PERIODIC SOLUTIONS OF SOME CLASSES OF CONTINUOUS SECOND-ORDER DIFFERENTIAL EQUATIONS

JAUME LLIBRE ${ }^{1}$ AND AMAR MAKHLOUF ${ }^{2}$

Abstract

We study the periodic solutions of the second-order differential equations of the form $\ddot{x} \pm x^{n}=\mu f(t)$, or $\ddot{x} \pm|x|^{n}=$ $\mu f(t)$, where $n=4,5, \ldots, f(t)$ is a continuous T-periodic function such that $\int_{0}^{T} f(t) d t \neq 0$, and μ is a positive small parameter. Note that the differential equations $\ddot{x} \pm x^{n}=\mu f(t)$ are only continuous in t and smooth in x, and that the differential equations $\ddot{x} \pm|x|^{n}=$ $\mu f(t)$ are only continuous in t and locally-Lipschitz in x.

1. Introduction and statement of the main results

The periodic solutions of the second-order differential equations

$$
\begin{equation*}
\ddot{x}+x^{3}=f(t) \tag{1}
\end{equation*}
$$

where $f(t)$ is a T-periodic function have been studied by several authors. Thus, Morris [6] proves that if $f(t)$ is C^{1} and its averaged is zero (i.e. $\int_{0}^{T} f(t) d t=0$), then the differential equation (1) has periodic solutions of period $k T$ for all positive integer k. Ding and Zanolin [4] proved the same result without the assumption that the averaged of $f(t)$ be zero. Almost there is no results on the stability of these periodic solutions, but Ortega [7] proved that the differential equation (1) has finitely many stable periodic solutions of a fixed period.

Our goal is to extend the mentioned results on the periodic solutions of the second-order differential equation (1) to the second-order differential equations of the form

$$
\begin{equation*}
\ddot{x} \pm x^{n}=\mu f(t) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{x} \pm|x|^{n}=\mu f(t), \tag{3}
\end{equation*}
$$

[^0]where $n=4,5, \ldots, f(t)$ is a continuous T-periodic function such that $\int_{0}^{T} f(t) d t \neq 0$, and $\mu>0$ is a small parameter. Moreover, we shall study the linear stability or instability of such periodic solutions.

Note that the differential equations (2) are only continuous in t and smooth in x, and that the differential equations (3) are only continuous in t and locally-Lipschitz in x. As far as we know these kind of differential equations have not been studied up to know.

Our main results are the following two theorems.
Theorem 1. Consider the second-order differential equations

$$
\begin{equation*}
\ddot{x} \pm x^{n}=\mu f(t) \tag{4}
\end{equation*}
$$

where $n=4,5, \ldots, f(t)$ is continuous, T-periodic function such that $\int_{0}^{T} f(t) d t \neq 0$, and $\mu>0$ is a small parameter. Then, for $\mu>0$ sufficiently small there exist two periodic solutions $x_{ \pm}(t, \mu)$ of period T of the differential equation (4) such that

$$
\begin{equation*}
x_{ \pm}(0, \mu)= \pm \mu^{1 / n}\left| \pm \frac{1}{T} \int_{0}^{T} f(t) d t\right|^{1 / n}+O\left(\mu^{(n-1) /(2 n)}\right), \tag{5}
\end{equation*}
$$

if either $\pm \int_{0}^{T} f(t) d t>0$ when n is even, or when n is odd. Moreover the periodic solution $x_{-}(t, \mu)$ is unstable for the equation $\ddot{x}+x^{n}=\mu f(t)$ if n is even, and for the equations $\ddot{x} \pm x^{n}=\mu f(t)$ if n is odd.

Theorem 1 is proved in section 2.
Note that we are using in (5) and in the rest of the paper the following notation: for the solutions

$$
\begin{equation*}
x_{+}(0, \mu)=\mu^{1 / n}\left(+\frac{1}{T} \int_{0}^{T} f(t) d t\right)^{1 / n}+O\left(\mu^{(n-1) /(2 n)}\right), \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{-}(0, \mu)=\mu^{1 / n}\left(-\frac{1}{T} \int_{0}^{T} f(t) d t\right)^{1 / n}+O\left(\mu^{(n-1) /(2 n)}\right), \tag{7}
\end{equation*}
$$

we only write (5).
Theorem 2. Consider the second-order differential equations

$$
\begin{equation*}
\ddot{x} \pm|x|^{n}=\mu f(t), \tag{8}
\end{equation*}
$$

where $n=4,5, \ldots, f(t)$ is continuous, T-periodic function such that $\int_{0}^{T} f(t) d t \neq 0$, and $\mu>0$ is a small parameter. Then, for μ sufficiently small there exist two periodic solutions $x_{ \pm}(t, \mu)$ of period T of the differential equation (8) such that

$$
\begin{equation*}
x_{ \pm}(0, \mu)= \pm \mu^{1 / n}\left|\frac{1}{T} \int_{0}^{T} f(t) d t\right|^{1 / n}+O\left(\mu^{(n-1) /(2 n)}\right) \tag{9}
\end{equation*}
$$

if either $\pm \int_{0}^{T} f(t) d t>0$ when n is even, or when n is odd. Moreover, the periodic solutions $x_{ \pm}(t, \mu)$ for the equation $\ddot{x}-|x|^{n}=\mu f(t)$ are unstable.

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the 2-periodic function defined by

$$
g(t)=\left\{\begin{array}{lll}
t & \text { if } & t \in[0,1] \\
2-t & \text { if } & t \in[1,2]
\end{array}\right.
$$

The following two corollaries follow easily from the previous two theorems.

Corollary 3. For $\mu>0$ sufficiently small the equations $\ddot{x} \pm x^{4}=$ $\mu g(t)$ have two periodic solutions $x_{ \pm}(t, \mu)$ such that $x(0, \mu)= \pm \sqrt[4]{\mu / 2}+$ $O\left(\mu^{3 / 8}\right)$.

Corollary 4. For μ sufficiently small then equations $\ddot{x}+|x|^{4}=\mu \sin ^{2} t$ have two periodic solutions $x_{ \pm}(t, \mu)$ such that $x_{ \pm}(0, \mu)= \pm \sqrt[4]{\mu / 2}+$ $O\left(\mu^{3 / 8}\right)$.

2. Proof of the results

In this section we shall prove Theorems 1 and 2, and Corollaries 3 and 4.

Proof of Theorem 1. Under the assumptions of Theorem 1 we write the second-order differential equation as the differential system of first order

$$
\begin{align*}
& \dot{x}=y \\
& \dot{y}=\mp x^{n}+\mu f(t) . \tag{10}
\end{align*}
$$

Doing the change of variables

$$
\begin{equation*}
x=\varepsilon^{2 /(n-1)} X, \quad y=\varepsilon^{(n+1) /(n-1)} Y, \quad \mu=\varepsilon^{(2 n) /(n-1)}, \tag{11}
\end{equation*}
$$

with $\varepsilon>0$, the differential system (10) becomes

$$
\begin{align*}
\dot{X} & =\varepsilon Y, \\
\dot{Y} & =\varepsilon\left(\mp X^{n}+f(t)\right) . \tag{12}
\end{align*}
$$

We note that the change of variables (11) is well defined because $n>1$. Now we apply the averaging theory of first order of the appendix. Using the notation of Theorem 5 of the appendix system (12) can be written as system (15) with $\mathbf{x}=(X, Y), H=\left(Y, \mp X^{n}+f(t)\right), R=(0,0)$. The averaged function $h(\mathbf{z})$ given in (16) for system (12) becomes

$$
h(X, Y)=\left(Y, \mp X^{n}+\frac{1}{T} \int_{0}^{T} f(t) d t\right) .
$$

If n is even then the function $h(X, Y)$ has two unique zeros

$$
\left(X_{ \pm}^{*}, X_{ \pm}^{*}\right)=\left(\pm\left(\pm \frac{1}{T} \int_{0}^{T} f(t) d t\right)^{1 / n}, 0\right)
$$

when $\pm \frac{1}{T} \int_{0}^{T} f(t) d t>0$ for the equation $\ddot{x} \pm x^{n}=\mu f(t)$; note that only one of these two differential equations has two periodic solutions. If n is odd then the function $h(X, Y)$ has two zeros,

$$
\left(X_{ \pm}^{*}, Y_{ \pm}^{*}\right)=\left(\left(\pm \frac{1}{T} \int_{0}^{T} f(t) d t\right)^{1 / n}, 0\right)
$$

when $\int_{0}^{T} f(t) d t \neq 0$ for both equations $\ddot{x} \pm x^{n}=\mu f(t)$.
The Jacobian of the function $\mathrm{h}(\mathrm{X}, \mathrm{Y})$ at theses zeros is $\pm n X_{ \pm}^{*(n-1)}$. By Theorem 5 and Remark 1 we deduce that there are two periodic solutions $\left(X_{ \pm}(t, \varepsilon), Y_{ \pm}(t, \varepsilon)\right)$ of system (12) satisfying that

$$
\left(X_{ \pm}(0, \varepsilon), Y_{ \pm}(0, \varepsilon)\right)=\left(X_{ \pm}^{*}, 0\right)+O(\varepsilon)
$$

From (11) we have $x=\mu^{1 / n} X$. We conclude that for $\mu>0$ sufficiently small there exist two periodic solutions $x_{ \pm}(t, \mu)$ of period T of the differential equation (4) such that

$$
x_{ \pm}(0, \mu)=\mu^{1 / n} X_{ \pm}^{*}+O\left(\mu^{(n-1) /(2 n)}\right)
$$

We note that for $\mu>0$ sufficiently small $\mu^{1 / n} \gg \mu^{(n-1) /(2 n)}$ if and only if $n>3$, which holds by assumption.

The two eigenvalues of the corresponding Jacobian matrix of the averaged function $h(X, Y)$ at the zero $\left(X^{*}, Y^{*}\right)$ are $\pm \sqrt{\mp n X_{ \pm}^{*(n-1)}}$. If n is even and $\pm \frac{1}{T} \int_{0}^{T} f(t) d t>0$ the solution $\left(X_{-}(t, \varepsilon), Y_{-}(t, \varepsilon)\right)$ of system (12) provides an unstable periodic solution for the equation $\ddot{x}+x^{n}=\mu f(t)$. If n is odd and $\frac{1}{T} \int_{0}^{T} f(t) d t \neq 0$ the solution
($\left.X_{-}(t, \varepsilon), Y_{-}(t, \varepsilon)\right)$ of system (12) provides an unstable periodic solution for the equation $\ddot{x} \pm x^{n}=\mu f(t)$. Then from Theorem 6 of this appendix it follows the results on the instability of the periodic solutions stated in the theorem.

Proof of Theorem 2. In the assumptions of Theorem 2 we write the second-order differential equation as the differential system of first order

$$
\begin{align*}
& \dot{x}=y, \\
& \dot{y}=\mp|x|^{n}+\mu f(t) . \tag{13}
\end{align*}
$$

Doing the change of variables (11), the differential system (13) becomes

$$
\begin{align*}
& \dot{X}=\varepsilon Y, \\
& \dot{Y}=\varepsilon\left(\mp|X|^{n}+f(t)\right) . \tag{14}
\end{align*}
$$

Note that we can apply the averaging theory of first order of the appendix because the function $|X|^{n}$ is locally Lipschitz. Using the notation of Theorem 5 of the appendix system (14) can be written as system (15) with $\mathbf{x}=(X, Y), H=\left(Y, \mp|X|^{n}+f(t)\right), R=(0,0)$. The averaged function $h(\mathbf{z})$ given in (16) for system (14) becomes

$$
h(X, Y)=\left(Y, \mp|X|^{n}+\frac{1}{T} \int_{0}^{T} f(t) d t\right) .
$$

The function $h(X, Y)$ has the two zeros

$$
\left(X_{ \pm}^{*}, Y_{ \pm}^{*}\right)=\left(\pm\left(\pm \frac{1}{T} \int_{0}^{T} f(t) d t\right)^{1 / n}, 0\right)
$$

such zeros exist when $\pm \int_{0}^{T} f(t) d t>0$ and n is even, or when $\int_{0}^{T} f(t) d t \neq$ 0 and n is odd. The Jacobians of the function $\mathrm{h}(\mathrm{X}, \mathrm{Y})$ at the zeros $\left(X_{ \pm}^{*}, Y_{ \pm}^{*}\right)$ are $\pm n\left|X_{ \pm}^{*}\right|^{n-1}$. By Theorem 5 and Remark 1 we deduce that there is two periodic solutions $\left(X_{ \pm}(t, \varepsilon), Y_{ \pm}(t, \varepsilon)\right)$ of system (14) satisfying that

$$
\left(X_{ \pm}(0, \varepsilon), Y_{ \pm}(0, \varepsilon)\right)=\left(X_{ \pm}^{*}, 0\right)+O(\varepsilon)
$$

Since $x=\varepsilon^{2 /(n-1)} X$ and $\mu=\varepsilon^{(2 n) /(n-1)}$, we have $x=\mu^{1 / n} X$. So for $\mu>0$ sufficiently small there exists two periodic solutions $x_{ \pm}(t, \mu)$ of period T of the differential equation (13) such that

$$
x_{ \pm}(0, \mu)=\mu^{1 / n} X_{ \pm}^{*}+O\left(\mu^{(n-1) /(2 n)}\right)
$$

The two eigenvalues of the corresponding Jacobian matrix of the averaged function $h(X, Y)$ at the zeros $\left(X_{ \pm}^{*}, 0\right)$ are $\pm \sqrt{-n\left|X_{ \pm}^{*}\right|^{n-1}}$ for the equation $\ddot{x}+|x|^{n}=\mu f(t)$, and at the zeros $\left(X_{ \pm}^{*}, 0\right)$ are $\pm \sqrt{n\left|X_{ \pm}^{*}\right|^{n-1}}$
for the equation $\ddot{x}-|x|^{n}=\mu f(t)$. Again by Theorem 6 it follows that the periodic solutions $x_{ \pm}(t, \mu)$ are unstable for the equation $\ddot{x}-|x|^{n}=$ $\mu f(t)$. This completes the proof of the theorem.

Appendix: AVERAGING THEORY OF FIRST ORDER

In this section we present the first order averaging method as it was extended in [1], where the differentiability of the vector field is not needed. The sufficient conditions for the existence of a simple isolated zero of the averaged function are given in terms of the Brouwer degree, see [5] for precise definitions.

Theorem 5. We consider the following differential system

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\varepsilon H(t, \mathbf{x})+\varepsilon^{2} R(t, \mathbf{x}, \varepsilon) \tag{15}
\end{equation*}
$$

where $H: \mathbb{R} \times D \rightarrow \mathbb{R}^{n}, R: \mathbb{R} \times D \times\left(-\varepsilon_{f}, \varepsilon_{f}\right) \rightarrow \mathbb{R}^{n}$ are continuous functions, T-periodic in t, and D is an open subset of \mathbb{R}^{n}. We define $h: D \rightarrow \mathbb{R}^{n}$ as

$$
\begin{equation*}
h(\mathbf{z})=\frac{1}{T} \int_{0}^{T} H(s, \mathbf{z}) d s \tag{16}
\end{equation*}
$$

and assume that
(i) H and R are locally Lipschitz in x;
(ii) for $\mathbf{a} \in D$ with $h(\mathbf{a})=0$, there exists a neighborhood V of \mathbf{a} such that $h(\mathbf{z}) \neq 0$ for all $\mathbf{z} \in \bar{V} \backslash\{\mathbf{a}\}$ and $d_{B}(h, V, \mathbf{a}) \neq 0$ (where $d_{B}(h, V, \mathbf{a})$ denotes the Brouwer degree of h in the neighborhood V of $\mathbf{a})$.
Then, for $|\varepsilon|>0$ sufficiently small, there exists an isolated T-periodic solution $\mathbf{x}(t, \varepsilon)$ of system (15) such that $\mathbf{x}(0, \varepsilon) \rightarrow \mathbf{a}$ as $\varepsilon \rightarrow 0$.

If the averaged function $h(\mathbf{z})$ is differentiable in some neighborhood of a fixed isolated zero \mathbf{a} of $h(\mathbf{z})$, then we can use the following remark in order to verify the hypothesis (ii) of Theorem 5. For more details see again [5].

Remark 1. Let $h: D \rightarrow \mathbb{R}^{n}$ be a C^{1} function, with $h(\mathbf{a})=0$, where D is an open subset of \mathbb{R}^{n} and $\mathbf{a} \in D$. Whenever \mathbf{a} is a simple zero of $h(\operatorname{det}(\operatorname{Dh}(\mathbf{a})) \neq 0)$, i.e the determinant of the Jacobian matrix of the function h at a is not zero), there exists a neighborhood V of a such that $h(\mathbf{z}) \neq 0$ for all $\mathbf{z} \in \bar{V} \backslash\{\mathbf{a}\}$. Then $d_{B}(h, \mathbf{a}, V, 0) \in\{-1,1\}$.

In [2] Theorem 5 is improved as follows.
Theorem 6. Under the assumptions of Theorem 5, for small ε the condition $\operatorname{det}(\operatorname{Dh}(\mathbf{a})) \neq 0$ ensures the existence and uniqueness of a
T-periodic solution $\mathbf{x}(t, \varepsilon)$ of system (15) such that $\mathbf{x}(0, \varepsilon) \rightarrow \mathbf{a}$ as $\varepsilon \rightarrow$ 0 , and if all eigenvalues of the matrix $\operatorname{Dh}(\mathbf{a})$ have negative real parts, then the periodic solution $\mathbf{x}(t, \varepsilon)$ is stable. If some of the eigenvalue has positive real part the periodic solution $\mathbf{x}(t, \varepsilon)$ is unstable.

The averaging theory for studying periodic solutions is very useful see for instance [3].

ACKNOWLEDGEMENTS

We thank to Professor Rafael Ortega the information about the second-order differential equation $\ddot{x}+x^{3}=f(t)$.

The first author is partially supported by a MINECO grant MTM2013-40998-P, an AGAUR grant number 2014 SGR568, and the grants FP7-PEOPLE-2012-IRSES 318999 and 316338.

References

[1] A. Buică and J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math. 128 2004, 7-22.
[2] A. Buică, J. Llibre and O.Yu. Makarenkov, On Yu.A.Mitropol'skii's Theorem on periodic solutions of systems of nonlinear differential equations with nondifferentiable right-hand sides Doklady Math., 78 (2008), 525-527.
[3] T. Carvalho, R.D. Euzébio, J. Llibre and D.J. Tonon, Detecting periodic orbits in some 3D chaotic quadratic polynomial differential systems, Discrete and Continuous Dynamical Systems- Series B 21 (2016), 1-11.
[4] T.R. Ding and F. Zanolin, Periodic solutions of Duffing's equations with superquadratic potential, J. Differential Equations 97 (1992), 328-378.
[5] N.G. Lloyd, Degree Theory, Cambridge University Press, 1978.
[6] G.R. Morris, An infinite class of periodic solutions of $\ddot{x}+2 x^{3}=p(t)$, Proc. Cambridge Philos. Soc. 61 (1965), 157-164.
[7] R. Ortega, The number of stable periodic solutions of time-dependent Hamiltonian systems with one degree of freedom, Ergodic Theory Dynam. Systems 18 (1998), 1007-1018.
${ }^{1}$ Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat
${ }^{2}$ Department of Mathematics, Laboratory LMA, University of Annaba, Elhadjar, 23 Annaba, Algeria

E-mail address: makhloufamar@yahoo.fr

[^0]: 2010 Mathematics Subject Classification. 37G15, 37C80, 37C30.
 Key words and phrases. periodic solution, second order differential equations, averaging theory.

