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Abstract. This article concerns with the weak 16–th Hilbert problem.
More precisely, we consider the uniform isochronous centers

ẋ = −y + x
n−1

y, ẏ = x+ x
n−2

y
2
,

for n = 2, 3, 4, and we perturb them by all homogeneous polynomial
of degree 2, 3, 4, respectively. Using averaging theory of first order we
prove that the maximum number N(n) of limit cycles that can bifurcate
from the periodic orbits of the centers for n = 2, 3, under the mentioned
perturbations, is 2. We prove that N(4) ≥ 2, but there is numerical
evidence that N(4) = 2. Finally we conjecture that using averaging
theory of first order N(n) = 2 for all n > 1. Some computations have
been made with the help of an algebraic manipulator as mathematica.

1. Introduction and statement of the main results

The second part of the 16th Hilbert’s problem asks for the maximum
number H(n) and position of limit cycles for all planar polynomial differen-
tial systems of degree n, for more details on the 16th Hilbert’s problem see
[8, 10, 11], and the references quoted therein. The problem on the number
H(n) remains open, even for n = 2, and a general result about the configu-
rations of limit cycles in planar polynomial differential systems can be found
in [13].

A weak form of the 16th Hilbert’s problem, known now as the weak 16th

Hilbert’s problem was proposed by Arnold [1], asking for the maximum num-
ber Z(m,n) of isolated zeros of Abelian integrals of all polynomial 1–form
of degree n over algebraic ovals of degree m, for more information on the
weak 16th Hilbert’s problem see [5, 9, 18], and the hundreds of references
quoted therein. Of course Z(m,n) ≤ H(n). But the weak 16th Hilbert’s
problem is also extremely hard to study. In fact the weak 16th Hilbert’s
problem is the problem of studying the maximum number of limit cycles
that can bifurcate from the periodic solutions of a polynomial differential
center having a rational first integral of degree m when it is perturbed inside
the class of all polynomial differential systems of degree n.
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Figure 1. Phase portrait of the uniform isochronous center (1)
with n = 2.

Our goal in this article will be to provide lower bounds for the maximum
number of limit cycles that can bifurcate from the periodic solutions of
a polynomial differential uniform isochronous center of degree 2, 3 and 4
when it its perturbed by all homogeneous polynomial of degree 2, 3 and 4,
respectively. More precisely, we consider the polynomial differential system

(1)
ẋ = −y + xn−1y,
ẏ = x+ xn−2y2,

of degree n ≥ 2, having a uniform isochronous center at the origin of coor-
dinates, which in polar coordinates (r, θ), where x = r sin θ and y = r cos θ,
becomes

ṙ = rn cosn−2 θ sin θ,

θ̇ = 1.

As usual the dot in the previous two differential systems denotes derivative
with respect to an independent variable t, usually called the time. Since
θ̇ = 1 the center (1) is uniform and isochronous, which taking as independent
variable the variable θ writes

(2)
dr

dθ
= r′ = rn cosn−2 θ sin θ.

An easy computation shows that the periodic solutions r(θ, r0) surrounding
the center r = 0 such that r(0, r0) = r0 are

(3) r(θ, r0) = r0
(

1− rn−1
0 + rn−1

0 cosn−1 θ
)

1

1−n ,

with 0 < r0 < 1 if n is odd, and 0 < r0 < 21/(1−n) if n is even. System (1)
has the rational first integral

H =
(1− xn−1)2

(x2 + y2)n−1
.

So the periodic solutions of the center (1) are algebraic ovals of degree 2(n−
1). Hence when we perturb the center (1) by all homogeneous polynomial
of degree n we are studying a particular case of the weak Hilbert problem.
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Figure 2. Phase portrait of the uniform isochronous center (1)
with n = 3.

Figure 3. Phase portrait of the uniform isochronous center (1)
with n = 4.

The phase portraits of the uniform isochronous centers (1) for n = 2, 3, 4
in the Poincaré disc are given in Figures 1, 2, 3, respectively. For more details
on the Poincaré disc see Chapitre 5 of [7].

Our goal is to provide a lower bound for the maximum number of limit
cycles that can bifurcate from the periodic solutions r(0, r0) = r0 surround-
ing the uniform isochronous center at r = 0 of degree n = 2, 3, 4 when
we perturb by all homogeneous polynomials of degree 2, 3, 4, respectively.
More precisely, we want to study the maximum number of limit cycles of
the following three polynomial differential systems

(4)
ẋ = −y + xy + ε(a0x

2 + a1xy + a2y
2),

ẏ = x+ y2 + ε(b0x
2 + b1xy + b2y

2);

(5)
ẋ = −y + x2y + ε(a0x

3 + a1x
2y + a2xy

2 + a3y
3),

ẏ = x+ xy2 + ε(b0x
3 + b1x

2y + b2xy
2 + b3y

3);

(6)
ẋ = −y + x3y + ε(a0x

4 + a1x
3y + a2x

2y2 + a3xy
3 + a4y

4),
ẏ = x+ x2y2 + ε(b0x

4 + b1x
3y + b2x

2y2 + b3xy
3 + a4y

4);

where ε is a small parameter.
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Our main result is the following.

Theorem 1. For |ε| 6= 0 sufficiently small and using averaging of first order

the following statements hold.

(a) Systems (4) have at most 2 limit cycles bifurcating from the periodic

orbits of the center (1) with n = 2, and there are systems (4) with 2
limit cycles.

(b) Systems (5) have at most 2 limit cycles bifurcating from the periodic

orbits of the center (1) with n = 3, and there are systems (5) with 2
limit cycles.

(c) There are systems (6) with at least 2 limit cycles bifurcating from

the periodic orbits of the center (1) with n = 4.

The proof of statements (a), (b) and (c) of Theorem 1 are done in sections
2, 3 and 4 respectively.

We have numerical evidence that the best statement (c) of Theorem 1
would be: Systems (6) have at most 2 limit cycles bifurcating from the

periodic orbits of the center (1) with n = 4, and there are systems (6) with

2 limit cycles.

In fact in the plane R
2 the averaging theory of first order, or the gener-

alized Abelian integrals, or the Melnikov function provide the same infor-
mation because they are based in the first term in ε of the Poincaré return
map.

Chicone and Jacobs in [4] proved that perturbing any quadratic polyno-
mial isochronous center inside the class of all quadratic polynomial differen-
tial systems at most 2 limit cycles can bifurcate. Our result for systems (4)
shows that already these 2 limit cycles appear when we perturbed the qua-
dratic uniform isochronous center (1) by the restricted class of homogeneous
quadratic polynomials.

Using averaging theory of first order it follows from statements (a) and
(b) of Theorem 1 that the maximum number N(n) of limit cycles of systems
(4) and (5) that can bifurcate from the periodic orbits of the centers (1) for
n = 2 and n = 3, respectively, is 2. And from statement (c) of Theorem
1 we know that N(4) ≥ 2, but as we said there is numerical evidence that
N(4) = 2. Consequently we do the following conjecture.

Conjecture. Using averaging theory of first order the maximum number

N(n) of limit cycles of the system

ẋ = −y + xn−1y + ε

n
∑

k=0

akx
n−kyk,

ẏ = x+ xn−2y2 + ε

n
∑

k=0

bkx
n−kyk;

that can bifurcate from the periodic orbits of the center (1) is 2.
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For recent studies on isochronous and uniform isochronous centers see for
instance [12] and [15].

2. Proof of statement (a) of Theorem 1

In polar coordinates (r, θ), where x = r sin θ and y = r cos θ, system (4)
becomes

ṙ = r2 sin θ + εr2(a0 cos
3 θ + (a1 + b0) cos

2 θ sin θ+
(a2 + b1) cos θ sin

2 θ + b2 sin
3 θ),

θ̇ = 1 + εr(b0 cos
3 θ − (a0 − b1) cos

2 θ sin θ−
(a1 − b2) cos θ sin

2 θ − a2 sin
3 θ).

Taking as independent variable the variable θ, we obtain the equivalent
differential equation

(7)

r′ = r2 sin θ + ε
(

r2
(

a0 cos
3 θ + (a1 + b0) cos

2 θ sin θ

+(a2 + b1) cos θ sin
2 θ + b2 sin

3 θ
)

+ r3
(

− b0 cos
3 θ sin θ

+(a0 − b1) cos
2 θ sin2 θ + (a1 − b2) cos θ sin

3 θ + a2 sin
4 θ
)

)

+O(ε2)

= F0(θ, r) + εF1(θ, r) +O(ε2).

Here the prime denotes derivative with respect to the variable θ. This differ-
ential equation is in the normal form (12) for applying the averaging theory
described in the Appendix.

The periodic solution r(θ, r0) given in (3) of the unperturbed equation
(2) for n = 2 is

r(θ, r0) =
r0

1− r0 + r0 cos θ
.

The variational differential equation of equation (7) at this periodic solution
is

dM

dθ
=

2r0 sin θ

1− r0 + r0 cos θ
M.

Its solution such that M(0) = 1 is

M(θ) =
1

(1− r0 + r0 cos θ)2
.

Now we must compute the averaged function (15) of the appendix, which in
our case is

(8) I(r0) =

∫ 2π

0

1

M(θ)
F1(θ, r(θ, r0))dθ.
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An easy computation shows that

I(r0) =

∫ 2π

0

(

a0(r0 − 1)r20 cos
3 θ

1− r0 + r0 cos θ
+

a0r
3
0 cos

4 θ

1− r0 + r0 cos θ

−(a2 + b1)(r0 − 1)r20 cos θ sin
2 θ

1− r0 + r0 cos θ
+

(a0 + a2)r
3
0 cos

2 θ sin2 θ

1− r0 + r0 cos θ

+
a2r

3
0 sin

4 θ

1− r0 + r0 cos θ

)

dθ

=
π(2a2

√
1− 2r0 − (a0 + a2 − b1))r

3
0

2− 2
√
1− 2r0(r0 − 1)− 4r0 + r20

.

The zeros of I(r0) = 0 are

0, 1 +
2a2

−2a2 ±
√
a0 + 3a2 − b1

√
−a0 + a2 + b1

.

Consequently at most there are two positive zeros, and it is easy to have
examples with two zeros, so by Theorem 3 of the Appendix we get at most
two limit cycles. This completes the proof of statement (a) of Theorem 1.

3. Proof of statement (b) of Theorem 1

In polar coordinates (r, θ) system (5) becomes

ṙ = r3 cos θ sin θ + εr3(a0 cos
4 θ + (a1 + b0) cos

3 θ sin θ+
(a2 + b1) cos

2 θ sin2 θ + (a3 + b2) cos θ sin
3 θ + b3 sin

4 θ),

θ̇ = 1 + εr2(b0 cos
4 θ − (a0 − b1) cos

3 θ sin θ−
(a1 − b2) cos

2 θ sin2 θ − (a2 − b3) cos θ sin
3 θ − a3 sin

4 θ).

Taking as independent variable the variable θ we obtain the equivalent dif-
ferential equation

(9)

r′ = r3 cos θ sin θ + εr3
(

a0 cos
4 θ + (a1 + b0) cos

3 θ sin θ

+(a2 + b1) cos
2 θ sin2 θ + (a3 + b2) cos θ sin

3 θ + b3 sin
4 θ

+r2 cos θ sin θ
(

− b0 cos
4 θ + (a0 − b1) cos

3 θ sin θ

+(a1 − b2) cos
2 θ sin2 θ + (a2 − b3) cos θ sin

3 θ + a3 sin
4 θ
)

)

+O(ε2)

= F0(θ, r) + εF1(θ, r) +O(ε2).

Again this differential equation is written in the normal form (12) for ap-
plying the averaging theory of the Appendix.

The periodic solutions r(θ, r0) given in (3) for the unperturbed equation
(2) when n = 3 are

r(θ, r0) =
r0

(1− r20 + r20 cos
2 θ)

1

2

.
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The variational differential equation of equation (9) at this periodic solution
is

dM

dθ
=

3r20 sin θ cos θ

1− r20 + r20 cos
2 θ

M.

Its solution such that M(0) = 1 is

M(θ) =
1

(1− r20 + r20 cos
2 θ)

3

2

.

Now we must compute the averaged function (15) of the appendix, which in
our case is an in (8). An easy computation shows that

I(r0) =

∫ 2π

0

(

r30
(

b1r
2
0 − b3r

2
0 + a0 − a2 − b1 + b3

)

cos4 θ

8
(

1− r20 + r20 cos
2 θ
)

−3r30
(

b1r
2
0 − b3r

2
0 + a0 − a2 − b1 + b3

)

sin2 θ cos2 θ

4
(

1− r20 + r20 cos
2 θ
)

+
r30
(

b3r
2
0 + a0 − b3

)

cos2 θ

2(1− r20 + r20 cos
2 θ)

+
r30
(

−b1r
2
0 − 3b3r

2
0 + 3a0 + a2 + b1 + 3b3

)

8(1 − r20 + r20 cos
2 θ)

+
r30
(

b1r
2
0 − b3r

2
0 + a0 − a2 − b1 + b3

)

sin4 θ

8(1− r20 + r20 cos
2 θ)

− r30
(

b3r
2
0 + a0 − b3

)

sin2 θ

2(1− r20 + r20 cos
2 θ)

)

dθ

=
π

r0

(

(

b1(r
2
0 − 1)− a2

)

(r20 − 2 + 2
√

1− r20) + b3
(

r40 + r20 − 2+

2
√

1− r20
)

+ a0
(

r20(3− 2
√

1− r20) + 2(−1 +
√

1− r20)
)

)

.

The unique two possible positive zeros of I(r0) = 0 are

√

1− 2(a0 + b3)
2

(b1 + b3)2
+

a0 + a2
b1 + b3

± 2
√

(a0 + b23)
2(a20 + b23 + a0(b3 − b1)− a2(b1 + b3))

(b1 + b3)2
.

So, by Theorem 3 of the Appendix, we get at most two limit cycles and it
is easy produce examples with two. This completes the proof of statement
(b) of Theorem 1.
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4. Proof of statement (c) of Theorem 1

In polar coordinates (r, θ) system (5) becomes

ṙ = cos2 θ sin θr4 + ε
(

a0 cos
5 θ + (a1 + b0) sin θ cos

4 θ

+(a2 + b1) sin
2 θ cos3 θ + (a3 + b2) sin

3 θ cos2 θ + (a4 + b3) sin
4 θ cos θ

+b4 sin
5 θ
)

r4,

θ̇ = 1 + ε
(

b0 cos
5 θ − (a0 − b1) sin θ cos

4 θ − (a1 − b2) sin
2 θ cos3 θ

−(a2 − b3) sin
3 θ cos2 θ − (a3 − b4) sin

4 θ cos θ − a4 sin
5 θ
)

r3.

Taking as independent variable the variable θ we obtain the equivalent dif-
ferential equation

(10)

r′ = r4 cos2 θ sin θ + ε r4
(

a0 cos θ
5 + (a1 + b0) cos θ

4 sin θ

+(a2 + b1) cos θ
3 sin θ2 + (a3 + b2) cos θ

2 sin θ3

+(a4 + b3) cos θ sin θ
4 + b4 sin θ

5
)

+ ε r7
(

− b0 cos θ
7 sin θ

+(a0 − b1) cos θ
6 sin θ2 + (a1 − b2) cos θ

5 sin θ3

+(a2 − b3) cos θ
4 sin θ4 + (a3 − b4) cos θ

3 sin θ5

+a4 cos θ
2 sin θ6

)

+O(ε2)

= F0(θ, r) + εF1(θ, r) +O(ε2).

This differential equation is written in the normal form (12) for applying
the averaging theory. The periodic solutions r(θ, r0) given in (3) for the
unperturbed equation (2) when n = 4 are

r(θ, r0) =
r0

(1− r30 + r30 cos
3 θ)

1

3

.

The variational differential equation of equation (10) at this periodic solution
is

dM

dθ
=

4r30 cos
2 θ sin θ

1− r30 + r30 cos
3 θ

M.

Its solution such that M(0) = 1 is

M(θ) =
1

(1− r30 + r30 cos
3 θ)

4

3

.
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Now we must compute the averaged function (15) of the appendix, which in
our case is an in (8). After some easy computations we have

I(r0) = 2

∫ π

0

(

−(a0 − a2 + a4 − b1 + b3)r
10
0 cos11 θ

(

1− r30 + r30 cos
3 θ
)2

+
(a0 − 2a2 + 3a4 − b1 + 2b3)r

10
0 cos9 θ

(

1− r30 + r30 cos
3 θ
)2

+
(a0 − a2 + a4 − b1 + b3)r

7
0 cos

8 θ

1− r30 + r30 cos
3 θ

+
(a0 − a2 + a4 − b1 + b3)(r0 − 1)r70

(

r20 + r0 + 1
)

cos8 θ
(

1− r30 + r30 cos
3 θ
)2

+
(a2 − 3a4 − b3)r

10
0 cos7 θ

(

1− r30 + r30 cos
3 θ
)2

+
(a2 − 2a4 + b1 − 2b3)r

7
0 cos

6 θ

1− r30 + r30 cos
3 θ

−(a0 − 2a2 + 3a4 − b1 + 2b3)(r0 − 1)r70
(

r20 + r0 + 1
)

cos6 θ
(

1− r30 + r30 cos
3 θ
)2

−(a0 − a2 + a4 − b1 + b3)(r0 − 1)r40
(

r20 + r0 + 1
)

cos5 θ

1− r30 + r30 cos
3 θ

+
a4r

10
0 cos5 θ

(

1− r30 + r30 cos
3 θ
)2

+
(a4 + b3)r

7
0 cos

4 θ

1− r30 + r30 cos
3 θ

−(a2 − 3a4 − b3)(r0 − 1)r70
(

r20 + r0 + 1
)

cos4 θ
(

1− r30 + r30 cos
3 θ
)2

−(a2 − 2a4 + b1 − 2b3)(r0 − 1)r40
(

r20 + r0 + 1
)

cos3 θ

1− r30 + r30 cos
3 θ

−a4(r0 − 1)r70
(

r20 + r0 + 1
)

cos2 θ
(

1− r30 + r30 cos
3 θ
)2

− (a4 + b3)(r0 − 1)r40
(

r20 + r0 + 1
)

cos θ

1− r30 + r30 cos
3 θ

)

dθ

=
1

6
r0(f(π, r0)− f(0, r0)),
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where r0 ∈ and

f(θ, r0) = 6(a0 − 3a2 + 5a4 − b1 + 3b3)(r
3
0 − 1)θ + 4

∑

λk

g(θ, λk, r0),

here λk run over the six roots of the polynomial

p(λ, r0) =
(

2r30 − 1
)

λ6 − 3λ4 + 3
(

2r30 − 1
)

λ2 − 1,

and

g(θ, λ, r0) =
g1(θ, λ, r0)

g2(θ, λ, r0)
,

g1(θ, λ, r0) =
(

(

2(a2 − 3a4 − b3)λ
4 + 2(3a2 − 2a0 − 3a4 + 2b1 − 3b3)λ

2
)

r60

+
(

(7a4 − 3a2 + 3b3)λ
4 + 4(2a0 − 3a2 + 4a4 − 2b1 + 3b3)λ

2

−a2 + a4 + b3
)

r30 + (a2 − 2a4 − b3)λ
4 + a2 − 2a4 − b3

+(6a2 − 4a0 − 8a4 + 4b1 − 6b3)λ
2
)

log (tan(θ/2)− λ) ,

g2(θ, λ, r0) = (2r30 − 1)(λ5 − λ)− 2λ3.

The function f(θ, r0) has been computed with the help of mathematica. We
note that

f(π, r0) = lim
θ↑π

f(θ, r0),

and that this limit exists because the area of the functions that appear in
the integral I(r0) is finite.

Now it is easy to check using an algebraic manipulator as mathematica
that

(11) I(r0) = (a0 + b1)f0(r0) + (a2 + b3)f1(r0) + a4f2(r0),

and that the functions fi(r0) for i = 0, 1, 2 are linearly independent. The
following result is well–known for a proof see for instance [14].

Proposition 2. Let f0, . . . , fn be analytic functions defined on an open

interval I ⊂ R. If f0, . . . , fn are linearly independent then there exists

s1, . . . , sn ∈ I and λ0, . . . , λn ∈ R such that for every j ∈ {1, . . . , n} we

have that sj is a simple zero of the function

n
∑

i=0

λifi(s).

Applying Proposition 2 to the function I(r0) given in (11) it follows that
I(r0) has 2 simple zeros. Therefore, by Theorem 3 statement (c) of Theorem
1 is proved.

Appendix: Basic results on averaging theory

In this section we present the basic results from the averaging theory that
we shall need for proving the main results of this paper.
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We consider the problem of the bifurcation of T–periodic solutions from
differential systems of the form

(12) x′ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε 6= 0 sufficiently small. Here the functions F0, F1 : R×Ω → R
n

and F2 : R × Ω × (−ε0, ε0) → R
n are C2 functions, T–periodic in the first

variable, and Ω is an open subset of Rn. The main assumption is that the
unperturbed system

(13) x′ = F0(t,x),

has a submanifold of dimension n of periodic solutions. A solution of this
problem is given using the averaging theory.

Let x(t, z, 0) be the solution of the system (13) such that x(0, z, 0) = z.
We write the linearization of the unperturbed system along the periodic
solution x(t, z, 0) as

(14) y′ = DxF0(t,x(t, z, 0))y.

In what follows we denote by Mz(t) some fundamental matrix of the linear
differential system (14).

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that for
each z ∈ Cl(V ), x(t, z, 0) is T–periodic. The set Cl(V ) is isochronous for
the system (12); i.e. it is a set formed only by periodic orbits, all of them
having the same period. Then, an answer to the problem of the bifurcation
of T–periodic solutions from the periodic solutions x(t, z, 0) contained in
Cl(V ) is given in the following result.

Theorem 3 (Perturbations of an isochronous set). We assume that there

exists an open and bounded set V with Cl(V ) ⊂ Ω such that for each z ∈
Cl(V ), the solution x(t, z, 0) is T–periodic, then we consider the function

F : Cl(V ) → R
n

(15) F(z) =

∫ T

0
M−1

z
(t)F1(t,x(t, z, 0))dt.

If there exists α ∈ V with F(α) = 0 and det ((dF/dz) (α)) 6= 0, then there

exists a T–periodic solution ϕ(t, ε) of system (12) such that ϕ(0, ε) → α as

ε → 0.

Theorem 3 is due to Malkin [16] and Roseau [17], for a shorter proof see
[2].
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