doi:10.3934/dcdsb.2017022

DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS SERIES B Volume 22, Number 2, March 2017

pp. 477–482

PERIODIC SOLUTIONS OF SOME CLASSES OF CONTINUOUS SECOND-ORDER DIFFERENTIAL EQUATIONS

JAUME LLIBRE

Departament de Matemàtiques, Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Catalonia, Spain

Amar Makhlouf

Department of Mathematics, Laboratory LMA, University of Annaba Elhadjar, 23 Annaba, Algeria

(Communicated by Yuan Lou)

ABSTRACT. We study the periodic solutions of the second-order differential equations of the form $\ddot{x} \pm x^n = \mu f(t)$, or $\ddot{x} \pm |x|^n = \mu f(t)$, where $n = 4, 5, \ldots$, f(t) is a continuous *T*-periodic function such that $\int_0^T f(t)dt \neq 0$, and μ is a positive small parameter. Note that the differential equations $\ddot{x} \pm x^n = \mu f(t)$ are only continuous in *t* and smooth in *x*, and that the differential equations $\ddot{x} \pm |x|^n = \mu f(t)$ are only continuous in *t* and locally–Lipschitz in *x*.

1. Introduction. The periodic solutions of the second–order differential equations

$$\ddot{x} + x^3 = f(t),\tag{1}$$

where f(t) is a *T*-periodic function have been studied by several authors. Thus, Morris [9] proves that if f(t) is C^1 and its average is zero (i.e. $\int_0^T f(t)dt = 0$), then the differential equation (1) has periodic solutions of period kT for all positive integer k. Ding and Zanolin [6] proved the same result without the assumption that the average of f(t) be zero. Almost there is no results on the stability of these periodic solutions, but Ortega [10] proved that the differential equation (1) has finitely many stable periodic solutions of a fixed period.

On the other hand other authors have studied more general problems as the following one: when an equilibrium or a limit cycle of an autonomous differential system can be continued as a periodic solution when the autonomous system is periodically perturbed. This question of persistence is very classical, but for dimension two and for an equilibrium Buică and Ortega [3] found a complete characterization of the persistence of a such periodic solution. These authors use more general results on the persistence of periodic solutions of autonomous systems under periodic

²⁰¹⁰ Mathematics Subject Classification. Primary: 37G15, 37C80, 37C30.

Key words and phrases. Periodic solution, second order differential equations, averaging theory. We thank to Professor Rafael Ortega the information about the second-order differential equation $\ddot{x} + x^3 = f(t)$, and to the reviewer his comments which help us to improve the presentation of this paper. The first author is partially supported by a MINECO grant MTM2013-40998-P, an AGAUR grant number 2014 SGR568, and the grants FP7-PEOPLE-2012-IRSES 318999 and 316338.