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Abstract. We study the zero-Hopf bifurcation of the third–order differential
equations

x′′′ + (a1x+ a0)x
′′ + (b1x+ b0)x

′ + x2 = 0,

where a0, a1, b0 and b1 are real parameters. The prime denotes derivative
with respect to an independent variable t. We also provide an estimate of the

zero–Hopf periodic solution and their kind of stability. The Hopf bifurcations
of these differential systems were studied in [5], here we complete these studies
adding their zero-Hopf bifurcations.

1. Introduction and statement of the main result

Quadratic systems of differential equations in R3 are some of the simplest systems
after the linear ones and have been extensively studied in the last years. There are
many examples of such systems, see for instance Lorenz system [19], the Chen
system [4], the Liu system [14], the Rössler system [21], the Rikitake system [20],
the Lu system [13], among several others.

One of the most interesting problems related with quadratic systems of differ-
ential equations is the study of their limit cycles, i.e. of their isolated periodic
orbits in the set of all periodic orbits. It is known that every quadratic system of
differential equations in R2 has finitely many limit cycles, see for instance [1], [6],
[11]. For quadratic systems of differential equations in Rn with n > 2 the scenario
is very different. There are quadratic systems of differential equations for n > 2
with infinitely many limit cycles, see for instance [7].

In [5] the authors study the nonlinear dynamics including the Hopf periodic orbits
but not the zero–Hopf periodic orbits of a quadratic system of differential equations
in R3 which comes from a third–order differential equation. More precisely, they
analyze the third–order differential equation

x′′′ + (a1x+ a0)x
′′ + (b1x+ b0)x

′ + c2x
2 + c1x+ c0 = 0,

or equivalently the first–order system of differential equations

(1)
x′ = y,
y′ = z,
z′ = −(a0 + a1x)z − (b0 + b1x)y − (c2x

2 + c1x+ c0),
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where the prime denotes derivative with respect to the independent variable t.

The study of the different Hopf bifurcation of this system of differential equations
in [5] is done in two steps, in the first the authors reduces the polynomial c2x

2 +
c1x+c0 to x2, and in the second to x(x+1). In both cases the authors characterize
the Hopf bifurcations, i.e. when from an equilibrium point of system (1) having
eigenvalues α(ε) ± β(ε)i, λ(ε) it bifurcates a periodic orbit at ε = 0 with α(0) =
0, α′(0) ̸= 0 and λ(0) ̸= 0. The goal of this paper is to improve the study of the
zero–Hopf bifurcation which exhibits in the case x2 the system (1), i.e. from an
equilibrium point of system (1) having eigenvalues α(ε)±β(ε)i, λ(ε) it bifurcates a
periodic orbit at ε = 0 with α(0) = 0, α′(0) ̸= 0 and λ(0) = 0. Such bifurcation was
studied in [5] under the name fold–Hopf bifurcation, our two main contributions
are to provided for ε ̸= 0 sufficiently small, first an approximation of the periodic
orbit which bifurcate in it, and second its kind of stability.

More precisely we first study the zero–Hopf equilibria of system

(2)
x′ = y,
y′ = z,
z′ = −(a1x+ a0)z − (b1x+ b0)y − x2.

That is, the equilibrium points of a 3-dimensional autonomous system of differential
equations which have a zero eigenvalue and a pair of purely imaginary eigenvalues.
In our system this zero-Hopf equilibrium is the point (0, 0, 0) when a0 = 0.

System (2) possesses the unique singular point (x, y, z) = (0, 0, 0). In order to
simplify the computations we change the parameter b0 by a new parameter β > 0
(which will be the imaginary part of the eigenvalues of the linear part of system (5)

at the origin), as follows b0 =
1

4
(ε2a2 + β2).

Our main result on the periodic solutions of the third–order differential equation
(2) is the following.

Theorem 1. Assume that in system (2) (a1β
2 − 4)(a1β

2 − 8)2 > 0, β > 0, b0 =
(a20 + β2)/4 > 0 and a0 = εa where ε is a small parameter, then the differential
equation

(3) x′′′ + (a1x+ a0)x
′′ + (b1x+ (ε2a2 + β2)/4)x′ + x2 = 0,

has the periodic solution x(t, ε) such that

(4) x(0, ε) = ε
4(ω∗ − r∗)

a20 + β2
+O(ε2),

bifurcating from a zero–Hopf equilibrium point when ε = 0, where

(r∗, ω∗) =

(
aβ4√

2(a1β2 − 4)(a1β2 − 8)2
,− aβ4

4(a1β2 − 8)

)
.

Moreover the following statements hold.

(a) The periodic solution x(t, ε) has a stable and an unstable manifolds each
one formed by two cylinders if a1β

2 − 8 < 0.
(b) The periodic solution x(t, ε) is locally unstable if a1β

2 − 8 > 0 and a > 0.
(c) The periodic solution x(t, ε) is locally stable if a1β

2 − 8 > 0 and a < 0.
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We note that Dias and Mello in [5] they proved the existence of such zero–Hopf
bifurcation when the parameter a1 /∈ {2/b0, 1/b0, 9/10/b0, 0}.

The parameter β is taken in such a way that at the zero–Hopf bifurcation (i.e.
when ε = 0) the eigenvalues are ±β and 0, in such a way the computations become
easier. For the meaning of the other parameters see the paper [5].

Theorem 1 is proved in section 2. Its proof is based in the averaging theory for
computing periodic orbits, see section 3. For others applications of the averaging
theory to the study of limit cycles, see for instance [3, 15, 16] and mainly the books
[18, 22] where there are more than three hundred references on the averaging theory.

We shall study the system of differential equations of first order

(5)
x′ = y,
y′ = z,
z′ = −(εa+ a1x)z − ((ε2a2 + β2)/4 + b1x)y − x2,

associated to the differential equation (3). The periodic solution u(t, ε) satisfying
(4) of Theorem 1 written as solution of system (5) is a periodic solution which
tends to the equilibrium point localized at the origin of system (5). So this periodic
solution bifurcates from the origin at ε = 0. Consequently it is a Hopf periodic
solution. Moreover, since at ε = 0 the eigenvalues of the linear part at the equilib-
rium (0, 0, 0) are ±βi/2, 0 with β = 2

√
b0, we have that such periodic solution is a

zero–Hopf periodic solution.

2. Proof of Theorem 1

First we shall see that the system of differential equations

(6)
x′ = y,
y′ = z,
z′ = −(a0 + a1x)z − (b0 + b1x)y − x(x+ 1),

has no zero–Hopf equilibria. Indeed, this system has two equilibria: (0, 0, 0) and
(−1, 0, 0). The characteristic polynomials in these equilibria are −λ3+(a1−a0)λ

2+
(b1 − b0)λ + 1 and −λ3 − a0λ

2 − b0λ − 1, respectively. Since the product of the
three eigenvalues of the linear part of system (6) in these two equilibria are 1 and
−1, these equilibria never have a zero eigenvalue. So they never can be a zero–Hopf
equilibrium.

The Jacobian matrix of system (5) possesses the eigenvalues 0, (−εa ± iβ)/2.
Hence when a0 = εa = 0, we have that (0, 0, 0) is a zero-Hopf equilibrium. We shall
study if from this zero–Hopf equilibrium it bifurcates or not a periodic orbit.

We shall write system (5) in such a way that the linear part at the origin will be in
its real Jordan normal form. Then, doing the change of variables (x, y, z) → (u, v, w)
given by

 u
v
w

 =


0 ε

a

2
1

0
β

2
0

1

4
(ε2a2 + β2) εa 1


 x

y
z

 ,
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which is equivalent to

 x
y
z

 =


− 4

ε2a2 + β2
− 4εa

(ε2a2 + β2)β

4

ε2a2 + β2

0
2

β
0

1 −εa

β
0


 u

v
w

 ,

the system of differential equations (5) becomes
(7)

u′ = −εa

2
u− β

2
v +

4(a1(ε
2a2 + β2)− 4)

(ε2a2 + β2)2
u2 +

8(εa(εab1 − 4) + b1β
2)

β(ε2a2 + β2)2
uv

−4(a1(ε
2a2 + β2)− 8)

(ε2a2 + β2)2
uw−

−4εa(εa(4 + ε2a2a1 − 2εab1) + (εaa1 − 2b1)β
2)

β2(ε2a2 + β2)2
v2

+
4εa(8 + ε2a2a1 − 2εab1) + 4(εaa1 − 2b1)β

2

β(ε2a2 + β2)2
vw − 16

(ε2a2 + β2)2
w2,

v′ =
β

2
u− εa

2
v,

w′ =
4(a1(ε

2a2 + β2)− 4)

(ε2a2 + β2)2
u2 +

8(εa(−4 + εab1) + b1β
2)

β(ε2a2 + β2)2
uv

−4(a1(ε
2a2 + β2)− 8)

(ε2a2 + β2)2
uw − 4εa(εa(4 + ε2a2a1 − 2εab1) + (εaa1 − 2b1)β

2)

β2(ε2a2 + β2)2
v2

+
4εa(8 + ε2a2a1 − 2εab1) + 4(εaa1 − 2b1)β

2

β(ε2a2 + β2)2
vw − 16

(ε2a2 + β2)2
w2.

Note that the linear part of the system of differential equations (7) at the origin
is in its real normal form of Jordan. Doing the rescaling (u, v, w) = (εU, εV, εW ),
and system (7) becomes

(8)

U ′ = −β

2
V − ε

a

2
U − ε

1

2β4

(
− 8a1U

2β2 + 8a1UWβ2 − 16b1UV β+

16b1VWβ + 32U2 + 32W 2 − 64UW
)
+O(ε2),

V ′ =
β

2
U − ε

a

2
V,

W ′ = ε
4(U − V )

(
(a1β

2 − 4
)
U + 2βb1V + 4W )

β4
+O(ε2).
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Consider the polar coordinates U = r cos θ, V = r sin θ and W = ω. The system
of differential equations (8) in these coordinates writes

(9)

dr

dt
= ε

1

2β4

(
8r2(a1β

2 − 4) cos3 θ − arβ4 sin2 θ

−16ω cos θ(2ω + b1rβ sin θ)

+r cos2 θ(64ω − 8a1β
2ω − aβ4 + 16b1βr sin θ)

)
+O(ε2),

dθ

dt
=

β

2
+ ε

4

β4r
(ω − r cos θ) sin θ(4ω + r(a1β

2 − 4) cos θ + 2b1βr sin θ)

+O(ε2),

dω

dt
= −ε

4

β4
(ω − r cos θ)(4ω + r(a1β

2 − 4) cos θ + 2b1βr sin θ) +O(ε2).

Therefore the solutions of system (9) in the region θ̇ > 0 can be studied analyzing
the solution of the system of differential equations
(10)

dr

dθ
= ε

1

β5

(
8r2(a1β

2 − 4) cos3 θ − arβ4 sin2 θ − 16ω cos θ(2ω + b1rβ sin θ)

+r cos2 θ(64ω − 8a1β
2ω − aβ4 + 16b1βr sin θ)

)
+O(ε2),

dω

dθ
= −ε

8

β5
(ω − r cos θ)(4ω + r(a1β

2 − 4) cos θ + 2b1βr sin θ) +O(ε2).

For applying the averaging theorem we compute the averaged system (15). We
obtain

(11)

dr

dθ
= −ε

1

β5
r
(
aβ4 + 4ω(a1β

2 − 8)
)
= εg1(r, ω),

dω

dθ
= ε

4

β5

(
−8ω2 + r2(a1β

2 − 4)
)
= εg2(r, ω).

The unique equilibrium point of system (11) with r > 0 is

(r∗, ω∗) =

(
aβ4√

2(a1β2 − 8)2(a1β2 − 4)
,− aβ4

4(a1β2 − 8)

)
,

recall that by assumptions (a1β
2 − 8)2(a1β

2 − 4) > 0.

The zero (r∗, ω∗) of system(
g1 (r, ω)
g2 (r, ω)

)
=

(
0
0

)
,

with respect to the variables r and ω provide a periodic solution of system (10)
with ε ̸= 0 sufficiently small if it is simple , i.e. if

(12) det

(
∂(g1, g2)

∂(r, ω)

∣∣∣∣
(r,ω)=(r∗,ω∗)

)
=

16a2

β2(a1β2 − 8)
̸= 0,

which is the case by assumptions. By Theorem 2, system (10) has a periodic
solution (r(θ, ε), ω(θ, ε)) such that (r(0, ε), ω(0, ε)) = (r∗, ω∗) +O(ε).

This periodic solution in the coordinates (r, θ, ω) of system (9) writes (r(t, ε), θ(t, ε),
ω(t, ε)) and satisfies (r(0, ε), θ(0, ε), ω(0, ε)) = (r∗, 0, ω∗) +O(ε).
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Now the periodic solution written in the coordinates (U, V,W ) of system (8) be-
comes (U(t, ε), V (t, ε),W (t, ε)) and satisfies (U(0, ε), V (0, ε),W (0, ε)) = (r∗, 0, ω∗)+
O(ε).

Again this last periodic solution written in the variables (u, v, w) of system (7)
is (u(t, ε), v(t, ε), w(t, ε)) satisfying (u(0, ε), v(0, ε), w(0, ε)) = ε (r∗, 0, ω∗) +O(ε2).

Finally this periodic solution in the variable (x, y, z) of system (5) becomes
(x(t, ε), y(t, ε), z(t, ε)) satisfying

(x(0, ε), y(0, ε), z(0, ε)) = ε

(
4(ω∗ − r∗)

ε2a2 + β2
, 0, r∗

)
+O(ε2).

Hence, this periodic solution in the differential equation (3) is x(t, ε) satisfying

x(0, ε) = ε
4

ε2a2 + β2
(ω∗ − r∗) +O(ε2).

In order to complete the proof of Theorem 1, we must prove the statements
(a)–(d).

The eigenvalues of the matrix

(13)

(
∂(g1, g2)

∂(r, ω)

∣∣∣∣
(r,ω)=(r∗,ω∗)

)

are

8a− 4a
√
12− a1β2

β (a1β2 − 8)
and

8a+ 4a
√
12− a1β2

β (a1β2 − 8)
.

So the trace of the matrix (13) is

16a

β(a1β2 − 8)
.

From the expression of the determinant of the matrix (13) given in (12) it follows
that the equilibrium point (r∗, ω∗) of the averaged system (11) is a saddle when
a1β

2 − 8 < 0. Therefore by statement (c) of Theorem 2 the corresponding periodic
orbit of system (2) has two stable and two unstable manifolds formed by cylinders,
and statement (a) of Theorem 1 is proved.

If a1β
2 − 8 > 0 and a > 0, then the trace of the matrix (13) is positive. So

some of the two eigenvalues of this matrix has a positive real part. Hence the
equilibrium point (r∗, ω∗) of the averaged system (11) is unstable, and consequently
by statement (c) of Theorem 2 the corresponding periodic orbit of system (2) is
unstable. This proves statement (b) of Theorem 1.

If a1β
2−8 > 0 and a < 0, then the trace of the matrix (13) is negative, and both

eigenvalues have negative real part. Therefore the equilibrium point (r∗, ω∗) of the
averaged system (11) is stable, and consequently by statement (c) of Theorem 2
the corresponding periodic orbit of system (2) is stable. This proves statement (c)
of Theorem 1. This completes the proof of Theorem 1.
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3. Averaging theory of first order

We work with the two initial value problems

(14) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0,

and

(15) ẏ = εg(y), y(0) = x0,

with x , y and x0 in some open Ω of Rn, t ∈ [0,∞), ε ∈ (0, ε0]. Let F1 and F2 be
periodic functions of period T in the variable t, and we define

g(y) =
1

T

∫ T

0

F1(t,y)dt.

Theorem 2. By hypotheses the functions F1, DxF1 ,DxxF1 and DxF2 are con-
tinuous, bounded by a constant independent of ε in [0,∞) × Ω × (0, ε0], and that
y(t) ∈ Ω for t ∈ [0, 1/ε]. Then the next statements are satisfied.

(a) For t ∈ [0, 1/ε] it follows that x(t)− y(t) = O(ε) as ε → 0.
(b) If p ̸= 0 is an equilibrium point of system (15) and detDyg(p) ̸= 0, then

there is a periodic solution ϕ(t, ε) of period T for system (14) such that
ϕ(0, ε)− p = O(ε) as ε → 0.

(c) The kind of stability of the periodic solution ϕ(t, ε) is the same than the
stability of the equilibrium point.

The notation Dxg means the Jacobian matrix of g with respect to the compo-
nents of x, and Dxxg means the Hessian matrix of g.

For a proof of Theorem 2 see [23].

The averaging theory at any order in dimension one is developed in [8], and
in arbitrary dimension in [17]. Moreover it has been proved the equivalence of
the averaging method at first order in dimension two with the Abelian integral
method see [9], and recently the equivalence between the averaging method and
the Melnikov function method at any order in [2, 10].
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