y′ =
q(t)

p(t)
x−

(
r(t) +

p′(t)

p(t)

)
y − f(t, x)

p(t)
.

Our results on the periodic solutions of the differential system (2)
are summarized in the next theorem.

Theorem 1. We consider the differential system (2) where the func-
tions p(t) > 0, q(t), r(t) and f(t, x) are C2 and T–periodic in the
variable t. Then the following statements hold.

(i) For every simple zero x∗
0 of the function

x0

∫ T

0

q(t)dt−
∫ T

0

f(t, x0)dt,

system (2) has a periodic solution (x(t), y(t)) such that (x(0), y(0))
is close to (x∗

0, 0).

(ii) If g(t) =

∫ t

0

(
r(s) +

p′(s)

p(s)

)
ds is a T–periodic function in the

variable t, then for every simple zero x∗
0 of the function

x0

∫ T

0

eg(t)q(t)

p(t)
dt−

∫ T

0

eg(t)f(t, x0)

p(t)
dt

system (2) has a periodic solution (x(t), y(t)) such that (x(0), y(0))
is close to (x∗

0, 0).

(iii) If g(t) =

∫ t

0

q(s)ds is a T–periodic function in the variable t,

then for every simple zero (x∗
0, y

∗
0) of the system

x0

∫ T

0

g(t)

p(t)
dt+ y0

∫ T

0

p(0)

p(t)
dt = 0,

x0

∫ T

0

g(t)h(t)

p(0)
dt+

∫ T

0

f(t, x0)

p(0)
dt+ y0

∫ T

0

h(t)dt = 0,

where h(t) =
g(t)

p(t)
+ r(t), system (2) has a periodic solution

(x(t), y(t)) such that (x(0), y(0)) is close to (x∗
0, y

∗
0).
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(iv) If g(t, x) =

∫ t

0

f(s, x)ds is a T–periodic function in the variable

t, then for every simple zero (x∗
0, y

∗
0) of the system∫ T

0

g(t, x0)

p(t)
dt− y0

∫ T

0

p(0)

p(t)
dt = 0,

x0

∫ T

0

q(t)

p(0)
dt−

∫ T

0

g(t, x0)h(t, x0)

p(0)
dt+ y0

∫ T

0

h(t, x0)dt = 0,

where h(t, x0) =
gx(t, x0)

p(t)
− r(t), system (2) has a periodic so-

lution (x(t), y(t)) such that (x(0), y(0)) is close to (x∗
0, y

∗
0).

(v) If g(t) =

∫ t

0

1

p(s)
ds is a T–periodic function in the variable t,

then for every simple zero (x∗
0, y

∗
0) of the system∫ T

0

g(t)f(t, x0 + y0p(0)g(t))dt− x0

∫ T

0

g(t)q(t)dt

+y0p(0)

∫ T

0

g(t)h(t)dt = 0,

x0

∫ T

0

q(t)

p(0)
dt−

∫ T

0

f(t, x0 + y0P (0)g(t))

p(0)
dt− y0

∫ T

0

h(t)dt = 0,

where h(t) = r(t)− g(t)q(t), system (2) has a periodic solution
(x(t), y(t)) such that (x(0), y(0)) is close to (x∗

0, y
∗
0).

(vi) If the functions g(t) =

∫ t

0

p(s)r(s) + p′(s)

p(s)
ds and h(t) =

∫ t

0

e−g(s)ds

are T-periodic in the variable t, then for every simple zero
(x∗

0, y
∗
0) of the system

x0

∫ T

0

h(t)q(t)eg(s)

p(t)
dt+ y0

∫ T

0

h2(t)eg(s)q(t)

p(t)
dt−∫ T

0

h(t)eg(s)f (t, x0 + h(t)y0)

p(t)
dt = 0,

x0

∫ T

0

q(t)eg(s)

p(t)
dt+ y0

∫ T

0

h(t)q(t)eg(s)

p(t)
dt−∫ T

0

eg(s)f (t, x0 + y0h(t))

p(t)
dt = 0.
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system (2) has a periodic solution (x(t), y(t)) such that (x(0), y(0))
is close to (x∗

0, y
∗
0).

Theorem 1 is proved in section 2. Its proof is based in the averaging
theory and in different rescalings of the functions p(t), q(t), r(t) and
f(t, x), and of the variables x and y. In the appendix we recall the basic
result of the averaging theory that we need for proving our results.

Finally in section 3 we provide examples of every one of the state-
ments of Theorem 1.

2. Proof of Theorem 1

We do the following rescaling of the functions and variables which
appear in the differential system (2)

(3)

x = εm1X,

y = εm2Y,

p(t) = εn1P (t),

q(t) = εn2Q(t),

r(t) = εn3R(t),

f(t, x) = εn4F (t, εm1X),

where ε > 0 is a small parameter, and m1,m2, n1, n2, n3 and n4 are
non–negative integers. Then the differential system (2) becomes

(4)

X ′ = εm2−m1Y,

Y ′ = −P ′(t)

P (t)
Y + εm1−m2−n1+n2

Q(t)

P (t)
X − εn3R(t)Y

−ε−m2−n1+n4
F (t,X)

P (t)
.

We shall prove Theorem 1 statement by statement.

Proof of statement (i) of Theorem 1. Taking m1 = n1 = 0, m2 = n3 =
1 and n2 = n4 = 2 the differential system (4) writes

(5)

X ′ = εY,

Y ′ = −P ′(t)

P (t)
Y + ε

(
Q(t)

P (t)
X −R(t)Y − F (t,X)

P (t)

)
.
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This system is in the normal form (15) for applying the averaging
theory described in the appendix. More precisely, we have x = (X, Y ),

F0(t,x) =

 0

−P ′(t)

P (t)
Y

 , F1(t,x) =

 Y

Q(t)

P (t)
X −R(t)Y − F (t,X)

P (t)

 ,

and F2(t,x) = 0.

Solving the differential system (16) we obtain the periodic solutions

(X(t), Y (t)) =

(
X0,

P (0)

P (t)
Y0

)
,

for all (X0, Y0) ∈ R2 \ {(0, 0)}. So all the solutions of the differential
system (16) are T–periodic. Using the notation of the appendix we have
that z = (X0, Y0). Now solving the variational differential equation (17)
we obtain the fundamental matrix

Mz(t) =

 1 0

0
P (0)

P (t)

 .

We compute the function F(z) = (F1(X0, Y0),F2(X0, Y0)) defined in
(18) and we get

F1 = Y0

∫ T

0

P (0)

P (t)
dt,

F2 =
1

P (0)

(
X0

∫ T

0

Q(t)dt− Y0P (0)

∫ T

0

R(t)dt−
∫ T

0

F (t,X0)dt

)
.

By Theorem 2 the differential system (10) has a periodic solution
(X(t, ε), Y (t, ε)) such that

(X(0, ε), Y (0, ε)) → (X∗
0 , 0) when ε → 0,

for each simple zero X∗
0 of the function

X0

∫ T

0

Q(t)dt−
∫ T

0

F (t,X0)dt.

Going back to the differential system (2) through the rescaling (3)
statement (i) follows. �
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Proof of statement (ii) of Theorem 1. Takingm1 = n1 = n3 = 0,m2 =
1 and n2 = n4 = 2 the differential system (4) writes

(6)

X ′ = εY,

Y ′ = −
(
P ′(t)

P (t)
+R(t)

)
Y + ε

(
Q(t)

P (t)
X − F (t,X)

P (t)

)
.

This system is in the normal form (15) for applying the averaging
theory. We have x = (X, Y ),

F0(t,x) =

 0

−
(
P ′(t)

P (t)
+R(t)

)
Y

 , F1(t,x) =

 Y

Q(t)

P (t)
X − F (t,X)

P (t)

 ,

and F2(t,x) = 0.

Solving the differential system (16) we obtain the periodic solutions

(X(t), Y (t)) = (X0, exp(−g(t))Y0) ,

for all (X0, Y0) ∈ R2 \ {(0, 0)}, where we assume that the function

g(t) =

∫ t

0

P (s)R(s) + P ′(s)

P (s)
ds is T–periodic. So all the solutions of the

differential system (16) are T–periodic. Now we have that z = (X0, Y0),
and solving the variational differential equation (17) we obtain the
fundamental matrix

Mz(t) =

(
1 0

0 e−g(t)

)
.

We compute the function F(z) = (F1(X0, Y0),F2(X0, Y0)) defined in
(18) and we get

F1 = Y0

∫ T

0

e−g(t)dt,

F2 = X0

∫ T

0

eg(t)Q(t)

P (t)
dt−

∫ T

0

eg(t)F (t,X0)

P (t)
dt.

By Theorem 2 the differential system (10) has a periodic solution
(X(t, ε), Y (t, ε)) such that

(X(0, ε), Y (0, ε)) → (X∗
0 , 0) when ε → 0,

for each simple zero X∗
0 of the function

X0

∫ T

0

eg(t)Q(t)

P (t)
dt−

∫ T

0

eg(t)F (t,X0)

P (t)
dt.
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Going back to the differential system (2) through the rescaling (3)
statement (ii) follows. �

Proof of statement (iii) of Theorem 1. Taking m1 = n1 = 0, m2 =
n2 = n3 = 1 and n4 = 2 the differential system (4) writes

(7)

X ′ = εY,

Y ′ =
Q(t)

P (t)
X − P ′(t)

P (t)
Y − ε

(
R(t)Y +

F (t,X)

P (t)

)
.

This system is in the normal form (15) for applying the averaging
theory. Thus we have x = (X,Y ),

F0(t,x) =

 0

Q(t)

P (t)
X − P ′(t)

P (t)
Y

 , F1(t,x) =

 Y

−R(t)Y − F (t,X)

P (t)

 ,

and F2(t,x) = 0.

Solving the differential system (16) we obtain the periodic solutions

(X(t), Y (t)) =

X0,

X0

∫ t

0

Q(s)ds+ Y0P (0)

P (t)

 ,

for all (X0, Y0) ∈ R2 \ {(0, 0)} where we suppose that the function∫ t

0

Q(s)ds is T–periodic. So all the solutions of the differential system

(16) are T–periodic. Again we have that z = (X0, Y0), and solving the
variational differential equation (17) we obtain the fundamental matrix

Mz(t) =

 1 0

g(t)

P (t)

P (0)

P (t)

 .

where g(t) =

∫ t

0

Q(s)ds. We compute the function F(z) = (F1(X0, Y0),

F2(X0, Y0)) defined in (18) and we get

F1 = X0

∫ T

0

g(t)

P (t)
dt+ Y0

∫ T

0

P (0)

P (t)
dt,

F2 = X0

∫ T

0

g(t)h(t)

P (0)
dt+

∫ T

0

F (t,X0)

P (0)
dt+ Y0

∫ T

0

h(t)dt,
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where h(t) =
g(t)

P (t)
+ R(t). By Theorem 2 the differential system (10)

has a periodic solution (X(t, ε), Y (t, ε)) such that

(X(0, ε), Y (0, ε)) → (X∗
0 , Y

∗
0 ) when ε → 0,

for each zero (X∗
0 , Y

∗
0 ) of the system,

F1 = 0,F2 = 0.

whose Jacobian is different from zero. Going back to the differential
system (2) through the rescaling (3) statement (iii) follows. �

Proof of statement (iv) of Theorem 1. Taking m1 = n1 = 0, m2 =
n3 = n4 = 1 and n2 = 2 the differential system (4) writes

(8)

X ′ = εY,

Y ′ = −P ′(t)

P (t)
Y − F (t,X)

P (t)
+ ε

(
Q(t)

P (t)
X −R(t)Y

)
.

This system is in the normal form (15) for applying the averaging
theory. Hence we have x = (X,Y ),

F0(t,x) =

 0

−P ′(t)

P (t)
Y − F (t,X)

P (t)

 , F1(t,x) =

 Y

Q(t)

P (t)
X −R(t)Y

 ,

and F2(t,x) = 0.

Solving the differential system (16) we obtain the periodic solutions

(X(t), Y (t)) =

(
X0,

P (0)

P (t)
Y0 −

G(t,X0)

P (t)

)
,

for all (X0, Y0) ∈ R2 \ {(0, 0)} if G(t,X0) =

∫ t

0

F (s,X0)ds is a T-

periodic function. So all the solutions of the differential system (16)
are T–periodic. Therefore we have that z = (X0, Y0), and solving the
variational differential equation (17) we obtain the fundamental matrix

Mz(t) =

 1 0

−Gx(t,X0)

P (t)

P (0)

P (t)

 .
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We compute the function F(z) = (F1(X0, Y0),F2(X0, Y0)) defined in
(18) and we get

F1 = Y0

∫ T

0

P (0)

P (t)
dt−

∫ T

0

G(t,X0)

P (t)
dt,

F2 = X0

∫ T

0

Q(t)

P (0)
dt−

∫ T

0

G(t,X0)H(t,X0)

P (0)
dt+ Y0

∫ T

0

H(t,X0)dt,

where H(t,X0) =
Gx(t,X0)

P (t)
− R(t), By Theorem 2 the differential

system (10) has a periodic solution (X(t, ε), Y (t, ε)) such that

(X(0, ε), Y (0, ε)) → (X∗
0 , Y

∗
0 ) when ε → 0,

for each zero (X∗
0 , Y

∗
0 ) of the system,

F1 = 0,F2 = 0,

whose Jacobian is not zero. Going back to the differential system (2)
through the rescaling (3) statement (iv) is proved. �

Proof of statement (v) of Theorem 1. Taking m1 = m2 = n1 = 0 and
n2 = n3 = n4 = 1 the differential system (4) writes

(9)

X ′ = Y,

Y ′ = −P ′(t)

P (t)
Y + ε

(
Q(t)

P (t)
X −R(t)Y − F (t,X)

P (t)

)
.

This system is in the normal form (15) for applying the averaging
theory. More precisely, we have x = (X,Y ),

F0(t,x) =

 Y

−P ′(t)

P (t)
Y

 , F1(t,x) =

 0

Q(t)

P (t)
X −R(t)Y − F (t,X)

P (t)

 ,

and F2(t,x) = 0.

Solving the differential system (16) we obtain the periodic solutions

(X(t), Y (t)) =

(
X0 + Y0P (0)G(t),

P (0)

P (t)
Y0

)
,

for all (X0, Y0) ∈ R2 \ {(0, 0)}, where we assume that the function

G(t) =

∫ t

0

1

P (s)
ds is T-periodic. So all the solutions of the differ-

ential system (16) are T–periodic. Now z = (X0, Y0) and solving the
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variational differential equation (17) we obtain the fundamental matrix

Mz(t) =

 1 P (0)G(t)

0
P (0)

P (t)

 .

We compute the function F(z) = (F1(X0, Y0),F2(X0, Y0)) defined in
(18) and we get

F1 =

∫ T

0

G(t)F (t,X0 + Y0P (0)G(t)) dt−X0

∫ T

0

G(t)Q(t)dt

+Y0P (0)

∫ T

0

G(t)H(t)dt,

F2 = X0

∫ T

0

Q(t)

P (0)
dt−

∫ T

0

F (t,X0 + Y0P (0)G(t))

P (0)
dt− Y0

∫ T

0

H(t)dt,

where H(t) = R(t)−G(t)Q(t).

By Theorem 2 the differential system (10) has a periodic solution
(X(t, ε), Y (t, ε)) such that

(X(0, ε), Y (0, ε)) → (X∗
0 , Y

∗
0 ) when ε → 0,

for each zero (X∗
0 , Y

∗
0 ) of the system F1 = 0, F2 = 0, whose Jacobian

is not zero. Going back to the differential system (2) through the
rescaling (3) statement (v) is proved. �

Proof of statement (vi) of Theorem 1. Taking m1 = m2 = n1 = n3 =
0 and n2 = n4 = 1 the differential system (4) writes

(10)

X ′ = Y,

Y ′ = −
(
P ′(t)

P (t)
+R(t)

)
Y + ε

(
Q(t)

P (t)
X − F (t,X)

P (t)

)
.

This system is in the normal form (15) for applying the averaging
theory. More precisely, we have x = (X,Y ),

F0(t,x) =

 Y

−
(
P ′(t)

P (t)
+R(t)

)
Y

 , F1(t,x) =

 0

Q(t)

P (t)
X − F (t,X)

P (t)

 ,

and F2(t,x) = 0.

Solving the differential system (16) we obtain the periodic solutions

(11) (X(t), Y (t)) =
(
X0 +H(t)Y0, e

−G(t)Y0

)
,
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for all (X0, Y0) ∈ R2 \ {(0, 0)} = g(s), where we have assumed that the

functions G(t) =

∫ t

0

P (s)R(s) + P ′(s)

P (s)
ds and H(t) =

∫ t

0

e−G(u)du =

h(t) are T–periodic. So all the solutions (11) of the differential system
(16) are T–periodic. Now putting z = (X0, Y0) and solving the varia-
tional differential equation (17) we obtain the fundamental matrix

Mz(t) =

(
1 H(t)

0 e−G(t)

)
.

We compute the function F(z) = (F1(X0, Y0),F2(X0, Y0)) defined in
(18) and we get

F1 = X0

∫ T

0

H(t)Q(t)eG(t)

P (t)
dt+ Y0

∫ T

0

H2(t)Q(t)eG(t)

P (t)
dt−∫ T

0

H(t)eG(t)F (t,X0 +H(t)Y0)

P (t)
dt,

F2 = X0

∫ T

0

Q(t)eG(t)

P (t)
dt+ Y0

∫ T

0

H(t)Q(t)eG(t)

P (t)
dt−∫ T

0

eG(t)F (t,X0 +H(t)Y0)

P (t)
dt.

By Theorem 2 the differential system (10) has a periodic solution
(X(t, ε), Y (t, ε)) such that

(X(0, ε), Y (0, ε)) → (X∗
0 , Y

∗
0 ) when ε → 0,

for each zero (X∗
0 , Y

∗
0 ) of the system F1 = 0, F2 = 0, whose Jacobian

is not zero. Going back to the differential system (2) through the
rescaling (3) statement (vi) is proved. �

3. Examples

In this section we provide examples of each one of the statements of
Theorem 1.

Example (i): Consider the differential system (2) with

p(t) = 2 + cos t, q(t) = a ̸= 0, r(t) = 1 + cos t, f(t, x) = sin2(t+ x).

All these functions are 2π–periodic in the variable t. Then applying
statement (i) of Theorem 1 we have that the function

x0

∫ 2π

0

q(t)dt−
∫ 2π

0

f(t, x0)dt = π(2ax0 − 1),
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has a unique simple zero x∗
0 = 1/(2a). Therefore, the differential system

(2) has a periodic solution (x(t), y(t)) such that (x(0), y(0)) is near
(1/(2a), 0). In fact, numerically we can find the periodic orbit for
a = 1 very near to (0.55, 0).

Example (ii): Consider the differential system (2) with

p(t) = a > 0, q(t) = b > 0, r(t) = cos t, f(t, x) = x3 sin t.

These functions are 2π–periodic in the variable t. We have that the
function

g(t) =

∫ t

0

(
r(s) +

p′(s)

p(s)

)
ds = sin t,

so it is also 2π–periodic. Now applying statement (ii) of Theorem 1 we
have that the function

x0

∫ 2π

0

eg(t)q(t)

p(t)
dt−

∫ 2π

0

eg(t)f(t, x0)

p(t)
dt =

2π

a
x0(bI0(1)− x2

0I1(1)),

where In(z) is the modified Bessel function of the first kind, for more
details see [1]. This function has three simple zeros x∗

0, namely

0, ±

√
bI0(1)

I1(1)
,

where I0(1)/I1(1) = 2.24019... Therefore, the differential system (2)
has three periodic solution (x(t), y(t)) such that (x(0), y(0)) are near
(x∗

0, 0).

Example (iii): Consider the differential system (2) with

p(t) = 1, q(t) = sin t, r(t) = 1 + cos t, f(t, x) = x2 − 1.

These functions are 2π–periodic in the variable t. We have that the
function

g(t) =

∫ t

0

q(s)ds = 1− cos t,

so it is also 2π–periodic. Now applying statement (iii) of Theorem 1
we obtain the system

F1(x0, y0) = x0

∫ 2π

0

g(t)

p(t)
dt+ y0

∫ 2π

0

p(0)

p(t)
dt = 2π(x0 + y0) = 0,

F2(x0, y0) = x0

∫ 2π

0

g(t)h(t)

p(0)
dt+

∫ 2π

0

f(t, x0)

p(0)
dt+ y0

∫ 2π

0

h(t)dt

= 2π(x2
0 + 2(x0 + y0)− 1) = 0.

This system has the two solutions (1,−1) and (−1, 1). Since the Jaco-
bian (19) is not zero in both solutions, the differential system (2) has
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two periodic solution (x(t), y(t)) such that (x(0), y(0)) are near these
two points.

Example (iv): Consider the differential system (2) with

p(t) = 1, q(t) = cos t, r(t) = sin t, f(t, x) = x2 cos t.

These functions are 2π–periodic in the variable t. This system can be
written as

(12)
x′ = y,

y′ = x cos t− y sin t− x2 cos t.

The function

g(t, x) =

∫ t

0

f(s, x)ds = x2 sin t,

is 2π–periodic. Now applying statement (iv) of Theorem 1 we obtain
the system∫ 2π

0

g(t, x0)

p(t)
dt− y0

∫ 2π

0

p(0)

p(t)
dt = −2πy0 = 0,

x0

∫ 2π

0

q(t)

p(0)
dt−

∫ 2π

0

g(t, x0)h(t, x0)

p(0)
dt+ y0

∫ 2π

0

h(t, x0)dt =

−πx2
0 (2x0 − 1) = 0,

where h(t, x0) = gx(t, x0)/p(t)−r(t). This system has the two solutions
(0, 0) and (1/2, 0), the first is not good because corresponds to an
equilibrium point. Since the Jacobian (19) is π2 for the second solution,
the differential system (2) has one periodic solution (x(t), y(t)) such
that (x(0), y(0)) is near (1/2, 0).

Example (v): Consider the differential system (2) with

p(t) =
1

a sin2 t+ b cos2 t− (a+ b)/2
,

q(t) = cos2 t,

r(t) = −2 tan(2t),

f(t, x) = (2x+ sin2 t) cos2 t.

These functions are 2π–periodic in the variable t where they are defined.
Then system (2) becomes

(13)

x′ = y,

y′ =
1

2
(a− b) cos2 t cos(2t)

(
sin2 t+ x

)
,

and it is defined for all t ∈ R.
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The function

g(t) =

∫ t

0

1

p(s)
ds = −1

4
(a− b) sin(2t),

is 2π–periodic. Now applying statement (v) of Theorem 1 we obtain
the system

∫ T

0

g(t)f(t, x0 + y0p(0)g(t))dt− x0

∫ T

0

g(t)q(t)dt

+y0p(0)

∫ T

0

g(t)h(t)dt =
1

16
(b− a)πy0 = 0,

x0

∫ T

0

q(t)

p(0)
dt−

∫ T

0

f(t, x0 + y0p(0)g(t))

p(0)
dt− y0

∫ T

0

h(t)dt

=
1

8
(a− b)π(1 + 4x0) = 0,

where where h(t) = r(t)−g(t)q(t). This system has the unique solution
(x0, y0) = (−1/4, 0). Since the Jacobian (19), for this solution is (a −
b)2π2/32 which is different from zero for a ̸= b, the differential system
(2) has one periodic solution (x(t), y(t)) such that (x(0), y(0)) is near
this point.

Example (vi): Consider the differential system (2) with

p(t) = 1, q(t) = cos t, r(t) = tan t, f(t, x) = x2 cos t.

These functions are 2π–periodic in the variable t. Then system (2)
becomes

(14)
x′ = y,

y′ = (x− y − x2) cos t,

and it is defined for all t ∈ R.

The functions

g(t) =

∫ t

0

p(s)r(s) + p′(s)

p(s)
ds = − log | cos t|, and h(t) =

∫ t

0

e−g(s)ds = sin t,
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are 2π–periodic. Now applying statement (vi) of Theorem 1 we obtain
the system

x0

∫ 2π

0

h(t)q(t)eg(s)

p(t)
dt+ y0

∫ 2π

0

h2(t)eg(s)q(t)

p(t)
dt−∫ 2π

0

h(t)eg(s)f (t, x0 + h(t)y0)

p(t)
dt = −π(2x0 − 1)y0 = 0,

x0

∫ 2π

0

q(t)eg(s)

p(t)
dt+ y0

∫ 2π

0

h(t)q(t)eg(s)

p(t)
dt−∫ 2π

0

eg(s)f (t, x0 + y0h(t))

p(t)
dt = −π

(
2x2

0 − 2x0 + y20
)
= 0.

This system has the four solutions (0, 0), (1, 0) and (1/2,±1/
√
2). The

first two do not provide periodic solutions, they correspond to equilib-
rium points. Since the Jacobian (19), for the last two solutions is 2π2,
the differential system (2) has two periodic solutions (x(t), y(t)) such
that (x(0), y(0)) are near the points (1/2,±1/

√
2).

Appendix: averaging theory of first order

In this appendix we recall one of the basic results from the averaging
theory that we need for proving the main results of this paper.

We consider the problem of the bifurcation of T–periodic solutions
from differential systems of the form

(15) x′ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε ̸= 0 sufficiently small. Here the functions F0, F1 :
R × Ω → Rn and F2 : R × Ω × (−ε0, ε0) → Rn are C2 functions, T–
periodic in the first variable, and Ω is an open subset of Rn. The main
assumption is that the unperturbed system

(16) x′ = F0(t,x),

has a submanifold of dimension n of periodic solutions. A solution of
this problem is given using the averaging theory.

Let x(t, z, ε) be the solution of the system (16) such that x(0, z, ε) =
z. We write the linearization of the unperturbed system along the
periodic solution x(t, z, 0) as

(17) y′ = DxF0(t,x(t, z, 0))y,

where y is an n× n matrix. In what follows we denote by Mz(t) some
fundamental matrix of the linear differential system (17).
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We assume that there exists an open set V with Cl(V ) ⊂ Ω such
that for each z ∈ Cl(V ), x(t, z, 0) is T–periodic. The set Cl(V ) is
isochronous for the system (15); i.e. it is a set formed only by periodic
orbits, all of them having the same period. Then, an answer to the
problem of the bifurcation of T–periodic solutions from the periodic
solutions x(t, z, 0) contained in Cl(V ) is given in the following result.

Theorem 2 (Perturbations of an isochronous set). We assume that
there exists an open and bounded set V with Cl(V ) ⊂ Ω such that for
each z ∈ Cl(V ), the solution x(t, z, 0) is T–periodic, then we consider
the function F : Cl(V ) → Rn

(18) F(z) =

∫ T

0

M−1
z (t)F1(t,x(t, z, 0))dt.

If there exists α ∈ V with F(α) = 0 and

(19) det ((dF/dz) (z∗)) ̸= 0,

then there exists a T–periodic solution x(t, ε) of system (15) such that
when ε → 0 we have that x(0, ε) → α.

Theorem 2 goes back to Malkin [7] and Roseau [8], for a shorter and
easier proof see [4].
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