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ON THE NUMBER OF LIMIT CYCLES OF THE
DIFFERENTIAL EQUATION

dr

dθ
=

a(θ)
n∑

j=0

aj(θ)r
j

JAUME LLIBRE1 AND AMMAR MAKHLOUF2

Abstract. The notion of Hilbert number from polynomial dif-
ferential systems in the plane of degree n can be extended to the
differential equations of the form

dr

dθ
=

a(θ)
n∑

j=0

aj(θ)r
j

(∗)

defined in the region of the cylinder where
∑n

j=0 aj(θ)r
j ̸= 0 as

follows. The Hilbert number H(n) is the supremum of the number
of limit cycles that any differential equation (*) on the cylinder of
degree n in the variable r can have. We prove that H(n) = ∞ for
all n ≥ 1.

1. Introduction

In the article [6] Lins Neto studied the following problem posed by
Charles Pugh.

Problem 1. Let a0, a1, . . . , an : S1 → R be continuous 2π–periodic
functions and consider the differential equation

(1)
dr

dθ
= a0(θ) + a1(θ)r + . . .+ an(θ)r

n,

on the cylinder (θ, r) ∈ S1 ×R. Then the problem is to know the num-
ber of isolated periodic solutions (i.e. limit cycles) of the differential
equation (1) in function of n.

Problem 1 was motivated by the Hilbert’s 16–th problem (see for
instance [3, 4, 5]), because some polynomial differential systems in the
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plane can be reduced to equations (1) as all the polynomial differen-
tial systems of degree 2 (see for instance the proposition of [6]), all
polynomial differential systems with the linear center ẋ = −y, ẏ = x
with nonlinearities given by homogeneous polynomials of degree n for
all positive integer n (see for instance [7]), all polynomial differential

systems such that in polar coordinates (r, θ) have θ̇ = 1, ... See also [1]
for more details on the differential equations (1).

For polynomial differential systems in the plane it is defined the
Hilbert number H(n), i.e. the supremum of the number of limit cycles
that a polynomial differential system in the plane of degree n can have.
For the moment it is unknown if the Hilbert number is finite or infinite
when n > 1. We can extend the notion of Hilbert number to the
differential equations (1) defined on the cylinder as follows. The Hilbert
number H(n) is the supremum of the number of limit cycles that a
differential equation (1) on the cylinder of degree n in the variable r
can have.

The Hilbert number for the Problem 1 has the following answer. For
the differential equations of the form

(i)
dr

dθ
= a0(θ) + a1(θ)r (periodic linear differential equations) it is

known that H(1) = 1.

(ii)
dr

dθ
= a0(θ)+a1(θ)r+a2(θ)r

2 (periodic Riccati differential equa-

tions) we have that H(2) = 2, see for instance Theorem 1 of
[6].

(iii)
dr

dθ
= a0(θ)+a1(θ)r+a2(θ)r

2+a3(θ)r
3 (periodic Abel differential

equations) can have k limit cycles for all positive k, see the
example of section 3 of [6]. So H(3) = ∞.

(iv)
dr

dθ
= a0(θ)+a1(θ)r+ ...+as(θ)r

s can have k limit cycles for all

positive k. We have the same conclusion than for the periodic
Abel differential equation and the proof follows easily modifying
the proof of (iii). Hence H(n) = ∞ for n > 3.

In this paper we consider the following problem:

Problem 2. Let a, a0, a1, . . . , an : S1 → R be continuous 2π–periodic
functions and consider the differential equation

(2)
dr

dθ
=

a(θ)

a0(θ) + a1(θ)r + . . .+ an(θ)rn
,
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on the region of the cylinder (θ, r) ∈ S1 × R where the denominator of
(2) does not vanish. Then the problem is to know the number of limit
cycles of the differential equation (2) in function of n.

Again we can extend the notion of Hilbert number to the differential
equations (2) defined on the cylinder as follows. The Hilbert number
H(n) is the supremum of the number of limit cycles that a differential
equation (2) on the cylinder of degree n in the variable r can have.

The main result of this paper is to compute the Hilbert number for
the Problem 2.

Theorem 1.1. For all positive integer k there are differential equations
(2) with n = 1 having at least k limit cycles. So H(1) = ∞.

Theorem 1.1 is proved in section 3 using the averaging theory of first
order for studying the periodic solutions. We present the results of this
theory that we need in section 2.

A corollary of Theorem 1.1 is the following.

Corollary 1.2. For all positive integers n and k there are differential
equations (2) having at least k limit cycles. So H(n) = ∞ for n > 1.

Corollary 1.2 is also proved in section 3.

2. The averaging theory

Now we summarize the basic results from averaging theory that we
need for proving the results of this paper. The following result provides
a first order approximation for the periodic solutions of a periodic dif-
ferential equation.

We deal with the differential equation

(3) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0

with x ∈ D, where D is an open subset of Rn, t ≥ 0. Suppose that the
functions F1(t,x) and F2(t,x, ε) are T−periodic in t. Then consider in
D the averaged differential equation

(4) ẏ = εf(y), y(0) = x0,

where

f(y) =
1

T

∫ T

0

F1(t,y)dt.

The next result shows that under convenient conditions, the equilib-
rium solutions of the averaged equation correspond with T−periodic
solutions of the differential equation (3).
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Theorem 2.1. Consider the two differential equations (3) and (4).
Assume:

(i) the functions F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x
2,

F2 and its Jacobian ∂F2/∂x are continuous and bounded by a
constant independent of ε in the sets [0,∞)×D and ε ∈ (0, ε0].

(ii) the functions F1 and F2 are T−periodic in t (T independent of
ε).

Then the next statements hold.

(a) If p is an equilibrium point of the averaged equation (4) and

det

(
∂f

∂y

)∣∣∣∣
y=p

̸= 0,

then there is a T−periodic solution φ(t, ε) of equation (3) such
that φ(0, ε) → p as ε → 0.

(b) The kind of stability or instability of the limit cycle φ(t, ε) is
given by the kind of stability or instability of the equilibrium
point p of the averaged system (4). Indeed, the singular point p
has the stability behavior of the Poincaré map associated to the
limit cycle φ(t, ε).

For a proof of Theorem 2.1 see Theorems 11.5 and 11.6 of Verhulst
[8].

3. Proof of Theorem 1.1

Consider the subclass of differential equations (2) with n = 1 given
by

(5)
dr

dθ
= ε

a(θ)

a0(θ) + a1(θ)r
,

where ε is a small parameter, and

(6) a(θ) =
k∑

j=0

αj cos(jθ), a0(θ) = 1, and a1(θ) = cos θ,

being α0, α1, . . . , αk arbitrary constants.

Clearly the differential equation (5) is defined in the open cylinder
{(θ, r) ∈ S1 × (0, 1)}. This differential equation satisfies the assump-
tions of Theorem 2.1, so we shall apply this theorem to it.

The averaged differential equation (4) corresponding to equation (5)
is

(7) ṙ = εf(r),
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where

f(r) =
k∑

j=0

αj
1

2π

∫ 2π

0

cos(jθ)

1 + r cos θ
dθ =

k∑
j=0

αjfj(r).

The function fj(r) for r ∈ (0, 1) can be computed, and we get

(8) fj(r) =
1√

1− r2

(√
1− r2 − 1

r

)j

.

In fact this integral was computed in the formula 3.613 of [2]. Therefore

f(r) =
k∑

j=0

αjfj(r) =
k∑

j=0

αj
1√

1− r2

(√
1− r2 − 1

r

)j

.

The equilibrium points of the averaged equation (7) are the zeros of
the function f(r).

Let I be an interval of R, and let f0, f1, . . . , fk : I → R be C1

functions linearly independent, i.e. if
∑k

j=0 βjfj(r) = 0 then β0 = β1 =
. . . = βk = 0. The following result is well known, for a proof see for
instance the Proposition 1 of the Appendix A of [7].

Proposition 3.1. If the functions f0, f1, . . . , fk : I → R are linearly
independent, then there exist α0, α1, . . . , αk ∈ R and r1, . . . , rk ∈ I such
that for every rℓ with ℓ ∈ {1, . . . , k} we have that

k∑
j=0

αjfj(rℓ) = 0.

Clearly our functions fj(r) for j = 0, 1, . . . , k given in (8) are lin-
early independent. So we can apply Proposition 3.1 to them, and
consequently we know that there are values of α0, α1, . . . , αk ∈ R and
values r1, . . . , rk ∈ (0, 1) such that f(rℓ) = 0 for ℓ = 1, . . . , k, being
the rℓ simple zeros of f(r). Hence, by Theorem 2.1, since the averaged
equation (7) has k simple zeros r1, . . . , rk ∈ (0, 1) we conclude that the
differential equation (5) has k limit cycles. This completes the proof of
Theorem 1.1.

4. Proof of Corollary 1.2

We consider for a given integer n > 1 the differential equation

(9)

dr

dθ
= ε

a(θ)

a0(θ) + a1(θ)r + ε
(
a2(θ)r2 + . . .+ an(θ)rn

) ,
= ε

a(θ)

a0(θ) + a1(θ)r
+O(ε2).
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Taking again the expressions (6) for the functions a(θ), a0(θ) and
a1(θ), we can apply Theorem 2.1 to the differential equation (9) as we
have done for the differential equation (5), and we also obtain that the
differential equation (9) has k limit cycles. This completes the proof of
the Corollary 1.2.
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